首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Plug flow cytometry is a recently developed system for the automated delivery of multiple small boluses or "plugs" of cells or particles to the flow cytometer for analysis. Important system features are that sample plugs are of precisely defined volume and that the sample vessel need not be pressurized. We describe how these features enable direct cell concentration determinations and novel ways to integrate flow cytometers with other analytical instruments. METHODS: Adhesion assays employed human polymorphonuclear neutrophils (PMNs) loaded with Fura Red and Chinese hamster ovary (CHO) cells cotransfected with genes for green fluorescent protein (GFP) and human P-selectin. U937 cells expressing the human 7-transmembrane formyl peptide receptor were loaded with the fluorescent probe indo-1 for intracellular ionized calcium determinations. A computer-controlled syringe or peristaltic pump loaded the sample into a sample loop of the plug flow coupler, a reciprocating eight-port valve. When the valve position was switched, the plug of sample in the sample loop was transported to the flow cytometer by a pressure-driven fluid line. RESULTS: In stirred mixtures of PMNs and CHO cells, we used plug flow cytometry to directly quantify changes in concentrations of nonadherent singlet PMNs. This approach enabled accurate quantification of adherent PMNs in multicell aggregates. We constructed a novel plug flow interface between the flow cytometer and a cone-plate viscometer to enable real-time flow cytometric analysis of cell-cell adhesion under conditions of uniform shear. The High Throughput Pharmacology System (HTPS) is an instrument used for automated programming of complex pharmacological cell treatment protocols. It was interfaced via the plug flow coupling device to enable rapid (< 5 min) flow cytometric characterization of the intracellular calcium dose-response profile of U937 cells to formyl peptide. CONCLUSIONS: By facilitating the coupling of flow cytometers to other fluidics-based analytical instruments, plug flow cytometry has extended analytical capabilities in cell adhesion and pharmacological characterization of receptor-ligand interactions.  相似文献   

2.
Clinical applications of laser scanning cytometry   总被引:3,自引:0,他引:3  
Tárnok A  Gerstner AO 《Cytometry》2002,50(3):133-143
This study reviews existing and potential clinical applications of laser scanning cytometry (LSC) and outlines possible future developments. LSC provides a technology for solid phase cytometry. Fluorochrome-labeled specimens are immobilized on microscopic slides that are placed on a conventional epifluorescence microscope and analyzed by one or two lasers. Data comparable to flow cytometry are generated. In addition, the position of each event is recorded, a feature that allows relocalization and visualization of each measured event. The major advantage of LSC compared with other cytometric methods is the combination of two features: (a) the minimal clinical sample volume needed and (b) the connection of fluorescence data and morphological information for the measured event. Since the introduction of LSC, numerous methods have been established for the analysis of cells, cellular compartments, and tissues. Although most cytometric methods use only two or three colors, the characterization of specimens with up to five fluorochromes is possible. Most clinical applications have been designed to determine ploidy and immunophenotype; other applications include analyses of tissue biopsies and sections, fluorescence in situ hybridization, and the combination of vital and nonvital information on a single-cell basis. With the currently available assays, LSC has proven its wide spectrum of clinical applicability in slide-based cytometry and can be introduced as a standard technology in multiple clinical settings.  相似文献   

3.
We describe a computer-controlled 10 microns spot size laser scanning cytometer for making multiple wavelength fluorescence and scatter measurements of unconstrained cells on a surface such as a microscope slide. Designated areas of slides placed on a microscope stage are automatically scanned, and cells which generate above-threshold scatter or fluorescence values are found and individually processed to determine a list of measurement parameters. For each fluorescence or scatter measurement parameter, this list contains the integrated and peak values and bit pattern images of a scan window centered on the cell. The measurement time, the position of the cell on the slide, and two segmentation indices are also included in the list. Measurement time, cell position, and properties derived from the bit patterns are used interchangeably with integrated or peak measurement values as coordinates of multiproperty displays. Cells may be selected for counting, data display in various forms, or visual observation based on their meeting complex criteria among a chain of two property screens. Cells with selected properties may be viewed during an experiment or retrospectively. A designated specimen field may be repeatedly remeasured to perform kinetic cell studies. An argon ion and a HeNe- based laser instrument have been constructed and software has been written and evaluated with the specific goal of increasing the precision of propidium iodide-stained cellular DNA measurements. Some of the capabilities of the instrument and its current performance are described.  相似文献   

4.
BACKGROUND: The micronuclei (MN) assay is used to assess the chromosomal/mitotic spindle damage induced by ionizing radiation or mutagenic agents in vivo or in vitro. Because visual scoring of MN is cumbersome semi-automatic procedures that relay either on flow cytometry or image analysis were developed: both offer some advantages but also have shortcomings. METHODS: In the present study laser scanning cytometer (LSC), the instrument that combines analytical capabilities of flow and image cytometry, has been adapted for quantitative analysis of MN. The micronucleation of human breast carcinoma MCF-7 and leukemic HL-60 and U-937 cells was induced by in vitro treatment with mitomycin C. Cellular DNA was stained with propidium iodide (PI), protein was counterstained with fluorescein isothiocyanate (FITC). Two approaches were used to detect MN: (a) the threshold contour was set based on the data from the photosensor measuring red fluorescence of PI and MN were identified on the bivariate PI versus PI/FITC fluorescence distributions by their characteristic position; (b) the threshold contour was set on the data from the sensor measuring FITC fluorescence which made it possible, using the LSC software dedicated for FISH analysis, to assay both the frequency and DNA content of individual MN within each measured cell. RESULTS: The capability of LSC to relocate MN for visual examination was useful to confirm their identification. Visual identification of MN combined with their multiparameter characterization that took into an account their DNA content and protein/DNA ratio made it possible establish the gating parameters that excluded objects that were not MN; 93.3+/-3.3 events within the selected gate were MN. It was also possible to successfully apply FISH software to characterize individual cells with respect to quantity of MN residing in them. The percentage of MN assayed by LSC correlated well with that estimated visually by microscopy, both for MCF-7 (r = 0.93) and HL-60 cells (r = 0.87). CONCLUSIONS: LSC can be used to obtain unbiased estimate of MN frequencies. Unlike flow cytometry, it also allows one to characterize individual cells with respect to frequency and DNA content of MN residing in these cells. These analytical capabilities of LSC may be helpful not only to score MN but also to study mechanisms by which clastogenic agents induce MN.  相似文献   

5.
BACKGROUND: Laser-scanning cytometry (LSC) allows fast automated scoring of fluorescence signals directly on microscopic slides. Frequencies of spontaneous aneuploidies in murine and human sperm were evaluated by using this new LSC technique. Rapid detection may be of great interest in reproductive toxicology, as certain chemicals act as aneugens during meiosis, increasing the production of aneuploid germ cells. Materials and Methods Selected chromosomes were detected by using fluorescence in situ hybridization (FISH) and fluorochrome-labeled DNA-probes. Sperm chromatin was counterstained with propidium iodide. By scanning across the slide, fluorescence signals within sperm nuclei were detected and counted. RESULTS: In murine sperm, the frequencies of disomies for chromosomes 8 and X were 0.019% and 0.021%, respectively. The automated assessment in human sperm resulted in disomy frequencies of 0.061% and 0.090% for chromosomes 13 and X, respectively. These results were comparable to data obtained from the same samples by manual microscopic scoring and to literature data. CONCLUSIONS: Frequencies of genotypically abnormal sperm were not significantly different between automated and manual scoring. In conclusion, sperm aneuploidy was reliably determined and disomic sperm were successfully relocated by LSC. By virtue of rapid and reliable analyses, LSC has the powerful potential to replace manual microscopic FISH analysis in molecular cytogenetics.  相似文献   

6.
7.
Analysis of apoptosis by laser scanning cytometry   总被引:12,自引:0,他引:12  
Flow cytometry techniques that are widely used in studies of cell death, and particularly in the identification of apoptotic cells, generally rely on the measurement of a single characteristic biochemical or molecular attribute. These methods fail to recognize cell death lacking that attribute, as in some examples of atypical apoptosis. Since apoptosis was originally defined by morphologic criteria, we suggest that for any new cell system the cytometry-defined apoptosis be confirmed by morphologic examination. This quality assurance measure is now provided by laser scanning cytometry (LSC). LSC measurements of cell fluorescence are precise and highly sensitive, comparable to flow cytometry (FCM), and can be carried out on cells on slides, permitting cell by cell correlation of fluorescence cytometry with visual microscopic morphology. In this report we describe adaptations of various flow cytometry techniques for detection of apoptosis by laser scanning cytometry. We also describe features unique to LSC that are useful in recognizing apoptosis. Hyperchromicity of DNA, reflecting chromatin condensation, is evidenced by high maximal pixel values for fluorescence of the DNA-bound fluorochrome. Mitochondrial probes that have been adapted to LSC to measure the drop in mitochondrial transmembrane potential that occurs early in apoptosis include rhodamine 123, 3,3'-dihexiloxadicarbocyanine [DiOC6(3)], and the aggregate dye 5,5',6,6'tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). The changes in plasma membrane phospholipids and transport function, also early in apoptosis, are probed by a combination of the fluoresceinated annexin V and DNA fluorochromes such as propidium or 7-aminoactinomycin D. We also review methods of detection of apoptosis based on analysis of DNA fragmentation and their application to clinical oncology. Visual examination of the presumed apoptotic cells detected by cytometry makes it possible to discriminate those that are genuine from monocytes/macrophages that have ingested nuclear fragments via apoptotic bodies. Applications of flow cytometry and laser scanning cytometry in analysis of cell death are discussed and their respective advantages and disadvantages compared.  相似文献   

8.
W K Li 《Cytometry》1989,10(5):564-579
Shipboard analysis of marine ultraphytoplankton by flow cytometry is a powerful method to classify these cells according to in vivo fluorescence characteristics and size. At present, this ataxonomic-allometric approach allows recognition of phycoerythrin-containing cyanobacteria, cryptomonads, very small red-fluorescing cells (presumably prochlorophytes), and eukaryotic algae of various sizes in many open ocean samples. The speed at which flow cytometric analysis can be performed on freshly collected samples permits a high degree of sampling resolution in both space and time. A flow cytometric view is presented of the vertical distribution of ultraphytoplankton at various sites in the north Atlantic and of experiments wherein phytoplankton were incubated in an artificial light gradient and under simulated in situ conditions.  相似文献   

9.
Abstract. In this report we describe the successful application of a novel microscope-based multiparameter laser scanning cytometer (LSC) to measure duration of different phases of cell cycle in HL-60 human leukaemic cell lines by the fraction of labelled mitoses (FLM) method. Exponentially growing cells were harvested after various time intervals following pulse-labelling with 5'-bromo-2'-deoxyuridine (BrdUrd), cytocentrifuged, fixed in ethanol, and then exposed to UV light to induce DNA strand breaks at the sites of incorporated BrdUrd. The 3'OH termini of the photolytically generated DNA strand breaks were labelled with BrdUTP in the reaction catalysed by exogenous terminal deoxynucleotidyl transferase (TdT), followed by FITC-labelled BrdUrd antibodies. DNA was counterstained with propidium iodide (PI). Due to differences in chromatin structure between the interphase and mitotic cells, the LSC identified the latter by virtue of their higher red (PI) fluorescence intensity values among all pixels over the measured cell. To confirm that the cells selected were indeed cells in mitosis, predominantly in metaphase, the recorded X-Y coordinates of selected cells were used to re-position the cell for their visual examination. From the time lapse analysis of percentage BrdUrd-labelled cells progressing through mitosis it was possible to calculate the duration of individual phases of the cell cycle. The duration of S (Ts) and G2+ M (TG2+M) was 8 and 3 h, respectively, and the minimal duration of G2 (TG2) was 2 h. The cell cycle time (Tc) estimated for the cohort of the most rapidly progressing cells was 13 h. The ability to automatically and rapidly discriminate mitotic cells combined with the possibility of their subsequent identification by image analysis makes LSC the instrument of choice for the FLM analysis.  相似文献   

10.
The main flow laser cytometry principles, based on the elastic light scattering, spheres of its applications, problems of its realization and utilization in the immunological investigations and diagnostics are analysed. The experimental model of a flow cytometer with laser probing beam space scanning, originally proposed by the authors, is described. The apparatus was tested by polystyrene latex spheres and biological objects. The experiments showed that the achieved sensitivity was enough to register red blood cells, their complexes and bacterial cells.  相似文献   

11.
12.
Mechanisms that couple protein turnover to cell cycle progression are critical for coordinating the events of cell duplication and division. Despite the importance of cell cycle-regulated proteolysis, however, technologies to measure this phenomenon are limited, and typically involve monitoring cells that are released back into the cell cycle after synchronization. We describe here the use of laser scanning cytometry (LSC), a technical merger between fluorescence microscopy and flow cytometry, to determine cell cycle-dependent changes in protein stability in unperturbed, asynchronous, cultures of mammalian cells. In this method, the ability of the LSC to accurately measure whole cell fluorescence is employed, together with RNA fluorescence in situ hybridization and immunofluorescence, to relate abundance of a particular RNA and protein in a cell to its point at the cell cycle. Parallel monitoring of RNA and protein levels is used, together with protein synthesis inhibitors, to reveal cell cycle-specific changes in protein turnover. We demonstrate the viability of this method by analyzing the proteolysis of two prominent human oncoproteins, Myc and Cyclin E, and argue that this LSC-based approach offers several practical advantages over traditional cell synchronization methods.  相似文献   

13.
The green macroalgal genus Ulva (incl. Entemmorpha) contains economically valuable species, is of relevance for coastal management (green tides), and certain taxa serve as experimental organisms for fundamental research in green algae. The nuclear genome size of Ulva (Entemmorpha) compressa Linnaeus was measured in propidium iodide stained nuclei using laser scanning cytometry. Nuclei of fixed gametes yielded reproducible values, whereas nuclei extracted from multicellular gametophytes were unsuitable. With nuclei of Arabidopsis thaliana (L.) Heynh and Saccharomyces cerevisiae Hansen as references, the haploid nuclear genome size of U. compressa was calculated as 135 ± 7 Mbp. This is the smallest genome so far known from any species of Ulva.  相似文献   

14.
The study of phenomena occurring in the tumor microenvironment is a challenging task because of technical difficulties, particularly when dealing with hypocellular specimens. Laser scanning cytometry (LSC) is a new laboratory technology that has been recently introduced to overcome the limitations of other traditional technologies. By combining the properties and the advantages of flow cytometry (FC) and immunohistochemistry (IHC), LSC allows the investigator to obtain objective information on DNA content, protein expression and cellular localization is combination with morphological features. It has been already shown that LSC results are reliable compared to more traditional technologies, and its implementation in the clinical routine is under way. Its use in oncology, which is rapidly expanding, spans from apoptosis analysis to DNA content quantitation and tumor cell phenotyping. Here we describe the technology underlying this novel fluorescence-based device, review its use in oncology by dissecting the phenomena occurring in the tumor microenvironment and propose its application for the immunological follow-up of malignant lesions undergoing immunotherapeutic manipulation.  相似文献   

15.
Archival studies on paraffin-embedded tumor samples are often complicated by difficulty obtaining a reliable diploid DNA standard. Nontumor cells, e.g., inflammatory and stromal cells, most often found interspersed among tumor cells, would represent a solution to this problem. Unfortunately, there is an inherent difficulty to positively identifying tumor cells in paraffin-embedded specimens. Using an aneuploid paraffin-embedded breast cancer sample, we show here that laser scanning cytometer (LSC) in conjunction with flow cytometry can help to address this issue. Following standard protocols, the tissue was deparaffinized and rehydrated, and the nuclei mechanically isolated before being exposed to propidium iodide. An aliquot served for single-parameter flow cytometric analysis, and the remaining cells were cytocentrifuged onto a microscope slide and LSC analysis was performed. The DNA histogram profiles generated by the two approaches were comparable and both showed the presence of cell populations with different DNA content. To assess the nature of these subsets, we performed a correlated measurement of DNA content and chromatin organization at the single-cell level by LSC. This allowed the identification of several subsets of nuclei. Slides were then stained with Giemsa and the nature of these subsets was assessed morphologically by exploiting the relocating capability of LSC. Inflammatory and stromal cells, residual diploid epithelial cells, and hyperdiploid tumor cells-each characterized by a peculiar coordinate pattern of DNA content and chromatin organization-could be positively identified. Diploid, nontumor cells can then be used as an internal standard for DNA ploidy.  相似文献   

16.
BACKGROUND: To adequately analyze the complexity of the immune system and reduce the required sample volume for immunophenotyping in general, more measurable colors for the discrimination of leukocyte subsets are necessary. Immunophenotyping by the laser scanning cytometer (LSC), a slide-based cytometric technology, combines cell detection based on multiple colors with their subsequent visualization without the need for physical cell sorting. In the present study, the filter setting of the LSC was adapted for the measurement of the far-red emitting dye cyanine 7 (Cy7), thereby increasing the number of measurable commercially available fluorochromes. METHODS: The optical filters of the LSC were replaced-photomultiplier (PMT) 3/allophycocyanin (APC): 740-nm dichroic long pass, and 670-/55-nm bandpass; PMT 4/Cy7: 810-/90-nm bandpass. Peripheral blood leukocytes were stained directly by fluorochrome-labeled antibodies or by indirect staining. The tandem dyes of Cy7 (phycoerythrin [PE]-Cy7, APC-Cy7) and the fluorochromes fluorescein isothiocyanate (FITC), PE, PE-Cy5, and APC were tested alone and in different combinations. RESULTS: With the new filter combination and tandem fluorochromes, Cy7 was measurable at 488-nm (argon laser) or 633-nm (helium-neon laser) excitation. Resolution was in the range of FITC for PE-Cy7 but approximately 30% lower for APC-Cy7; spillover into the respective donor fluorochrome channel for both tandem dyes was prominent. A six-color panel for leukocyte subtyping was designed. CONCLUSIONS: With this adaptation, it is possible to measure the tandem conjugates PE-Cy7 and APC-Cy7. This new setup opens the way for six-color immunophenotyping by LSC.  相似文献   

17.
Flow cytometers based on optical sensing utilize external light sources and fluorescent dyes to measure one or more specific components or properties of individual cells or subcellular particles in liquid suspension. To provide for independent excitation of two dyes used in double staining experiments we have constructed a high resolution flow cytometer that uses two laser beams to provide two wavelengths of excitation. These beams are separated spatially so that cells flow through them sequentially, with a time separation of about 20 musec. Since the dyes are excited sequentially their emission occurs at different times and their emission spectra may overlap without causing any difficulty in analysis. We have developed new light collection optics that permit up to four measurements to be made on each cell. This approach greatly increases the number of dye combinations that can be used in flow cytometry, thus removing a significant limitation of single illumination instruments.  相似文献   

18.
Styles JA  Clark H  Festing MF  Rew DA 《Cytometry》2001,44(2):153-155
BACKGROUND: The evaluation of the safety of drugs and other chemicals is an important aspect of toxicology work. The mouse micronucleus assay is a standard in vivo genotoxicity assay. Chromosomal damage is an indicator of genotoxicity, which manifests in the formation of micronuclei in polychromatic erythrocytes from bone marrow and in peripheral blood erythrocytes. The assay is laborious to perform by manual counting. The laser scanning cytometer allows automated and rapid quantitation of cellular and subcellular fluorescence in monodisperse cell samples on a microscope slide. The object of this study was to evaluate the application of this new technology in the mouse micronucleus genotoxicity assay. Materials and Methods One hundred forty-four mice of various strains were dosed with combinations of carcinogens and antioxidants. Duplicate blood films were prepared 3 days later. One set of slides was stained with acridine orange, and the proportion of micronucleated erythrocytes was counted in 5,000 cells per slide. The duplicates were stained with propidium iodide (40 microg/ml). Five thousand cells per sample were examined using a laser scanning cytometer. The proportion of micronucleated erythrocytes was measured. RESULTS: A coefficient of correlation of 0.96 was found between the data from the two assays. The automation of the assay on the LSC produced a considerable time saving and efficiency gain. CONCLUSIONS: We conclude that with further development, laser scanning cytometry is likely to become the preferred modality for the performance of standard genotoxicity assays.  相似文献   

19.
AIMS: To develop rapid means of distinguishing between cysts and trophozoites of the opportunistic pathogen, Acanthamoeba castellanii, the causative agent of keratitis. METHODS AND RESULTS: Fluorescence of Congo Red, Calcoflor White was specific for the endocyst wall; trophozoites did not become fluorescent. The anionic oxonol dye, DiBAC4(3), did not penetrate the cytoplasmic membrane after short-term (<5 min) exposure, whereas cysts are permeable and become fluorescent. Confocal scanning laser microscopy confirmed these properties and large populations of organisms were analysed by flow cytometry. CONCLUSION: These data provide a rapid alternative to traditional haemocytometer or plate counts for discrimination of trophozoites from cysts. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid and precise determination of the growth cycle of a dangerous ocular pathogen.  相似文献   

20.
BACKGROUND: To study the fragile Prymnesiophyte species Chrysochromulina polylepis by flow cytometry (FC), we needed an effective fixation method. This method must guarantee a high yield of fixed cells to achieve acceptable measurement times by FC and to allow quick processing of many samples. Moreover, we wanted a method that allows for storage of fixed samples when FC analysis cannot be done immediately. METHODS: Different aldehydes and methanol were tested at different final concentrations. Gravity sedimentation and centrifugation were applied to achieve higher cell concentrations. Storage of fixed samples was tested under different conditions. RESULTS: 0.25% glutaraldehyde (GA) fixation yielded a recovery rate of about 90%. The signals obtained by FC analysis were excellent. It is possible to centrifuge GA-fixed cells and to store them for several weeks. CONCLUSIONS: GA is the fixative of choice for FC analysis of C. polylepis (and possibly other small delicate species) because it yielded highly significant recovery rates and high-quality FC signals. Cells can be centrifuged to increase the cell concentration, thereby achieving short measurement times with FC. The possibility of long-term storage of fixed cells presents an additional advantage if FC analysis cannot be done immediately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号