首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
2.

Background

Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line.

Results

One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20) with three members (FAM20A, FAM20B and FAM20C) in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c) were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members.

Conclusions

The FAM20 family represents a new family of secreted proteins with potential functions in regulating differentiation and function of hematopoietic and other tissues. The Fam20a mRNA was only expressed during early stages of hematopoietic development and may play a role in lineage commitment or proliferation. The expansion in gene number in different species suggests that the family has evolved as a result of several gene duplication events that have occurred in both vertebrates and invertebrates.  相似文献   

3.
4.

Background

Staphylococcus aureus secretes numerous exotoxins which may exhibit superantigenic properties. Whereas the virulence of several of them is well documented, their exact biological effects are not fully understood. Exotoxins may influence the immune and inflammatory state of various organs, including the sinonasal mucosa: their possible involvement in chronic rhinosinusitis has been suggested and is one of the main trends in current research. The aim of this study was to investigate whether the presence of any of the 22 currently known staphylococcal exotoxin genes could be correlated with chronic rhinosinusitis.

Methodology/Principal Findings

We conducted a prospective, multi-centred European study, analysing 93 Staphylococcus aureus positive swabs taken from the middle meatus of patients suffering from chronic rhinosinusitis, with or without nasal polyposis, and controls. Strains were systematically tested for the presence of the 22 currently known exotoxin genes and genotyped according to their agr groups. No direct correlation was observed between chronic rhinosinusitis, with or without nasal polyposis, and either agr groups or the presence of the most studied exotoxins genes (egc, sea, seb, pvl, exfoliatins or tsst-1). However, genes for enterotoxins P and Q were frequently observed in nasal polyposis for the first time, but absent in the control group. The number of exotoxin genes detected was not statistically different among the 3 patient groups.

Conclusions/Significance

Unlike many previous studies have been suggesting, we did not find any evident correlation between staphylococcal exotoxin genes and the presence or severity of chronic rhinosinusitis with or without nasal polyposis.  相似文献   

5.

Background

Trans-translation releases stalled ribosomes from truncated mRNAs and tags defective proteins for proteolytic degradation using transfer-messenger RNA (tmRNA). This small stable RNA represents a hybrid of tRNA- and mRNA-like domains connected by a variable number of pseudoknots. Comparative sequence analysis of tmRNAs found in bacteria, plastids, and mitochondria provides considerable insights into their secondary structures. Progress toward understanding the molecular mechanism of template switching, which constitutes an essential step in trans-translation, is hampered by our limited knowledge about the three-dimensional folding of tmRNA.

Results

To facilitate experimental testing of the molecular intricacies of trans-translation, which often require appropriately modified tmRNA derivatives, we developed a procedure for building three-dimensional models of tmRNA. Using comparative sequence analysis, phylogenetically-supported 2-D structures were obtained to serve as input for the program ERNA-3D. Motifs containing loops and turns were extracted from the known structures of other RNAs and used to improve the tmRNA models. Biologically feasible 3-D models for the entire tmRNA molecule could be obtained. The models were characterized by a functionally significant close proximity between the tRNA-like domain and the resume codon. Potential conformational changes which might lead to a more open structure of tmRNA upon binding to the ribosome are discussed. The method, described in detail for the tmRNAs of Escherichia coli, Bacillus anthracis, and Caulobacter crescentus, is applicable to every tmRNA.

Conclusion

Improved molecular models of biological significance were obtained. These models will guide in the design of experiments and provide a better understanding of trans-translation. The comparative procedure described here for tmRNA is easily adopted for the modeling the members of other RNA families.  相似文献   

6.

Background

Secreted Frizzled related proteins (SFRPs) are extracellular regulators of Wnt signaling. These proteins contain an N-terminal cysteine rich domain (CRD) highly similar to the CRDs of the Frizzled family of seven-transmembrane proteins that act as Wnt receptors. SFRPs can bind to Wnts and prevent their interaction with the Frizzled receptor. Recently it has been reported that a splice variant of human Frizzled-4 (FZD4S) lacking the transmembrane and the cytoplasmic domains of Frizzled-4 can activate rather than inhibit Wnt-8 activity in Xenopus embryos. This indicates that secreted CRD containing proteins such as Frizzled ecto-domains and SFRPs may not always act as Wnt inhibitors. It is not known how FZD4S can activate Wnt/β-catenin signaling and what biological role this molecule plays in vivo.

Results

Here we report that the Xenopus frizzled-4 is alternatively spliced to give rise to a putative secreted protein that lacks the seven-transmembrane and the cytoplasmic domains. We performed functional experiments in Xenopus embryos to investigate how this novel splicing variant, Xfz4S, can modulate the Wnt/β-catenin pathway. We show that Xfz4S as well as the extracellular domain of Xfz8 (ECD8) can act as both activators and inhibitors of Wnt/β-catenin signaling dependent on the Wnt ligand presented. The positive regulation of Wnt/β-catenin signaling by the extracellular domains of Frizzled receptors is mediated by the members of low density lipoprotein receptor-related protein (LRP-5/6) that act as Wnt coreceptors.

Conclusion

This work provides evidence that the secreted extracellular domains of Frizzled receptors may act as both inhibitors and activators of Wnt signaling dependent on the Wnt ligand presented.  相似文献   

7.
8.

Background

The impressive correlation between cardiovascular disease and glucose metabolism alterations has raised the likelihood that atherosclerosis and type 2 diabetes may share common antecedents. Inflammation is emerging as a conceivable etiologic mechanism for both. Interleukins are regulatory proteins with ability to accelerate or inhibit inflammatory processes.

Presentation of the hypothesis

A novel interleukins classification is described, based on their role in diabetes and atherosclerosis, hypothesizing that each interleukin (IL) acts on both diseases in the same direction – regardless if harmful, favorable or neutral.

Testing the hypothesis

The 29 known interleukins were clustered into three groups: noxious (the "bad", 8 members), comprising IL-1, IL-2, IL-6, IL-7, IL-8, IL-15, IL-17 and IL-18; protective (the "good", 5 members), comprising IL-4, IL-10, IL-11, IL-12 and IL-13; and "aloof", comprising IL-5, IL-9, IL-14, IL-16 and IL-19 through IL-29 (15 members). Each group presented converging effects on both diseases. IL-3 was reluctant to clustering.

Implications

These observations imply that 1) favorable effects of a given IL on either diabetes or atherosclerosis predicts similar effects on the other; 2) equally, harmful IL effects on one disease can be extrapolated to the other; and 3) absence of influence of a given IL on one of these diseases forecasts lack of effects on the other. These facts further support the unifying etiologic theory of both ailments, emphasizing the importance of a cardiovascular diabetologic approach to interleukins for future research. Pharmacologic targeting of these cytokines might provide an effective means to simultaneously control both atherosclerosis and diabetes.  相似文献   

9.
Dombrecht B  Marchal K  Vanderleyden J  Michiels J 《Genome biology》2002,3(12):research0076.1-research007611
  相似文献   

10.

Key message

Overexpression of OsGS gene modulates oxidative stress response in rice after exposure to cadmium stress. Our results describe the features of transformants with enhanced tolerance to Cd and abiotic stresses.

Abstract

Glutamine synthetase (GS) (EC 6.3.1.2) is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine. Exposure of plants to cadmium (Cd) has been reported to decrease GS activity in maize, pea, bean, and rice. To better understand the function of the GS gene under Cd stress in rice, we constructed a recombinant pART vector carrying the GS gene under the control of the CaMV 35S promoter and OCS terminator and transformed using Agrobacterium tumefaciens. We then investigated GS overexpressing rice lines at the physiological and molecular levels under Cd toxicity and abiotic stress conditions. We observed a decrease in GS enzyme activity and mRNA expression among transgenic and wild-type plants subjected to Cd stress. The decrease, however, was significantly lower in the wild type than in the transgenic plants. This was further validated by the high GS mRNA expression and enzyme activity in most of the transgenic lines. Moreover, after 10 days of exposure to Cd stress, increase in the glutamine reductase activity and low or no malondialdehyde contents were observed. These results showed that overexpression of the GS gene in rice modulated the expression of enzymes responsible for membrane peroxidation that may result in plant death.  相似文献   

11.

Background

The pronephros, the simplest form of a vertebrate excretory organ, has recently become an important model of vertebrate kidney organogenesis. Here, we elucidated the nephron organization of the Xenopus pronephros and determined the similarities in segmentation with the metanephros, the adult kidney of mammals.

Results

We performed large-scale gene expression mapping of terminal differentiation markers to identify gene expression patterns that define distinct domains of the pronephric kidney. We analyzed the expression of over 240 genes, which included members of the solute carrier, claudin, and aquaporin gene families, as well as selected ion channels. The obtained expression patterns were deposited in the searchable European Renal Genome Project Xenopus Gene Expression Database. We found that 112 genes exhibited highly regionalized expression patterns that were adequate to define the segmental organization of the pronephric nephron. Eight functionally distinct domains were discovered that shared significant analogies in gene expression with the mammalian metanephric nephron. We therefore propose a new nomenclature, which is in line with the mammalian one. The Xenopus pronephric nephron is composed of four basic domains: proximal tubule, intermediate tubule, distal tubule, and connecting tubule. Each tubule may be further subdivided into distinct segments. Finally, we also provide compelling evidence that the expression of key genes underlying inherited renal diseases in humans has been evolutionarily conserved down to the level of the pronephric kidney.

Conclusion

The present study validates the Xenopus pronephros as a genuine model that may be used to elucidate the molecular basis of nephron segmentation and human renal disease.  相似文献   

12.
13.
14.

Key message

Atkin - 1 , the only Kinesin-1 member of Arabidopsis thaliana , plays a role during female gametogenesis through regulation of nuclear division cycles.

Abstract

Kinesins are microtubule-dependent motor proteins found in eukaryotic organisms. They constitute a superfamily that can be further classified into at least 14 families. In the Kinesin-1 family, members from animal and fungi play roles in long-distance transport of organelles and vesicles. Although Kinesin-1-like sequences have been identified in higher plants, little is known about their function in plant cells, other than in a recently identified Kinesin-1-like protein in a rice pollen semi-sterile mutant. In this study, the gene encoding the only Kinesin-1 member in Arabidopsis, AtKin-1 was found to be specifically expressed in ovules and anthers. AtKin-1 loss-of-function mutants showed substantially aborted ovules in siliques, and this finding was supported by complementation testing. Reciprocal crossing between mutant and wild-type plants indicated that a defect in AtKin-1 results in partially aborted megagametophytes, with no observable effects on pollen fertility. Further observation of ovule development in the mutant pistils indicated that the enlargement of the megaspore was blocked and nuclear division arrested at the one-nucleate stage during embryo sac formation. Our data suggest that AtKin-1 plays a role in the nuclear division cycles during megagametogenesis.  相似文献   

15.

Background

Neurotrophins and their Trk and p75NTR receptors play an important role in the nervous system. To date, neurotrophins, Trk and p75NTR have only been found concomitantly in deuterostomes. In protostomes, homologues to either neurotrophin, Trk or p75NTR are reported but their phylogenetic relationship to deuterostome neurotrophin signaling components is unclear. Drosophila has neurotrophin homologues called Spätzles (Spz), some of which were recently renamed neurotrophins, but direct proof that these are deuterostome neurotrophin orthologues is lacking. Trks belong to the receptor tyrosine kinase (RTK) family and among RTKs, Trks and RORs are closest related. Flies lack Trks but have ROR and ROR-related proteins called NRKs playing a neurotrophic role. Mollusks have so far the most similar proteins to Trks (Lymnaea Trk and Aplysia Trkl) but the exact phylogenetic relationship of mollusk Trks to each other and to vertebrate Trks is unknown. p75NTR belongs to the tumor necrosis factor receptor (TNFR) superfamily. The divergence of the TNFR families in vertebrates has been suggested to parallel the emergence of the adaptive immune system. Only one TNFR representative, the Drosophila Wengen, has been found in protostomes. To clarify the evolution of neurotrophin signaling components in bilateria, this work analyzes the genome of the crustacean Daphnia pulex as well as new genetic data from protostomes.

Results

The Daphnia genome encodes a neurotrophin, p75NTR and Trk orthologue together with Trkl, ROR, and NRK-RTKs. Drosophila Spz1, 2, 3, 5, 6 orthologues as well as two new groups of Spz proteins (Spz7 and 8) are also found in the Daphnia genome. Searching genbank and the genomes of Capitella, Helobdella and Lottia reveals neurotrophin signaling components in other protostomes.

Conclusion

It appears that a neurotrophin, Trk and p75NTR existed at the protostome/deuterostome split. In protostomes, a "neurotrophin superfamily" includes Spzs and neurotrophins which respectively form two paralogous families. Trks and Trkl proteins also form closely related paralogous families within the protostomian RTKs, whereby Trkls are absent in deuterostomes. The finding of p75NTR in several protostomes suggests that death domain TNFR superfamily proteins appeared early in evolution.  相似文献   

16.
17.
18.

Background  

The genome sequence of the pufferfish Takifugu rubripes is an enormously useful tool in the molecular physiology of fish. Euryhaline fish that can survive both in freshwater (FW) and seawater (SW) are also very useful for studying fish physiology, especially osmoregulation. Recently we learned that there is a pufferfish, Takifugu obscurus, common name "mefugu" that migrates into FW to spawn. If T. obscurus is indeed a euryhaline fish and shares a high sequence homology with T. rubripes, it will become a superior animal model for studying the mechanism of osmoregulation. We have therefore determined its euryhalinity and phylogenetic relationship to the members of the Takifugu family.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号