首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eosinophil infiltration and degranulation around the tissue-invasive stages of several species of helminths have been observed. Release of eosinophil granule contents upon the worms is supported by localization of two of the major granule proteins, major basic protein (MBP) and eosinophil peroxidase (EPO), on and around species of trematodes, nematodes, and cestodes. In the case of filarial worms, MBP is deposited on degenerating microfilariae (mf) of Onchocerca volvulus. Here, we performed in vitro assays of the toxicity of four purified eosinophil granule proteins, namely, MBP, EPO, eosinophil cationic protein (ECP), and eosinophil-derived neurotoxin (EDN), for the mf of Brugia pahangi and Brugia malayi. MBP, ECP, and EDN killed these worms in a dose-related manner although relatively high concentrations of EDN were necessary. EPO, in the presence of a H2O2-generating system and a halide, was the most potent toxin on a molar basis; here, the most potent halide was I- followed by Br- and Cl-. Surprisingly, EPO in the absence of H2O2 killed mf at concentrations comparable to those required for MBP and ECP. The toxicity of EPO + H2O2 + halide was inhibited by heparin, catalase, or 1% BSA, whereas the toxicity of EPO alone was inhibited only by heparin. Heparin also inhibited killing by both MBP and ECP. Despite the homology of ECP with certain RNases, placental RNasin, an RNase inhibitor, was unable to inhibit ECP-mediated toxicity. These results indicate that all of the eosinophil granule proteins are toxic to mf and they support the hypothesis that eosinophil degranulation causes death of mf in vivo.  相似文献   

3.
4.
Inducible nitric-oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. To determine the degradation pathway of iNOS, human epithelial kidney HEK293 cells with stable expression of human iNOS were incubated in the presence of various degradation pathway inhibitors. Treatment with the proteasomal inhibitors lactacystin, MG132, and N-acetyl-l-leucinyl-l-leucinyl-l-norleucinal resulted in the accumulation of iNOS, indicating that these inhibitors blocked its degradation. Moreover, proteasomal inhibition blocked iNOS degradation in a dose- and time-dependent manner as well as when NO synthesis was inhibited by N(omega)-nitro-l-arginine methyl ester. Furthermore, proteasomal inhibition blocked the degradation of an iNOS splice variant that lacked the capacity to dimerize and of an iNOS mutant that lacks l-arginine binding ability, suggesting that iNOS is targeted by proteasomes, notwithstanding its capacity to produce NO, dimerize, or bind the substrate. In contrast to proteasomal inhibitors, the calpain inhibitor calpastatin and the lysosomal inhibitors trans-epoxysuccinyl-l-leucylamido-4-guanidino butane, leupeptin, pepstatin-A, chloroquine, and NH(4)Cl did not lead to significant accumulation of iNOS. Interestingly, when cytokines were used to induce iNOS in RT4 human epithelial cells, the effect of proteasomal inhibition was dichotomous. Lactacystin added prior to cytokine stimulation prevented iNOS induction by blocking the degradation of the NF-kappaB inhibitor IkappaB-alpha, thus preventing activation of NF-kappaB. In contrast, lactacystin added 48 h after iNOS induction led to the accumulation of iNOS. Similarly, in murine macrophage cell line RAW 264.7, lactacystin blocked iNOS degradation when added 48 h after iNOS induction by lipopolysaccharide. These data identify the proteasome as the primary degradation pathway for iNOS.  相似文献   

5.
Nitrosative stress can occur when reactive nitric oxide (NO) species compromise the function of biomolecules via formation of NO adducts on critical amine and thiol residues. The capacity of inducible nitric-oxide synthase (iNOS) to generate nitrosative stress was investigated in the murine macrophage line ANA-1. Sequential activation with the cytokines IFN-gamma and either tumor necrosis factor-alpha or interleukin-1beta resulted in the induction of iNOS and production of nitrite (20 nM/min) but failed to elicit nitrosation of extracellular 2,3-diaminonapthalene. Stimulation with IFN-gamma and bacterial lipopolysaccharide increased the relative level of iNOS protein and nitrite production of ANA-1 cells 2-fold; however, a substantial level of NO in the media was also observed, and nitrosation of 2,3-diaminonapthalene was increased greater than 30-fold. Selective scavenger compounds suggested that the salient nitrosating mechanism was the NO/O(2) reaction leading to N(2)O(3) formation. These data mimicked the pattern observed with a 5 microM concentration of the synthetic NO donor (Z)-1-[N-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium -1,2-diolate (PAPA/NO). The NO profiles derived from iNOS can be distinct and depend on the inductive signal cascades. The diverse consequences of NO production in macrophages may reside in the cellular mechanisms that control the ability of iNOS to form N(2)O(3) and elicit nitrosative stress.  相似文献   

6.
Microfilariae, infective larvae, and adult worms of Brugia malayi were incubated with a panel of seven lectins in order to study the expression of surface carbohydrates. Infective larvae and adult worms did not bind any of the lectins utilized. Microfilariae, on the other hand, bound wheat germ agglutinin. The binding of this lectin was saturable and specific, and attributed to the presence of N-acetyl-D-glucosamine. In addition, microfilariae derived in vitro bound concanavalin A, indicating the presence of glucose and/or mannose on this stage of the parasite. The fact that similar concanavalin A binding was not seen on microfilariae recovered directly from the infected host implies that there is masking or loss of parasite surface antigens as microfilariae mature in vivo.  相似文献   

7.
The present study incorporates the findings on in vitro and in vivo antifilarial activity in the marine sponge, Haliclona oculata using an experimental rodent infection of human lymphatic filarial parasite, Brugia malayi. The in vitro antifilarial action was determined on both adult female worms as well as microfilariae using two parameters viz. adverse effect on motility and inhibition in MTT reduction by the treated adult parasite over control worm. The antifilarial activity could be located in the methanol extract and one of its four fractions (chloroform). Bioactivity guided fractionation of chloroform fraction led to localization of in vitro activity in one of its eight chromatographic fractions. Methanol extract, chloroform fraction and one of the chromatographic fractions revealed IC(50) values of 5.00, 1.80, and 1.62μg/ml, respectively when adult B. malayi were exposed to these test samples for 72h at 37°C. Under similar exposure conditions, the IC(50) values for microfilariae were 1.88, 1.72 and 1.19μg/ml, respectively. The active test samples were found to be safe revealing >10 selectivity indices (SI) on the basis of cytotoxicity to Vero cells (monkey kidney cells) and therefore selected for in vivo evaluation against primary (adult B. malayi intraperitoneal transplanted jird) and secondary (subcutaneous infective larvae induced mastomys) screens. In primary jird model, the three test samples at 100mg/kg for five consecutive days by subcutaneous route demonstrated significant macrofilaricidal efficacy to the tune of 51.3%, 64% and 70.7% by methanol extract, chloroform and chromatographic fraction, respectively. The three samples demonstrated 45-50% macrofilaricidal activity with moderate embryostatic effect in secondary model at 5×500, 5×250 and 5×125mg/kg by oral route. Chromatographic fraction possessing highest antifilarial action was primarily found to be a mixture of four alkaloids Mimosamycin, Xestospongin-C, Xestospongin-D and Araguspongin-C in addition to few minor compounds.  相似文献   

8.
There is an urgent need for safe and effective antifilarials. Prior studies have shown that the nitazoxanide (NTZ) exhibits broad activity against anaerobic bacteria, protozoa, and certain intestinal helminths. We examined the effects of NTZ and tizoxanide (TZ) on Brugia malayi nematodes in vitro and in vivo. In vitro, NTZ and TZ reduced worm motility and viability in a dose-dependent manner. Worm viability was reduced by 50% with both compounds at 2.5 and 20 μg/ml killed adult worms. NTZ or TZ (5 μg/ml) significantly reduced microfilaria release. These compounds blocked worm’s embryogenesis, and decreased microfilarial motility and viability. Treated worms had damaged cuticles and abnormal mitochondria. Wolbachia were not cleared by NTZ or TZ treatment. Neither NTZ nor TZ cleared adult worms or microfilariae in infected gerbils. These results show that NTZ and TZ have potent effects on B. malayi nematodes in vitro. However, they were not effective in vivo.  相似文献   

9.
Hemolymph phenoloxidase activity of sugar-fed and blood-fed females of Anopheles quadrimaculatus and Aedes aegypti showed similar characteristics. Phenoloxidase was present as an inactive proenzyme in both mosquito species and was partially activated during collection of the hemolymph. In both mosquito species, phenoloxidase activity was modulated by different buffers and activated phenoloxidase did not need Ca2+. Enzymatic activity was higher in the hemocytes than in the plasma in both mosquito species. Trypsin, laminarin, and blood-feeding on uninfected and Brugia malayi-infected jirds enhanced hemolymph phenoloxidase activity in both mosquito species. The appearance of hemolymph phenoloxidase activity was inhibited by p-nitrophenyl p′-guanidinobenzoate HCl, soybean trypsin inhibitor, ethylenediaminetetraacetic acid, diethyldithiocarbamic acid, saturated 1-phenyl-2-thiourea and reduced glutathione, but not by benzamidine in A. quadrimaculatus. The appearance of hemolymph phenoloxidase activity was inhibited by benzamidine, diethyldithiocarbamic acid, saturated 1-phenyl-2-thiourea, reduced glutathione, β-nitrophenyl p′-guanidinobenzoate and soybean trypsin inhibitor, but not by ethylenediaminetetraacetic acid in A. aegypti. It is suggested that in both mosquito species, blood-feeding and migration of sheathed microfilariae in the homocoel activated the prophenoloxidase in the hemolymph and caused the encapsulation and melanization of microfilarial sheaths and microfilariae of B. malayi.  相似文献   

10.
Neuronal nitric-oxide synthase (nNOS) differs from inducible NOS (iNOS) in both its dependence on the intracellular Ca2+ concentration and the production rate of NO. To investigate what difference(s) exist between the two NOS flavin domains at the electron transfer level, we isolated the recombinant human NOS flavin domains, which were co-expressed with human calmodulin (CaM). The flavin semiquinones, FADH* and FMNH*, in both NOSs participate in the regulation of one-electron transfer within the flavin domain. Each semiquinone can be identified by a characteristic absorption peak at 520 nm (Guan, Z.-W., and Iyanagi, T. (2003) Arch. Biochem. Biophys. 412, 65-76). NADPH reduction of the FAD and FMN redox centers by the CaM-bound flavin domains was studied by stopped-flow and rapid scan spectrometry. Reduction of the air-stable semiquinone (FAD-FMNH*) of both domains with NADPH showed that the extent of conversion of FADH2/FMNH* to FADH*/FMNH2 in the iNOS flavin domain was greater than that of the nNOS flavin domain. The reduction of both oxidized domains (FAD-FMN) with NADPH resulted in the initial formation of a small amount of disemiquinone, which then decayed. The rate of intramolecular electron transfer between the two flavins in the iNOS flavin domain was faster than that of the nNOS flavin domain. In addition, the formation of a mixture of the two- and four-electron-reduced states in the presence of excess NADPH was different for the two NOS flavin domains. The data indicate a more favorable formation of the active intermediate FMNH2 in the iNOS flavin domain.  相似文献   

11.
Dysregulation of professional APC has been postulated as a major mechanism underlying Ag-specific T cell hyporesponsiveness in patients with patent filarial infection. To address the nature of this dysregulation, dendritic cells (DC) and macrophages generated from elutriated monocytes were exposed to live microfilariae (mf), the parasite stage that circulates in blood and is responsible for most immune dysregulation in filarial infections. DC exposed to mf for 24-96 h showed a marked increase in cell death and caspase-positive cells compared with unexposed DC, whereas mf exposure did not induce apoptosis in macrophages. Interestingly, 48-h exposure of DC to mf induced mRNA expression of the proapoptotic gene TRAIL and both mRNA and protein expression of TNF-alpha. mAb to TRAIL-R2, TNF-R1, or TNF-alpha partially reversed mf-induced cell death in DC, as did knocking down the receptor for TRAIL-R2 using small interfering RNA. The mf also induced gene expression of BH3-interacting domain death agonist and protein expression of cytochrome c in DC; mf-induced cleavage of BH3-interacting domain death agonist could be shown to induce release of cytochrome c, leading to activation of caspase 9. Our data suggest that mf induce DC apoptosis in a TRAIL- and TNF-alpha-dependent fashion.  相似文献   

12.
Microfilariae of Brugia malayi were obtained from the peritoneal cavities of infected gerbils and were then injected intravenously into mice. A sub-periodic, nocturnal microfilaraemia was produced. The level of microfilaraemia was proportional to the number of parasites injected, with approximately 1-3% of microfilariae being found in the peripheral circulation. The duration of microfilaraemia was proportional to the number of parasites injected; it subsided by 30 days after injection of 104 microfilariae but was still present at a low level 120 days after injection of 2 x 105 microfilariae. A transient splenomegaly developed after injection of microfilariae. Histopathological examination revealed large numbers of microfilariae free in the lumens of pulmonary small blood vessels and without any accompanying inflammatory reaction. Lesser numbers of microfilariae were seen in the cardiac blood and hepatic and renal blood vessels for the first few days after injection. There was cellular proliferation in the splenic white pulp and vascular congestion of the red pulp. Microfilariae labelled with 51Cr were injected intravenously; 57% of radioactivity was found in the lungs, 8.5% in the liver and 2.9% in the spleen. Mice developed immediate hypersensitivity reactions to B. malayi antigen by 4 weeks after injection, but Arthus and delayed hypersensitivity reactions were not seen at any time. when mice which had been injected 5 months previously were challenged with a 2nd injection of microfilariae, there was an accelerated clearance of parasites over 2 weeks and a marked peripheral blood eosinophilia developed. In contrast with natural infections, in which the continuous production of microfilariae complicates assessment, this model provides a system in which factors controlling the circulation of microfilariae in the bloodstream can be studied independently.  相似文献   

13.
14.
15.
Cerebrovascular dysfunction, characterized by compromise of the blood-brain barrier and formation of cerebral edema, is common during the acute period after brain irradiation and may contribute to delayed pathology (e.g. vascular collapse, white matter necrosis) that leads to functional deficits. Another response of normal brain tissue to radiation is the induction of inflammatory markers, such as cytokine expression and glial activation. In particular, radiation-induced neuroinflammation is associated with an elevation in cyclooxygenase 2 (COX2), one of two isoforms of the obligate enzyme in prostanoid synthesis and the principal target of non-steroid anti-inflammatory drugs. Since prostanoids serve as autocrine and paracrine mediators in numerous physiological and pathological processes, including vasoregulation, we investigated COX2 protein expression and COX2-mediated prostanoid production in radiation-induced cerebral edema in male C57/BL6 mice. We found that radiation induces COX2 protein that is accompanied by specific increases in prostaglandin E(2) and thromboxane A(2) within 4 and 24 h after brain irradiation. Furthermore, we showed that treatment with NS-398, a selective COX2 inhibitor, attenuated prostanoid induction and edema formation. These results suggest that radiation-induced changes in vascular permeability are dependent on COX2 activity, implicating this enzyme and its products as targets for potential therapeutic treatment/protection from the effects of radiation on normal brain tissue.  相似文献   

16.
Inducible nitric-oxide synthase (iNOS) is a hemeprotein that requires tetrahydrobiopterin (H4B) for activity. The influence of H4B on iNOS structure-function is complex, and its exact role in nitric oxide (NO) synthesis is unknown. Crystal structures of the mouse iNOS oxygenase domain (iNOSox) revealed a unique H4B-binding site with a high degree of aromatic character located in the dimer interface and near the heme. Four conserved residues (Arg-375, Trp-455, Trp-457, and Phe-470) engage in hydrogen bonding or aromatic stacking interactions with the H4B ring. We utilized point mutagenesis to investigate how each residue modulates H4B function. All mutants contained heme ligated to Cys-194 indicating no deleterious effect on general protein structure. Ala mutants were monomers except for W457A and did not form a homodimer with excess H4B and Arg. However, they did form heterodimers when paired with a full-length iNOS subunit, and these were either fully or partially active regarding NO synthesis, indicating that preserving residue identities or aromatic character is not essential for H4B binding or activity. Aromatic substitution at Trp-455 or Trp-457 generated monomers that could dimerize with H4B and Arg. These mutants bound Arg and H4B with near normal affinity, but Arg could not displace heme-bound imidazole, and they had NO synthesis activities lower than wild-type in both homodimeric and heterodimeric settings. Aromatic substitution at Phe-470 had no significant effects. Together, our work shows how hydrogen bonding and aromatic stacking interactions of Arg-375, Trp-457, Trp-455, and Phe-470 influence iNOSox dimeric structure, heme environment, and NO synthesis and thus help modulate the multiple effects of H4B.  相似文献   

17.
Calmodulin binding to inducible nitric-oxide synthase may play an important role in its Ca(2+)-independent activity. Studies of inducible nitric-oxide synthase chimeras containing the calmodulin binding sequence of neuronal or endothelial nitric-oxide synthases show that the calmodulin binding sequence of inducible nitric-oxide synthase is necessary but not sufficient for the Ca(2+)-independent activity. The mutations at lysine 525 located at the C terminus of the calmodulin binding sequence of inducible nitric-oxide synthase were examined for the effects on the Ca(2+)-independent activity with chimeras containing the oxygenase or reductase domains of inducible or neuronal nitric-oxide synthases. Results show that the Ca(2+)-independent binding of calmodulin is not solely responsible for maximal Ca(2+)-independent activity of inducible nitric-oxide synthase. Lysine 525 of inducible nitric-oxide synthase may also play an important role in coordinating the maximal Ca(2+)-independent activity.  相似文献   

18.
19.
Inducible nitric-oxide synthase (iNOS, NOS2) plays a prominent role in macrophage bactericidal and tumoricidal activities. A relatively large amount of NO produced via iNOS, however, also targets the macrophage itself for apoptotic cell death. To uncover the intrinsic mechanisms of iNOS regulation, we have characterized the SPRY domain- and SOCS box-containing protein 1 (SPSB1), SPSB2, and SPSB4 that interact with the N-terminal region of iNOS in a D-I-N-N-N sequence-dependent manner. Fluorescence microscopy revealed that these SPSB proteins can induce the subcellular redistribution of iNOS from dense regions to diffused expression in a SOCS box-dependent manner. In immunoprecipitation studies, both Elongin C and Cullin-5, components of the multi-subunit E3 ubiquitin ligase, were found to bind to iNOS via SPSB1, SPSB2, or SPSB4. Consistently, iNOS was polyubiquitinated and degraded in a proteasome-dependent manner when SPSB1, SPSB2, or SPSB4 was expressed. SPSB1 and SPSB4 had a greater effect on iNOS regulation than SPSB2. The iNOS N-terminal fragment (residues 1-124 of human iNOS) could disrupt iNOS-SPSB interactions and inhibit iNOS degradation. In lipopolysaccharide-treated macrophages, this fragment attenuated iNOS ubiquitination and substantially prolonged iNOS lifetime, resulting in a corresponding increase in NO production and enhanced NO-dependent cell death. These results not only demonstrate the mechanism of SPSB-mediated iNOS degradation and the relative contributions of different SPSB proteins to iNOS regulation, but also show that iNOS levels are sophisticatedly regulated by SPSB proteins in activated macrophages to prevent overproduction of NO that could trigger detrimental effects, such as cytotoxicity.  相似文献   

20.
The molecular mechanism of plant response to UV-B radiation was studied using the nopaline synthase ( nos ) promoter, which has been shown to be inducible by methyl jasmonate (MJ) and reactive oxygen species (ROS). In the leaves of transgenic tobacco ( Nicotiana tabacum L.) plants that carried a fusion between the nos promoter and the chloramphenicol acetyltransferase ( cat ) gene, 2 h of UV-B treatment resulted in a transient increase in the level of cat mRNA, a maximum being reached at 6 h after the UV-B treatment. It was also found that MJ and UV-B enhance nos promoter expression via separate pathways. Diethyldithiocarbamic acid, a potent inhibitor of jasmonate production, had little effect on UV-B stimulation of the nos promoter. In contrast, antioxidants, such as dimethylthiourea, reduced glutathione, cysteine, N-acetylcysteine and DTT, blocked UV-B induction of the nos promoter, but did not affect MJ induction of the nos promoter. These results suggest that UV-B induction of the nos promoter is mediated via a pathway that requires reactive oxygen species and is distinct from the jasmonate or MJ mediating pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号