首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We monitored femtosecond laser induced membrane potential changes in non-excitable cells using patchclamp analysis. Membrane potential hyperpolarization of HeLa cells was evoked by 780 nm, 80 fs laser pulses focused in the cellular cytoplasm at average powers of 30–60 mW. Simultaneous detection of intracellular Ca2+ concentration and membrane potential revealed coincident photogeneration of Ca2+ waves and membrane potential hyperpolarization. By using non-excitable cells, the cell dynamics are slow enough that we can calculate the membrane potential using the steady-state approximation for ion gradients and permeabilities, as formulated in the GHK equations. The calculations predict hyperpolarization that matches the experimental measurements and indicates that the cellular response to laser irradiation is biological, and occurs via laser triggered Ca2+ which acts on Ca2+ activated K+ channels, causing hyperpolarization. Furthermore, by irradiating the cellular plasma membrane, we observed membrane potential depolarization in combination with a drop in membrane resistance that was consistent with a transient laser-induced membrane perforation. These results entail the first quantitative analysis of location-dependent laser-induced membrane potential modification and will help to clarify cellular biological responses under exposure to high intensity ultrashort laser pulses.  相似文献   

2.
3.
Cyclic AMP-responsive element binding protein (CREB) activity is known to contribute to important neuronal functions, such as synaptic plasticity, learning and memory. Using a microelectroporation technique to overexpress dominant negative mutant CREB (mCREB) in the adult mouse brain, we found that overexpression of mCREB in the forebrain cortex induced neuronal degeneration. Our findings suggest that constitutively active CREB phosphorylation is important for the survival of mammalian cells in the brain.  相似文献   

4.
This report addresses the relation between Bcl-2 and mitochondrial membrane potential (DeltaPsi(m)) in apoptotic cell death. Rat pheochromocytoma (PC12) cells are differentiated into neuron-like cells with nerve growth factor (NGF). It is known that Bcl-2 can attenuate apoptosis induced by deprivation of neurotrophic factor. The protective effect of Bcl-2 has been correlated with preservation of DeltaPsi(m). Protonophores, such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), collapse the proton gradient across the mitochondrial inner membrane, resulting in a complete abolition of the mitochondrial membrane potential. Based on the analysis of morphology, of phosphatidylserine exposure and of nuclear fragmentation we conclude that FCCP induces apoptosis in PC12 cells, which can be prevented by overexpression of Bcl-2. To determine whether the cytoprotective effect of Bcl-2 is due to stabilization of DeltaPsi(m), we investigated the effect of Bcl-2 on changes in DeltaPsi(m), induced by FCCP in PC12 cells. We showed that treatment with FCCP induced a reduction in DeltaPsi(m), as assessed with the lipophilic cationic membrane potential-sensitive dye JC-1, and that Bcl-2 protects against FCCP-induced changes in NGF differentiated PC12 cells. Our data indicate that Bcl-2 protects against FCCP-induced cell death by stabilizing DeltaPsi(m).  相似文献   

5.
We determined the effects of increasing the length of the ferret trachealis muscle on smooth muscle membrane potentials recorded on successive impalements by microelectrodes. The preparation included the paratracheal ganglion nerve plexus as well as trachealis muscle. With sustained increases in muscle length over the range 0.5-0.8 to 1.2 maximal length (Lmax), depolarization occurred, which was related to the amplitude of the length increase. Membrane depolarizations were also evoked after stretching to lengths approximately 1.1 Lmax and returning to the control length. Stretch-induced membrane depolarizations developed after the stretch maneuver was complete; were slowly reversible; were not influenced by tetrodotoxin or atropine; were related to stretch rather than to maintained increase in muscle length; were not transmitted to adjacent nonstretched segments of the trachea; and were often associated with slow waves which appear to be secondary to membrane depolarization rather than stretch per se.  相似文献   

6.
Recently, intense interest has focussed on electrical coupling between interneurones in cortical regions and their contributions towards oscillatory network activity. Despite mounting circumstantial evidence that pyramidal cells are also coupled, the paucity of direct evidence has made this controversial. Dual intracellular recordings from pairs of cortical and hippocampal pyramids demonstrated strong, but sparse coupling. Approximately 70% of CA1 pyramids close to the stratum radiatum border were coupled to another pyramid, but only to one or two of their very closest neighbours. On average 25% of the steady state and 10% of the peak action potential voltage change in one cell transferred to the other, supporting synchrony and promoting burst firing. The very high incidence of convergent inputs from coupled pyramids onto single targets provided additional evidence that ‘spikelets’ reflected full action potentials in a coupled cell, since the EPSPs activated by APs and by ‘spikelets’ had significantly different amplitude distributions. Audrey Mercer and Peter Bannister made equal contributions to this study  相似文献   

7.
Modifications in the cell membrane potential have been suggested to affect signaling mechanisms participating in diverse cellular processes, many of which involve structural cellular alterations. In order to contribute some evidence in this respect, we explored the effects of several depolarizing procedures on the structure and monolayer organization of bovine corneal endothelial cells in culture. Visually confluent cell monolayers were incubated with or without the depolarizing agent, either in a saline solution or in culture medium for up to 30 min. Membrane potential was monitored by fluorescence microscopy using oxonol V. Fluorescent probes were employed for F-actin, microtubules, and vinculin. Depolarization of the plasma membrane, achieved via the incorporation of gramicidin D into confluent endothelial cells or by modifications of the extracellular saline composition, provoked an increment of oxonol fluorescence and changes in cell morphology, consisting mainly of modifications in the cytoskeletal organization. In some areas, noticeable intercellular spaces appear. The cytoskeleton modifications mainly consist of a marked redistribution of F-actin and microtubules, with accompanying changes in vinculin localization. The results suggest that the depolarization of the plasma membrane potential may participate in mechanisms involved in cytoskeleton organization and monolayer continuity in corneal endothelial cells in culture.  相似文献   

8.
A rapid upregulation of astrocytic protein expression within area 2 of the cingulate cortex (Cg2) of the maternal rat occurs within 3 h postpartum and persists throughout lactation. Previous studies have shown that similar changes in astrocytic proteins can signal changes in local synapses and dendritic spines. Thus, here we used the Golgi-Cox impregnation technique to compare spine density in layer 2 and 3 pyramidal cells of Cg2, the CA1 region of the hippocampus and the parietal cortex (ParCx) among metestrus, late pregnant (LP), 3-hour postpartum (3H PP) and 16-day postpartum rats (D16 PP). Rats in the 3H PP group had higher numbers of dendritic spines/10 μm on the apical dendrites of pyramidal neurons in both Cg2 and CA1 than the other groups, which did not differ. A similar pattern was observed in basilar dendrites but this failed to reach significance. In Cg2, Sholl analysis revealed that rats in the D16 PP group had a significantly greater extent of dendritic arborization in the basilar region than any other group. These data suggest that the changes in astrocytic proteins that occur in Cg2 in the postpartum period are associated with neuronal plasticity in pyramidal layers 2 and 3.  相似文献   

9.
Peritubular membrane potential in kidney proximal tubular cells of spontaneously hypertensive rats (SHR-Okamoto strain adult rats) was measured with conventional 3 mol KCl microelectrodes, in vivo. Peritubular cell membrane potential was not different in SHR (-66.5 ± 0.7 mV) as compared with normotensive control Wistar rats (-67.5 ± 1.2 mV). To test the effects of possible altered sodium membrane transport in SHR on proximal tubule peritubular membrane potential, we allowed SHR and control rats to drink 1% NaCl for two weeks. Again, proximal tubule peritubular membrane potential was not different in SHR on 1% NaCl (-67.0 ± 1.0 mV) as compared with control rats on 1% NaCl (-64.7 ± 1.3 mV). From these results we concluded that peritubular membrane potential in kidney proximal tubular cells of SHR was not different from normotensive Wistar control rats, and if some alteration of sodium transport in kidney proximal tubular cells of SHR could exist, that was not possible to evaluate from the measurements of peritubular membrane potential in kidney proximal tubular cells.  相似文献   

10.
Summary It can be demonstrated with the aid of Golgi-, Nissl-, and pigment preparations that the Betz cells represent a homogeneous class of giant cells within the human brain, which can readily be distinguished from other large pyramids by their densely aggregated lipofuscin deposits. In addition to the primary motor field (4, Brodmann), there exists only a small area on the medial surface of the hemisphere in front of the central sulcus which also contains large Betz pyramids in layer Vb. This recently discovered gigantopyramidal field is almost totally buried in the depth of the cingulate sulcus (Braak, 1976b). Compared with the Betz cells of the primary motor field (4, Brodmann), those of the cingulate area display numerous primitive traits. A small number of short basal dendrites springs off from the cell body. The apical dendrite forks in a short distance from the perikaryon repeatedly but issues only few side branches. A spine-free proximal dendritic segment is poorly developed or lacking. Moreover, numerous spines are encountered along the surface of the soma. In view of their primitive features the large pyramids of the cingulate gigantopyramidal area are interpreted as the forerunners of the precentral Betz pyramids.Supported by the Deutsche Forschungsgemeinschaft (Br 317/7). Dedicated to Prof. Dr. med. Drs. h.c. W. Bargmann in honour of this 70th birthday  相似文献   

11.
12.
We tested the hypothesis that eccentric contractionsactivate mechanosensitive or stretch-activated ion channels (SAC) in skeletal muscles, producing increased cation conductance.Resting membrane potentials and contractile function were measured in rat tibialis anterior muscles after single or multiple exposures to aseries of eccentric contractions. Each exposure produced a significantand prolonged (>24 h) membrane depolarization in exercised musclefibers. The magnitude and duration of the depolarization were relatedto the number of contractions. Membrane depolarization was dueprimarily to an increase in Na+ influx, because theestimated Na+-to-K+ permeability ratio wasincreased in exercised muscles and resting membrane potentials could bepartially repolarized by substituting an impermeant cation forextracellular Na+ concentration. Neither theNa+/H+ antiport inhibitor amiloride nor thefast Na+ channel blocker TTX had a significant effect onthe depolarization. In contrast, addition of either of two nonselectiveSAC inhibitors, streptomycin or Gd3+, produced significantmembrane repolarization. The results suggest that muscle fibersexperience prolonged depolarization after eccentric contractions due,principally, to the activation of Na+-selective SAC.

  相似文献   

13.
Nitric oxide (NO) synthase (NOS) inhibition with N(omega)-nitro-L-arginine (L-NNA) produces L-NNA hypertensive rats (LHR), which exhibit increased sensitivity to voltage-dependent Ca(2+) channel-mediated vasoconstriction. We hypothesized that enhanced contractile responsiveness after NOS inhibition is mediated by depolarization of membrane potential (E(m)) through attenuated K(+) channel conductance. E(m) measurements demonstrated that LHR vascular smooth muscle cells (VSMCs) are depolarized in open, nonpressurized (-44.5 +/- 1.0 mV in control vs. -36.8 +/- 0.8 mV in LHR) and pressurized mesenteric artery segments (-41.8 +/- 1.0 mV in control vs. -32.6 +/- 1.4 mV in LHR). Endothelium removal or exogenous L-NNA depolarized control VSMCs but not LHR VSMCs. Superfused L-arginine hyperpolarized VSMCs from both the control and LHR groups and reversed L-NNA-induced depolarization (-44.5 +/- 1.0 vs. -45.8 +/- 2.1 mV). A Ca(2+)-activated K(+) channel agonist, NS-1619 (10 microM), hyperpolarized both groups of arteries to a similar extent (from -50.8 +/- 1.0 to -62.5 +/- 1.2 mV in control and from -43.7 +/- 1.1 to -55.6 +/- 1.2 mV in LHR), although E(m) was still different in the presence of NS-1619. In addition, superfused iberiotoxin (50 nM) depolarized both groups similarly. Increasing the extracellular K(+) concentration from 1.2 to 45 mM depolarized E(m), as predicted by the Goldman-Hodgkin-Katz equation. These data support the hypothesis that loss of NO activation of K(+) channels contributes to VSMC depolarization in L-NNA-induced hypertension without a change in the number of functional large conductance Ca(2+)-activated K(+) channels.  相似文献   

14.
Endometriosis is a benign gynecological disease of women of reproductive ages, wherein endometrial cells grow ectopically, decreasing their quality of life due to chronic pelvic pain and severe dysmenorrhea. Although surgery and hormone therapies are gold standards for treating endometriosis, side effects are common and the recurrence rate is nearly 50%. Recent studies are exploring phytochemicals as pharmacological adjuvants for treating endometriosis. Delphinidin is an anthocyanin with anti-inflammatory, antioxidative, and anticancerous properties. In this study, delphinidin showed antiproliferative and apoptotic effects on human endometrial cells. Additionally, treatment with delphinidin decreased the mitochondrial membrane potential and increased cytosolic calcium levels in VK2/E6E7 and End1/E6E7 cells. Delphinidin decreased the phosphorylation of proliferative signaling molecules, including ERK1/2, AKT, P70S6K, and S6, while increasing the phosphorylation of P38 MAPK and P90RSK. These results imply that delphinidin is a novel therapeutic agent for treating and managing endometriosis, and has fewer side effects.  相似文献   

15.
Mitochondrial membrane potential in aging cells   总被引:8,自引:0,他引:8  
Decreased mitochondrial membrane potential (DeltaPsi(M)) has been found in a variety of aging cell types from several mammalian species. The physiological significance and mechanisms of the decreased DeltaPsi(M) in aging are not well understood. This review considers the generation of DeltaPsi(M) and its role in ATP generation together with factors that modify DeltaPsi(M) with emphasis on mitochondrial membrane permeability, particularly the role of a multiprotein membrane megapore, the mitochondrial permeability transition pore complex (PTPC). Previous data showing decreased DeltaPsi(M) in aged cells is considered in relation to the methods available to estimate DeltaPsi(M). In the past the majority of studies used whole cell rhodamine 123 fluorescence to estimate DeltaPsi(M) in lymphocytes from mice or rats. Imaging of DeltaPsi(M) in living, in situ mitochondria using laser confocal scanning microscopy offers advantages over whole cell measurements or those from isolated mitochondria, particularly if several different potentiometric dyes are employed. Furthermore, high resolution imaging of the newer fixable potentiometric dyes allows immunocytochemistry for specific proteins and DeltaPsi(M) to be examined in the same cells or even the same mitochondria. We found that decreased DeltaPsi(M) in p53 overexpression-induced or naturally occurring senescence is associated with decreased responsiveness of the PTPC to agents that induce either its opening or closing. The decreased PTPC responsiveness seems to reflect, at least in part, decreased levels of a key PTPC protein, the adenine nucleotide translocase. We also consider the possible basis for decreased DeltaPsi(M) in fibroblasts from patients with Parkinson's disease, an age-related neurodegenerative disease. Finally, we speculate on the mechanisms and functional significance of decreased DeltaPsi(M) in aging.  相似文献   

16.
成年大鼠海马CA1区锥体细胞KATP通道的特性   总被引:3,自引:0,他引:3  
Zhou YJ  Tong ZQ  Gao TM 《生理学报》2001,53(5):344-348
为了解成年大鼠海马CA1区锥体细胞KATP通道的特性,实验采用膜片钳技术的内面向外式记录法,在急性分离的CA1区锥体神经元上,研究了可被胞浆侧ATP所抑制的钾离子单通道的特性,当细胞膜内外两侧的K^ 浓度均为140mmol/L时,通道的电导为63pS,翻转电位为1.71mV,通道呈弱向内向整流性,在负钳制电位时,通道开放时常被短时的关闭所打断,而在正钳制电位时,这种短时程的关闭状态明显少于负钳制电位时,但通道开放概率未见明显的电压依赖性,ATP对通道活动的抑制作用呈浓度依赖性,抑制通道活动50%的ATP浓度为0.1mmol/L.KATP通道的特异性阻断剂tolbutamide(甲糖宁,1mmol/L)可完全阻断通道的活动,而KATP通道开放剂diazoxide(二氮嗪,1mmol/L)则不增强通道的活动。  相似文献   

17.
18.
19.
In this study we show that panaxadiol, a ginseng saponin with a dammarane skeleton, induces apoptotic cell death by depolarization of mitochondrial membrane potential in human hepatoma SK-HEP-1 cells. Sequential activation of caspases-9, -3, and -7, but not of caspase-8, occurs after mitochondrial membrane depolarization and cytochrome c release from the mitochondria of panaxadiol-treated cells. Moreover, Cdk2 kinase activity, but not Cdc2 kinase activity, is markedly upregulated in the early stages of apoptosis. Olomoucine or roscovitine, specific Cdks inhibitors, effectively prevent mitochondrial membrane depolarization as well as apoptotic cell death in panaxadiol-treated cells. Thus, panaxadiol-treatment induces cell death-dependent activation of Cdk2 kinase activity, which is functionally associated with depolarization of mitochondrial membrane potential and subsequent cytochrome c release.  相似文献   

20.
In previous work, we reported that plasma membrane potential depolarization (PMPD) provokes cortical F-actin remodeling in bovine corneal endothelial (BCE) cells in culture, which eventually leads to the appearance of intercellular gaps. In kidney epithelial cells it has been shown that PMPD determines an extracellular-signal-regulated kinase (ERK)/Rho-dependent increase in diphosphorylated myosin light chain (ppMLC). The present study investigated the signaling pathways involved in the response of BCE cells to PMPD. Differently to renal epithelial cells, we observed that PMPD leads to a decrease in monophosphorylated MLC (pMLC) without affecting diphosphorylated MLC. Also, that the pMLC reduction is a consequence of cyclic adenosine 3′,5′-monophosphate (cAMP)/protein kinase A (PKA) activation. In addition, we found evidence that the cAMP increase mostly depends on soluble adenylyl cyclase activity. Inhibition of this enzyme reduces the effect of PMPD on the cAMP rise, F-actin remodeling, and pMLC decrease. No changes in phosho-ERK were observed, although we could determine that RhoA undergoes activation. Our results suggested that active RhoA is not involved in the intercellular gap formation. Overall, the findings of this study support the view that, differently to renal epithelial cells, in BCE cells PMPD determines cytoskeletal reorganization via activation of the cAMP/PKA pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号