首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
I became interested in biology as an undergraduate in a premedical curriculum but developed a passion for the field of reproductive biology because of a course in physiology of reproduction taken to meet requirements for admission to veterinary school. My career path changed, and I entered graduate school, obtained the Ph.D., and have enjoyed an academic career as a reproductive biologist conducting research in uterine biology and pregnancy in animal science departments at the University of Florida and at Texas A&M University. However, I have never allowed academic boundaries to interfere with research and graduate education as that is contrary to collegiality, the cornerstone of great universities. I consider that my major contributions to science include 1) identification of proteins secreted by cells of the uterine endometrium that are critical to successful establishment and maintenance of pregnancy; 2) discovery of steroids and proteins required for pregnancy recognition signaling and their mechanisms of action in pigs and ruminant species; 3) investigation of fetal-placental development and placental transport of nutrients, including water and electrolytes; 4) identification of linkages between nutrition and fetal-placental development; 5) defining aspects of the endocrinology of pregnancy; and 6) contributing to efforts to exploit the therapeutic value of interferon tau, particularly for treatment of autoimmune diseases. My current studies are focused on the role of select nutrients in the uterine lumen, specifically amino acids and glucose, that affect development and survival of the conceptus and translation of mRNAs and, with colleagues at Seoul National University, gene expression by the avian reproductive tract at key periods postovulation. Another goal is to understand stromal-epithelial cell signaling, whereby progesterone and estrogen act via uterine stromal cells that express receptors for sex steroids to stimulate secretion of growth factors (e.g., fibroblast growth factors and hepatocyte growth factor) that, in turn, regulate functions of uterine epithelial cells and conceptus trophectoderm.  相似文献   

2.
Epigenetic modifications of the genome, such as DNA methylation and posttranslational modifications of histone proteins, contribute to gene regulation. Growing evidence suggests that histone methyltransferases are associated with the development of various human diseases, including cancer, and are promising drug targets. High-quality generic assays will facilitate drug discovery efforts in this area. In this article, we present a liquid chromatography/mass spectrometry (LC/MS)-based S-adenosyl homocysteine (SAH) detection assay for histone methyltransferases (HMTs) and its applications in HMT drug discovery, including analyzing the activity of newly produced enzymes, developing and optimizing assays, performing focused compound library screens and orthogonal assays for hit confirmations, selectivity profiling against a panel of HMTs, and studying mode of action of select hits. This LC/MS-based generic assay has become a critical platform for our methyltransferase drug discovery efforts.  相似文献   

3.
Inhibition of tumor-induced angiogenesis is a promising strategy in anticancer research. Neovascularization is a process required for both tumor growth and metastasis. Enhanced understanding of the underlying molecular mechanisms has led to the discovery of a variety of pharmaceutically attractive targets. Decades of investigation suggest that vascular endothelial growth factor (VEGF) and its receptors, in particular VEGFR2 or kinase insert-domain-containing receptor (Kdr), play a critical role in the growth and survival of endothelial cells in newly forming vasculature. The clinical utility of inhibitors of this receptor tyrosine kinase is currently under intense investigation. Herein we report our efforts in this arena.  相似文献   

4.
Telomerase-dependent gene therapy   总被引:3,自引:0,他引:3  
  相似文献   

5.
Early success of kinase inhibitors has validated their use as drugs. However, discovery efforts have also suffered from high attrition rates due to lack of cellular activity. We reasoned that screening for such candidates in live cells would identify novel cell-permeable modulators for development. For this purpose, we have used our recently optimized epidermal growth factor receptor (EGFR) biosensor assay to screen for modulators of EGFR activity. Here, we report on its validation under high-throughput screening (HTS) conditions displaying a signal-to-noise ratio of 21 and a Z' value of 0.56-attributes of a robust cell-based assay. We performed a pilot screen against a library of 6912 compounds demonstrating good reproducibility and identifying 82 inhibitors and 66 activators with initial hit rates of 1.2% and 0.95%, respectively. Follow-up dose-response studies revealed that 12 of the 13 known EGFR inhibitors in the library were confirmed as hits. ZM-306416, a vascular endothelial growth factor receptor (VEGFR) antagonist, was identified as a potent inhibitor of EGFR function. Flurandrenolide, beclomethasone, and ebastine were confirmed as activators of EGFR function. Taken together, our results validate this novel approach and demonstrate its utility in the discovery of novel kinase modulators with potential use in the clinic.  相似文献   

6.
Precision oncology is premised on identifying and drugging proteins and pathways that drive tumorigenesis or are required for survival of tumor cells. Across diverse cancer types, the signaling pathway emanating from receptor tyrosine kinases on the cell surface to RAS and the MAP kinase pathway is the most frequent target of oncogenic mutations, and key proteins in this signaling axis including EGFR, SHP2, RAS, BRAF, and MEK have long been a focus in cancer drug discovery. In this review, we provide an overview of historical and recent efforts to develop inhibitors targeting these nodes with an emphasis on the role that an understanding of protein structure and regulation has played in inhibitor discovery and characterization. Beyond its well‐established role in structure‐based drug design, structural biology has revealed mechanisms of allosteric regulation, distinct effects of activating oncogenic mutations, and other vulnerabilities that have opened new avenues in precision cancer drug discovery.  相似文献   

7.
The origin of cellular life   总被引:4,自引:0,他引:4  
This essay presents a scenario of the origin of life that is based on analysis of biological architecture and mechanical design at the microstructural level. My thesis is that the same architectural and energetic constraints that shape cells today also guided the evolution of the first cells and that the molecular scaffolds that support solid-phase biochemistry in modern cells represent living microfossils of past life forms. This concept emerged from the discovery that cells mechanically stabilize themselves using tensegrity architecture and that these same building rules guide hierarchical self-assembly at all size scales (Sci. Amer 278:48-57;1998). When combined with other fundamental design principles (e.g., energy minimization, topological constraints, structural hierarchies, autocatalytic sets, solid-state biochemistry), tensegrity provides a physical basis to explain how atomic and molecular elements progressively self-assembled to create hierarchical structures with increasingly complex functions, including living cells that can self-reproduce.  相似文献   

8.
A mAb My 43 of the IgM isotype was obtained from a fusion of spleen cells immunized against human monocytes. This mAb inhibited monocyte binding of both soluble FITC-labeled IgA and IgA-coated E, whereas it did not inhibit IgG binding. The Ag recognized by My 43 was induced on HL-60 cells in parallel with IgA binding ability by 1-25 dihydroxy-vitamin D3 treatment. Phagocytosis of IgA-coated E by monocytes and 1-25 dihydroxyvitamin D3-treated HL-60 cells was inhibited by My 43. Furthermore, a heteroantibody of My 43 x F(ab)'2 anti-E promoted phagocytic uptake of E by monocytes. Production of superoxide anion by IFN-gamma treated U-937 cells was stimulated by My 43 but not by other IgM mAb recognizing myeloid cells. By these criteria My 43 recognized a molecule capable of triggering function. Moreover, its binding reactivity, ability to block binding of IgA and IgA-complexes, and its ability to induce activation of IgA receptor bearing myeloid cells, are consistent with the possibility that My 43 reacts with the IgA receptor on these cells.  相似文献   

9.
My career pathway has taken a circuitous route, beginning with a Ph.D. degree in electrical engineering from The Johns Hopkins University, followed by five postdoctoral years in biology at Hopkins and culminating in a faculty position in biological sciences at the University of Southern California. My startup package in 1973 consisted of $2,500, not to be spent all at once, plus an ancient Packard scintillation counter that had a series of rapidly flashing light bulbs to indicate a radioactive readout in counts/minute. My research pathway has been similarly circuitous. The discovery of Escherichia coli DNA polymerase V (pol V) began with an attempt to identify the mutagenic DNA polymerase responsible for copying damaged DNA as part of the well known SOS regulon. Although we succeeded in identifying a DNA polymerase, one that was induced as part of the SOS response, we actually rediscovered DNA polymerase II, albeit in a new role. A decade later, we discovered a new polymerase, pol V, whose activity turned out to be regulated by bound molecules of RecA protein and ATP. This Reflections article describes our research trajectory, includes a review of key features of DNA damage-induced SOS mutagenesis leading us to pol V, and reflects on some of the principal researchers who have made indispensable contributions to our efforts.  相似文献   

10.
Sweet home actinomycetes: The 1999 MDS Panlabs Lecture   总被引:1,自引:0,他引:1  
For the past 25 years, I have devoted most of my research efforts to the application of molecular genetics to yield improvement and production of novel secondary metabolites in actinomycetes. My group at Lilly Research Laboratories worked with a variety of Streptomyces species and with strains of Amycolatopsis and Saccharopolyspora. We developed molecular genetic tools to manipulate actinomycete genes, and applied them to important secondary metabolites, including tylosin, daptomycin, vancomycin, chloroeremomycin, and spinosyns. In the early years, I helped establish recombinant DNA technology to manufacture mammalian proteins, and more recently, helped implement microbial genomics as a research tool for antibiotic discovery. In this paper, I review some highlights, primarily from the actinomycete work. Journal of Industrial Microbiology & Biotechnology (2000) 24, 79–88. Received 25 October 1999/ Accepted in revised form 12 November 1999  相似文献   

11.
New approaches to the therapy of various tumors based on peptide analogues.   总被引:1,自引:0,他引:1  
The discovery of hypothalamic hormones was briefly reviewed. The development of new hormonal methods for the therapy of various cancers based on analogues of hypothalmic hormones is then presented. My group isolated luteininzing hormone-releasing hormone (LH-RH), also known as Gn-RH, from pig hypothalmi, elucidated its amino acid sequence, and synthesized it in 1971. The interest in medical applications of LH-RH led to the synthesis of LH-RH analogues by various groups. LH-RH agonists substituted in positions 6 or 10 including Decapeptyl, Leuprolide and Zoladex are much more active than LH-RH and on continuous administration produce inhibition of pituitary and gonads. Chronic administration of LH-RH agonists is being utilized for the treatment of prostate and breast cancer. Octapeptide analogues of somatostatin have various applications in Oncology. In 1980 we developed a new endocrine therapy for advanced prostate cancer based on agonists of LH-RH, which is now preferred by 70-90% of prostate cancer patients for primary treatment. LH-RH antagonists such as Cetrorelix can be used for therapy of BPH. On the basis of the presence of specific receptors for hypothalamic peptides on human cancers, we developed targeted cytotoxic analogues of LH-RH, somatostatin, and bombesin/GRP linked to doxorubicin or 2-pyrrolinodoxorubicin. These analogues inhibit the growth of experimental human prostate, breast, ovarian and endometrial cancer, renal cell carcinoma, pancreatic, colorectal and gastric cancers, small cell lung carcinoma (SCLC) and non-SCLC, brain tumors, melanomas, and lymphomas. Cytotoxic LH-RH analogues are now in clinical trials. Recently we demonstrated that growth hormone-releasing hormone (GH-RH) also serves as an autocrine growth factor in many cancers. Antagonistic analogues of GH-RH synthesized in our laboratory inhibit the growth of diverse tumors. The discovery of LH-RH and somatostatin has led to clinical use of their analogues in the field of cancer treatment and GH-RH antagonists also show a great promise.  相似文献   

12.
In this study, we describe the isolation and characterization of My23, a human myeloid antigen defined by the monoclonal antibody (MoAb) AML-2-23. Cells of the HL-60 human promyelocytic cell line, when cultured in the presence of 1,25-dihydroxyvitamin D3 (calcitriol), express a surface protein of approximately 50 to 55 kilodaltons (Kd) which was immunoprecipitated with the AML-2-23 MoAb. Furthermore, after 2 days of exposure to calcitriol, HL-60 cells began to release My23 into culture medium, as determined by the ability of culture supernatant from these cells to block the binding of AML-2-23 to myeloid cells. My23 release was almost totally inhibited by incubation of cells at 4 degrees C, and was partially blocked by treatment of cells with cycloheximide or tunicamycin. The culture supernatant blocking factor, soluble My23, was identified as a 45 to 50 Kd protein by Western blot/immune overlay, using AML-2-23 and an 125I-labeled second antibody. My23, which was affinity-purified from culture supernatant, retained the ability to block AML-2-23 binding to myeloid cells. The affinity-purified antigen migrated on SDS-PAGE as a diffuse band in the m.w. range of 44 to 52 Kd. On treatment with endoglycosidase, the apparent m.w. of My23 decreased to approximately 40,000, indicating the presence of carbohydrate residues on My23. Serum from mice immunized with the purified antigen reacted with the same spectrum of myeloid cells as AML-2-23 MoAb, reacted with the My23 soluble protein in immunoblots, and competed with AML-2-23 for binding to myeloid cells. Binding of this antiserum to myeloid cells was blocked by cell supernatant from both monocytes and calcitriol-treated HL-60 cells, suggesting, along with results from m.w. determinations of the two preparations, that the soluble and cell surface forms of My23 are similar. Moreover, based on our finding that human plasma specifically inhibits the binding of AML-2-23 to myeloid cells, My23 may also be released in vivo. The enhanced expression of My23 on activated and more mature myeloid cells and its shedding or secretion by these cells is consistent with a functional role for My23.  相似文献   

13.
The remarkable accomplishments in developmental neurobiology within the past 60 years have depended on two things: (i) a succession of original histochemical and immunohistochemical methodologies for identifying pathways in the nervous system with increasing precision and sensitivity, and (ii) the discovery of growth factors for neurons. Growth factors are naturally occurring, essential biological mediators that promote cell growth, differentiation, survival and function in specific nerve cell populations. The discovery of nerve growth factor (NGF) by Rita Levi-Montalcini in the 1950s represents an important milestone in the processes that led to modern cell biology. NGF was the first growth factor identified, for its action on the morphological differentiation of neural-crest-derived nerve cells. Later, its effect on neuronal cells of the peripheral and central nervous systems, and on several non-neuronal cells was also determined. Thus, Levi-Montalcini's work on NGF represents, as acknowledged by the Nobel Prize Assembly in its press release of 13 October 1986, "a fascinating example of how a skilled observer can create a concept out of apparent chaos".  相似文献   

14.
15.
Human individuals differ from one another at only ~0.1% of nucleotide positions, but these single nucleotide differences account for most heritable phenotypic variation. Large-scale efforts to discover and genotype human variation have been limited to common polymorphisms. However, these efforts overlook rare nucleotide changes that may contribute to phenotypic diversity and genetic disorders, including cancer. Thus, there is an increasing need for high-throughput methods to robustly detect rare nucleotide differences. Toward this end, we have adapted the mismatch discovery method known as Ecotilling for the discovery of human single nucleotide polymorphisms. To increase throughput and reduce costs, we developed a universal primer strategy and implemented algorithms for automated band detection. Ecotilling was validated by screening 90 human DNA samples for nucleotide changes in 5 gene targets and by comparing results to public resequencing data. To increase throughput for discovery of rare alleles, we pooled samples 8-fold and found Ecotilling to be efficient relative to resequencing, with a false negative rate of 5% and a false discovery rate of 4%. We identified 28 new rare alleles, including some that are predicted to damage protein function. The detection of rare damaging mutations has implications for models of human disease.  相似文献   

16.
Monoclonal antibodies, My10 (HPCA-1) and major histocompatibility class II (HLA-DR), were used to enrich and phenotype normal human marrow colony-forming unit: granulocyte-macrophage (CFU-GM), burst-forming unit: erythroid (BFU-E), and multipotential colony-forming unit: granulocyte-erythroid-macrophage-megakaryocyte (CFU-GEMM) progenitor cells. Nonadherent low density T lymphocyte-depleted marrow cells were sorted on a Coulter Epics 753 dye laser flow cytometry system with the use of Texas Red-labeled anti-My10 and phycoerythrin conjugated anti-HLA-DR. Cells were separated into populations with nondetectable expression of antigens (DR-My10-) or with constant expression of one antigen and increasing densities of the other antigen. More than 98% of the CFU-GM, BFU-E, and CFU-GEMM were found in fractions containing cells expressing both HLA-DR and My10 antigens. The cloning efficiency (CE) of cells in the DR-My10- cell fraction was 0.01%. In the antigen-positive sorted fractions, the CE was highest (up to 47%) in the fractions of cells expressing high My10 and low DR (My10 DR+) antigens and was lowest (2.5%) in the fraction of cells expressing low My10 and low DR (My10+DR+) antigens. Populations of cells varying in the density of HLA-DR, but not My10, antigens varied in the proportion and types of progenitor cells present. When My10-positive cells were sorted for HLA-DR density expression, the CE for CFU-GM was similar in the DR+ and DR++ fractions, but most of the BFU-E and CFU-GEMM were found in the DR+ fraction. Within the CFU-GM compartment, most of the eosinophil progenitors were found in the DR+ fraction, whereas a greater proportion of macrophage progenitors were detected in the DR++ fraction. CFU-GM and BFU-E in the fractions of cells positive for DR and My10 were assessed for responsiveness to the effects of recombinant human tumor necrosis factor-alpha, recombinant human interferon-gamma, and prostaglandin E1. Colony formation from CFU-GM was suppressed by the three molecules, and colony formation by BFU-E was suppressed by recombinant human tumor necrosis factor-alpha and interferon-gamma and enhanced, in the presence of T lymphocyte-conditioned medium, by prostaglandin E1 in all antigen-positive fractions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
In our continuing efforts to develop novel chemotherapeutic agents for prostate cancer, recently we reported the discovery of 2-arylthiazolidine-4-carboxylic acid amides (ATCAAs) as a new class of cytotoxic agents. Several of them were very effective in killing specific human prostate cancer cell lines with low/sub-micromolar cytotoxicity and high selectivity against control cells in our sulforhodamine B assay. Encouraged with these preliminary results, we decided to further optimize this new scaffold to enhance the potency and selectivity. Current work describes the synthesis, SAR, and biological evaluation of new compounds for their ability to inhibit the growth of five human prostate cancer cell lines. The cytotoxicity data demonstrated that ATCAAs are sensitive to simple modifications or changes, which allowed us to understand the minimum structural requirements of this class of compounds to exhibit potent and selective anticancer activity against prostate cancer cells.  相似文献   

18.
19.
20.
The Wnt signal transduction pathway is dysregulated in many highly prevalent diseases, including cancer. Unfortunately, drug discovery efforts have been hampered by the paucity of targets and drug-like lead molecules amenable to drug discovery. Recently, we reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling by a unique mechanism, though the target responsible remains unknown. We interrogated the mechanism and structure–activity relationships to understand drivers of potency and to assist target identification efforts. We found inhibition of Wnt signaling by Niclosamide appears unique among the structurally-related anthelmintic agents tested and found the potency and functional response was dependent on small changes in the chemical structure of Niclosamide. Overall, these findings support efforts to identify the target of Niclosamide inhibition of Wnt/β-catenin signaling and the discovery of potent and selective modulators to treat human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号