首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Mammalian receptors that couple to effectors via heterotrimeric G proteins (e.g., beta 2-adrenergic receptors) and receptors with intrinsic tyrosine kinase activity (e.g., insulin and IGF-I receptors) constitute the proximal points of two dominant cell signaling pathways. Receptors coupled to G proteins can be substrates for tyrosine kinases, integrating signals from both pathways. Yeast cells, in contrast, display G protein-coupled receptors (e.g., alpha-factor pheromone receptor Ste2) that have evolved in the absence of receptor tyrosine kinases, such as those found in higher organisms. We sought to understand the motifs in G protein-coupled receptors that act as substrates for receptor tyrosine kinases and the functional consequence of such phosphorylation on receptor biology. We expressed in human HEK 293 cells yeast wild-type Ste2 as well as a Ste2 chimera engineered with cytoplasmic domains of the beta2-adrenergic receptor and tested receptor sequestration in response to activation of the insulin receptor tyrosine kinase.

Results

The yeast Ste2 was successfully expressed in HEK 293 cells. In response to alpha-factor, Ste2 signals to the mitogen-activated protein kinase pathway and internalizes. Wash out of agonist and addition of antagonist does not lead to Ste2 recycling to the cell membrane. Internalized Ste2 is not significantly degraded. Beta2-adrenergic receptors display internalization in response to agonist (isoproterenol), but rapidly recycle to the cell membrane following wash out of agonist and addition of antagonist. Beta2-adrenergic receptors display internalization in response to activation of insulin receptors (i.e., cross-regulation), whereas Ste2 does not. Substitution of the cytoplasmic domains of the β2-adrenergic receptor for those of Ste2 creates a Ste2/beta2-adrenergic receptor chimera displaying insulin-stimulated internalization.

Conclusion

Chimera composed of yeast Ste2 into which domains of mammalian G protein-coupled receptors have been substituted, when expressed in animal cells, provide a unique tool for study of the regulation of G protein-coupled receptor trafficking by mammalian receptor tyrosine kinases and adaptor proteins.  相似文献   

2.

Background

The HER3 receptor functions as a major cause of drug resistance in cancer treatment. It is believed that therapeutic targeting of HER3 is required to improve patient outcomes. It is not clear whether a novel strategy with two functional cooperative miRNAs would effectively inhibit erbB3 expression and potentiate the anti-proliferative/anti-survival effects of a HER2-targeted therapy (trastuzumab) and chemotherapy (paclitaxel) on HER2-overexpressing breast cancer cells.

Results

Combination of miR-125a and miR-205, as compared to either miRNA alone, potently inhibited expression of HER3 in HER2-overexpressing breast cancer BT474 cells. Co-expression of the two miRNAs not only reduced the levels of phosphorylated erbB3 (P-erbB3), Akt (P-Akt), and Src (P-Src), it also inhibited cell proliferation and increased cells at G1 phase. A multi-miRNA lentiviral vector - the cluster of miR-125a and miR-205 - was constructed to simultaneously express the two miRNAs in HER2-overexpressing breast cancer cells. Concurrent expression of miR-125a and miR-205 via the miRNA cluster transfection significantly enhanced trastuzumab-mediated growth inhibition and cell cycle G1 arrest in BT474 cells and markedly increased paclitaxel-induced apoptosis in another HER2-overexpressing breast cancer cell line HCC1954.

Conclusions

Here, we showed that functional cooperative miRNAs effectively suppressed erbB3 expression. This novel approach targeting of HER3 was able to enhance the therapeutic efficacy of trastuzumab and paclitaxel against HER2-overexpressing breast cancer.
  相似文献   

3.

Background

25% of breast cancer patients suffer from aggressive HER2-positive tumours that are characterised by overexpression of the HER2 protein or by its increased tyrosine kinase activity. Herceptin is a major drug used to treat HER2 positive breast cancer. Understanding the molecular events that occur when breast cancer cells are exposed to Herceptin is therefore of significant importance. Dual specificity phosphatases (DUSPs) are central regulators of cell signalling that function downstream of HER2, but their role in the cellular response to Herceptin is mostly unknown. This study aims to model the initial effects of Herceptin exposure on DUSPs in HER2-positive breast cancer cells using Boolean modelling.

Results

We experimentally measured expression time courses of 21 different DUSPs between 0 and 24 h following Herceptin treatment of human MDA-MB-453 HER2-positive breast cancer cells. We clustered these time courses into patterns of similar dynamics over time. In parallel, we built a series of Boolean models representing the known regulatory mechanisms of DUSPs and then demonstrated that the dynamics predicted by the models is in agreement with the experimental data. Furthermore, we used the models to predict regulatory mechanisms of DUSPs, where these mechanisms were partially known.

Conclusions

Boolean modelling is a powerful technique to investigate and understand signalling pathways. We obtained an understanding of different regulatory pathways in breast cancer and new insights on how these signalling pathways are activated. This method can be generalized to other drugs and longer time courses to better understand how resistance to drugs develops in cancer cells over time.
  相似文献   

4.

Background

Oncogenic mutational analysis provides predictive guidance for therapeutics such as anti-EGFR antibodies, but it is successful only for a subset of colorectal cancer (CRC) patients.

Method

A comprehensive molecular profiling of 120 CRC patients, including 116 primary, 15 liver metastasis, and 1 peritoneal seeding tissue samples was performed to identify the relationship between v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) WT and mutant CRC tumors and clinical outcomes. This included determination of the protein activation patterns of human epidermal receptor 1 (HER1), HER2, HER3, c-MET, insulin-like growth factor 1 receptor (IGF1R), phosphatidylinositide 3-kinase (PI3K), Src homology 2 domain containing (Shc), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) kinases using multiplexed collaborative enzyme enhanced reactive (CEER) immunoassay.

Results

KRAS WT and mutated CRCs were not different with respect to the expression of the various signaling molecules. Poor prognosis in terms of early relapse (<2 years) and shorter disease-free survival (DFS) correlated with enhanced activation of PI3K signaling relative to the HER kinase pathway signaling, but not with the KRAS mutational status. KRAS WT CRCs were identified as a mixed prognosis population depending on their level of PI3K signaling. KRAS WT CRCs with high HER1/c-MET index ratio demonstrated a better DFS post-surgery. c-MET and IGF1R activities relative to HER axis activity were considerably higher in early relapse CRCs, suggesting a role for these alternative receptor tyrosine kinases (RTKs) in driving high PI3K signaling.

Conclusions

The presented data subclassified CRCs based on their activated signaling pathways and identify a role for c-MET and IGF1R-driven PI3K signaling in CRCs, which is superior to KRAS mutational tests alone. The results from this study can be utilized to identify aggressive CRCs, explain failure of currently approved therapeutics in specific CRC subsets, and, most importantly, generate hypotheses for pathway-guided therapeutic strategies that can be tested clinically.  相似文献   

5.
6.

Background

The c D NA-mediated A nnealing, extension, S election and L igation (DASL) assay has become a suitable gene expression profiling system for degraded RNA from paraffin-embedded tissue. We examined assay characteristics and the performance of the DASL 502-gene Cancer Panelv1 (1.5K) and 24,526-gene panel (24K) platforms at differentiating nine human epidermal growth factor receptor 2- positive (HER2+) and 11 HER2-negative (HER2-) paraffin-embedded breast tumors.

Methods

Bland-Altman plots and Spearman correlations evaluated intra/inter-panel agreement of normalized expression values. Unequal-variance t -statistics tested for differences in expression levels between HER2 + and HER2 - tumors. Regulatory network analysis was performed using Metacore (GeneGo Inc., St. Joseph, MI).

Results

Technical replicate correlations ranged between 0.815-0.956 and 0.986-0.997 for the 1.5K and 24K panels, respectively. Inter-panel correlations of expression values for the common 498 genes across the two panels ranged between 0.485-0.573. Inter-panel correlations of expression values of 17 probes with base-pair sequence matches between the 1.5K and 24K panels ranged between 0.652-0.899. In both panels, erythroblastic leukemia viral oncogene homolog 2 (ERBB2) was the most differentially expressed gene between the HER2 + and HER2 - tumors and seven additional genes had p-values < 0.05 and log2 -fold changes > |0.5| in expression between HER2 + and HER2 - tumors: topoisomerase II alpha (TOP2A), cyclin a2 (CCNA2), v-fos fbj murine osteosarcoma viral oncogene homolog (FOS), wingless-type mmtv integration site family, member 5a (WNT5A), growth factor receptor-bound protein 7 (GRB7), cell division cycle 2 (CDC2), and baculoviral iap repeat-containing protein 5 (BIRC5). The top 52 discriminating probes from the 24K panel are enriched with genes belonging to the regulatory networks centered around v-myc avian myelocytomatosis viral oncogene homolog (MYC), tumor protein p53 (TP53), and estrogen receptor α (ESR1). Network analysis with a two-step extension also showed that the eight discriminating genes common to the 1.5K and 24K panels are functionally linked together through MYC, TP53, and ESR1.

Conclusions

The relative RNA abundance obtained from two highly differing density gene panels are correlated with eight common genes differentiating HER2 + and HER2 - breast tumors. Network analyses demonstrated biological consistency between the 1.5K and 24K gene panels.  相似文献   

7.

Background

The objective of this study was to investigate whether the levels of glucose or certain amino acids could regulate the expression of a cell cycle repressor protein p27(Kip1), thereby dictating the risk of cancer in either obesity or caloric/dietary restriction. Previously, we identified and reported four different upstream molecular signaling pathways of p27 expression in human breast cancer cells. We called these four pathways as pathway #1, #2, #3 and #4. We found that 4-hydroxytamoxifen - but not tamoxifen - up-regulated the expression of p27 using pathway #1 which consisted mainly of receptor tyrosine kinases and mTORC1. We now investigate, using 4-hydroxytamoxifen as a reference anti-cancer agents, whether (a) the moderate increase in the concentration of D-(+)-glucose could down-regulate and, conversely, (b) the deficiency of D-(+)-glucose or certain L-amino acids could up-regulate the expression of p27 in these cells using pathway #2 which consists mainly of AMPK and mTORC1.

Results

Using human MDA-MB-231 breast cancer cells in vitro, these hypotheses were tested experimentally by performing p27-luciferase reporter transfection assays and western immunoblot analyses. The results obtained are consistent with these hypotheses. Furthermore, the results indicated that, although 4-hydroxytamoxifen used primarily pathway #1 to down-regulate the phosphorylation of 4E-BP1 and up-regulate the expression of p27, it also secondarily down-regulated the phosphorylation of S6K1. In contrast, the deficiency of D-(+)-glucose or L-leucine used primarily pathway #2 to down-regulate the phosphorylation of S6K1, but they also secondarily down-regulated the phosphorylation of 4E-BP1 and up-regulated the expression of p27. Finally, deficiency of D-(+)-glucose or L-leucine - but not 4-hydroxytamoxifen - up-regulated the expression of mitochondrial ATP5A and SIRT3.

Conclusions

(a) 4-Hydroxitamoxifen used primarily pathway #1 to up-regulate the expression of p27. (b) Moderate increase in the concentration of D-(+)-glucose used primarily pathway #2 to down-regulate the expression of p27. (c) Deficiency of D-(+)-glucose or L-leucine also used primarily pathway #2 to up-regulate the expression of p27. (d) Deficiency of D-(+)-glucose or L-leucine - but not 4-hydroxytamoxifen - up-regulated the expression of mitochondrial ATP5A in the Complex V of respiratory oxidation-phosphorylation chain and mitochondrial SIRT3. The SIRT3 is one of the seven mammalian anti-aging as well as anti-metabolic sirtuins.  相似文献   

8.
Model-based cluster analysis of microarray gene-expression data   总被引:3,自引:0,他引:3  
Pan W  Lin J  Le CT 《Genome biology》2002,3(2):research0009.1-research00098

Background

Microarray technologies are emerging as a promising tool for genomic studies. The challenge now is how to analyze the resulting large amounts of data. Clustering techniques have been widely applied in analyzing microarray gene-expression data. However, normal mixture model-based cluster analysis has not been widely used for such data, although it has a solid probabilistic foundation. Here, we introduce and illustrate its use in detecting differentially expressed genes. In particular, we do not cluster gene-expression patterns but a summary statistic, the t-statistic.

Results

The method is applied to a data set containing expression levels of 1,176 genes of rats with and without pneumococcal middle-ear infection. Three clusters were found, two of which contain more than 95% genes with almost no altered gene-expression levels, whereas the third one has 30 genes with more or less differential gene-expression levels.

Conclusions

Our results indicate that model-based clustering of t-statistics (and possibly other summary statistics) can be a useful statistical tool to exploit differential gene expression for microarray data.  相似文献   

9.

Background

Activation of naïve B lymphocytes by extracellular ligands, e.g. antigen, lipopolysaccharide (LPS) and CD40 ligand, induces a combination of common and ligand-specific phenotypic changes through complex signal transduction pathways. For example, although all three of these ligands induce proliferation, only stimulation through the B cell antigen receptor (BCR) induces apoptosis in resting splenic B cells. In order to define the common and unique biological responses to ligand stimulation, we compared the gene expression changes induced in normal primary B cells by a panel of ligands using cDNA microarrays and a statistical approach, CLASSIFI (Cluster Assignment for Biological Inference), which identifies significant co-clustering of genes with similar Gene Ontology? annotation.

Results

CLASSIFI analysis revealed an overrepresentation of genes involved in ion and vesicle transport, including multiple components of the proton pump, in the BCR-specific gene cluster, suggesting that activation of antigen processing and presentation pathways is a major biological response to antigen receptor stimulation. Proton pump components that were not included in the initial microarray data set were also upregulated in response to BCR stimulation in follow up experiments. MHC Class II expression was found to be maintained specifically in response to BCR stimulation. Furthermore, ligand-specific internalization of the BCR, a first step in B cell antigen processing and presentation, was demonstrated.

Conclusion

These observations provide experimental validation of the computational approach implemented in CLASSIFI, demonstrating that CLASSIFI-based gene expression cluster analysis is an effective data mining tool to identify biological processes that correlate with the experimental conditional variables. Furthermore, this analysis has identified at least thirty-eight candidate components of the B cell antigen processing and presentation pathway and sets the stage for future studies focused on a better understanding of the components involved in and unique to B cell antigen processing and presentation.  相似文献   

10.
HER2 is a receptor tyrosine kinase that is overexpressed in 20% to 30% of human breast cancers and which affects patient prognosis and survival. Treatment of HER2-positive breast cancer with the monoclonal antibody trastuzumab (Herceptin) has improved patient survival, but the development of trastuzumab resistance is a major medical problem. Many of the known mechanisms of trastuzumab resistance cause changes in protein phosphorylation patterns, and therefore quantitative proteomics was used to examine phosphotyrosine signaling networks in trastuzumab-resistant cells. The model system used in this study was two pairs of trastuzumab-sensitive and -resistant breast cancer cell lines. Using stable isotope labeling, phosphotyrosine immunoprecipitations, and online TiO2 chromatography utilizing a dual trap configuration, ∼1700 proteins were quantified. Comparing quantified proteins between the two cell line pairs showed only a small number of common protein ratio changes, demonstrating heterogeneity in phosphotyrosine signaling networks across different trastuzumab-resistant cancers. Proteins showing significant increases in resistant versus sensitive cells were subjected to a focused siRNA screen to evaluate their functional relevance to trastuzumab resistance. The screen revealed proteins related to the Src kinase pathway, such as CDCP1/Trask, embryonal Fyn substrate, and Paxillin. We also identify several novel proteins that increased trastuzumab sensitivity in resistant cells when targeted by siRNAs, including FAM83A and MAPK1. These proteins may present targets for the development of clinical diagnostics or therapeutic strategies to guide the treatment of HER2+ breast cancer patients who develop trastuzumab resistance.HER2 is a member of the epidermal growth factor receptor (EGFR)/ErbB family of receptor tyrosine kinases. Under normal physiologic conditions, HER2 tyrosine kinase signaling is tightly regulated spatially and temporally by the requirement for it to heterodimerize with a ligand bound family member, such as EGFR, HER3/ErbB3, or HER4/ErbB4 (1). However, in 20% to 30% of human breast cancer cases, HER2 gene amplification is present, resulting in a high level of HER2 protein overexpression and unregulated, constitutive HER2 tyrosine kinase signaling (2, 3). HER2 gene amplified breast cancer, also termed HER2-positive breast cancer, carries a poor prognosis, but the development of the HER2 targeted monoclonal antibody trastuzumab (Herceptin) has significantly improved patient survival (2). Despite the clinical effectiveness of trastuzumab, the development of drug resistance significantly increases the risk of patient death. This poses a major medical problem, as most metastatic HER2-positive breast cancer patients develop trastuzumab resistance over the course of their cancer treatment (4). The treatment approach for HER2+ breast cancer patients after trastuzumab resistance develops is mostly a trial-and-error process that subjects the patient to increased toxicity. Therefore, there is a substantial medical need for strategies to overcome trastuzumab resistance.Multiple trastuzumab-resistance mechanisms have been identified, and they alter signaling networks and protein phosphorylation patterns in either a direct or an indirect manner. These mechanisms can be grouped into three categories. The first category is the activation of a parallel signaling network by other tyrosine kinases. These kinases include the receptor tyrosine kinases, EGFR, IGF1R, Her3, Met, EphA2, and Axl, as well as the erythropoietin-receptor-mediated activation of the cytoplasmic tyrosine kinases Jak2 and Src (511). The second category is the activation of downstream signaling proteins. Multiple studies have demonstrated activation of the phosphatidylinositol-3-kinase (PI3K)/AKT pathway in trastuzumab resistance, which occurs either via deletion of the PTEN lipid phosphatase or mutation of the PI3K genes (12, 13). Activation of Src family kinases or overexpression of cyclin E, which increases the cyclin E–cyclin-dependent kinase 2 signaling pathway, has also been reported (14). The third category includes mechanisms that maintain HER2 signaling even in the presence of trastuzumab. The production of a truncated isoform of HER2, p95HER2, which lacks the trastuzumab binding site, causes constitutive HER2 signaling (15, 16). Overexpression of the MUC4 sialomucin complex inhibits trastuzumab binding to HER2 and thereby maintains HER2 signaling (17, 18).Given that multiple trastuzumab-resistance mechanisms alter signaling networks and protein phosphorylation patterns, we reasoned that mapping phosphotyrosine signaling networks using quantitative proteomics would be a highly useful strategy for analyzing known mechanisms and identifying novel mechanisms of trastuzumab resistance. Quantitative proteomics and phosphotyrosine enrichment approaches have been extensively used to study the EGFR signal networks (1923). We and others have used these approaches to map the HER2 signaling network (22, 24, 25). Multiple other tyrosine kinase signaling networks were analyzed using quantitative proteomics, including Ephrin receptor, EphB2 (2628), platelet-derived growth factor receptor (PDGFR) (21), insulin receptor (29, 30), and the receptor for hepatocyte growth factor, c-MET (31).The goal of this study is to identify, quantify, and functionally screen proteins that might be involved in trastuzumab resistance. We used two pairs of HER2 gene amplified trastuzumab-sensitive (parental, SkBr3 and BT474) and -resistant (SkBr3R and BT474R) human breast cancer cell lines as models for trastuzumab resistance. These cell lines and their trastuzumab-resistant derivatives have been extensively characterized and highly cited in the breast cancer literature (32, 33). Using stable isotope labeling of amino acids in cell culture (SILAC),1 phosphotyrosine immunoprecipitations, and online TiO2 chromatography with dual trap configuration, we quantified the changes in phosphotyrosine containing proteins and interactors between trastuzumab-sensitive and -resistant cells. Several of the known trastuzumab-resistance mechanisms were identified, which serves as a positive control and validation of our approach, and large protein ratio changes were measured in proteins that had not been previously connected with trastuzumab resistance. We then performed a focused siRNA screen targeting the proteins with significantly increased protein ratios. This screen functionally tested the role of the identified proteins and identifies which proteins might have the largest effect on reversing trastuzumab resistance.  相似文献   

11.
B Chu  F Liu  L Li  C Ding  K Chen  Q Sun  Z Shen  Y Tan  C Tan  Y Jiang 《Cell death & disease》2015,6(3):e1686
Aberrant expression or function of epidermal growth factor receptor (EGFR) or the closely related human epidermal growth factor receptor 2 (HER2) can promote cell proliferation and survival, thereby contributing to tumorigenesis. Specific antibodies and low-molecular-weight tyrosine kinase inhibitors of both proteins are currently in clinical trials for cancer treatment. Benzimidazole derivatives possess diverse biological activities, including antitumor activity. However, the anticancer mechanism of 5a (a 2-aryl benzimidazole compound; 2-chloro-N-(2-p-tolyl-1H-benzo[d]imidazol-5-yl)acetamide, C16H14ClN3O, MW299), a novel 2-aryl benzimidazole derivative, toward breast cancer is largely unknown. Here, we demonstrate that 5a potently inhibited both EGFR and HER2 activity by reducing EGFR and HER2 tyrosine phosphorylation and preventing downstream activation of PI3K/Akt and MEK/Erk pathways in vitro and in vivo. We also show that 5a inhibited the phosphorylation of FOXO and promoted FOXO translocation from the cytoplasm into the nucleus, resulting in the G1-phase cell cycle arrest and apoptosis. Moreover, 5a potently induced apoptosis via the c-Jun N-terminal kinase (JNK)-mediated death receptor 5 upregulation in breast cancer cells. The antitumor activity of 5a was consistent with additional results demonstrating that 5a significantly reduced tumor volume in nude mice in vivo. Analysis of the primary breast cancer cell lines with HER2 overexpression further confirmed that 5a significantly inhibited Akt Ser473 and Bad Ser136 phosphorylation and reduced cyclin D3 expression. On the basis of our findings, further development of this 2-aryl benzimidazole derivative, a new class of multitarget anticancer agents, is warranted and represents a novel strategy for improving breast cancer treatment.The ERBB family of transmembrane receptor tyrosine kinases (RTKs) includes four closely related members: epidermal growth factor receptor (EGFR) (ERBB1, HER1), human epidermal growth factor receptor 2 (HER2) (ERBB2, Neu), HER3 (ERBB3) and HER4 (ERBB4).1 Binding of ligands to the extracellular domain of EGFR, HER3 and HER4 induces the formation of receptor homodimers or heterodimers and autophosphorylation of the intracellular domain of the receptors.2, 3 HER2 does not bind any of the ERBB ligands directly, but it can heterodimerize with other ERBB family members.4 Active EGFR and HER2 induce transphosphorylation of ERBB and trigger intracellular signaling pathways involved in the proliferation response.5 Because aberrant ERBB signaling pathways correlate with human cancers, RTKs have been studied intensively in recent decades. It is known that overexpression of HER2 is found in about 20% of breast cancer patients, leading to aberrant signaling of the PI3K/Akt and MEK/Erk pathways, and is correlated with malignant transformation, chemotherapy resistance and poor prognosis.1, 6, 7 Meanwhile, aberrant EGFR activity was also observed during pathogenesis and progression of lung and breast cancers.8, 9 Therefore, a promising approach may lie in the development of chemotherapeutic strategies exploiting the deregulation of target ERBB to create cancer treatments with both preventive and therapeutic potential. Clinically, small-molecule competitive tyrosine kinase inhibitors, which compete with ATP in the receptor kinase domain, have been used to block EGFR or HER2 intracellular tyrosine kinase activity.10 Alternative treatments using anti-EGFR or anti-HER2 antibodies, which bind to the extracellular domain of ERBB, have been used to prevent ligand binding, receptor activation and/or induce receptor internalization.11, 12 Lapatinib, a selective small-molecule inhibitor of EGFR and HER2 tyrosine kinases, quickly disables EGFR and HER2 signaling, resulting in the inhibition of the PI3K/Akt and MEK/Erk pathways,13 subsequently inducing proliferation arrest and apoptosis in EGFR- and HER2-dependent cancer cell lines.Apoptosis is activated in response to proapoptotic stimuli via two distinct signaling pathways: the extrinsic (or death receptor (DR)) pathway and intrinsic (or mitochondrial) pathway.14 The extrinsic pathway is triggered by members of the tumor necrosis factor (TNF) superfamily, which bind and activate their corresponding DRs. For example, binding of TNF-related apoptosis-inducing ligand (TRAIL) to the extracellular domains of the DR4 and DR5 promotes clustering of these receptors, and then induces apoptosis. The TRAIL receptors DR4 and DR5 are important proapoptotic molecules that belong to the TNF receptor superfamily.15 While binding to their ligand TRAIL, DR4 and DR5 transmit apoptotic signals through the rapid activation of caspase-8. By initiating the activation of caspase cascades, DR4 and DR5 directly induce apoptosis of target cells, preferentially in transformed or malignant cells.15, 16 Bioymifi, a small-molecule compound, directly targets DR5 to induce DR5 clustering and aggregation, leading to apoptosis in human cancer cells.17 Similarly, lapatinib induces DR5 upregulation through the activation of the c-Jun N-terminal kinase (JNK)/c-Jun signaling axis, leading to more efficient induction of apoptosis in colon cancer cells.18 These studies suggest that upregulation of DR4 and/or DR5 has an important role in apoptosis of various cancer cell types in vitro and in vivo.17, 18, 19 Therefore, agents that induce upregulation of DR4 and/or DR5 may have the potential for the clinical management of cancer.Multiple studies have demonstrated various bioactivities of benzimidazole derivatives, including anti-inflammatory,20 antioxidant,21 antiviral,22 antimicrobial23 and anticarcinogenic activity.24, 25, 26, 27, 28 Their antitumor activity may act through the inhibition of poly (ADP-ribose) polymerase-1 (PARP-1),24 topoisomerase I,25 cell cycle checkpoint kinase 226 and tyrosine kinases.27, 28 One of these analogs, 2-aryl benzimidazole compound (5a; 2-chloro-N-(2-p-tolyl-1H-benzo[d]imidazol-5-yl)acetamide, C16H14ClN3O, MW299) (Figure 1a), is a novel benzimidazole derivative, which was found to induce apoptosis in a human hepatocellular carcinoma cell (Hep G2),27 but the mechanism by which it induces apoptosis and antitumor activity in breast cancers is largely unknown. In this study, we demonstrate that 5a-induced cell cycle arrest and apoptosis by inhibiting EGFR and HER2 activity and downstream activation of PI3K/Akt and MEK/Erk pathways. 5A also induced apoptosis through JNK-mediated DR5 upregulation in human breast cancer cells. This study demonstrates that 5a is a novel multitarget antitumor drug candidate that has great potential as a novel agent for anticancer therapy.Open in a separate windowFigure 15A exerted cytotoxic activity in breast cancer cells. (a) The structure of 5a. (b) Breast cancer cells were treated with increasing concentrations of 5a for 72 h, cell viability was analyzed by MTT assay. (c) Cell viability, as determined by colony formation assay, was assessed in breast cancer cells treated with 5a. (d) Cells were cultured with 5  or 10 μM 5a for 48 h and then subjected to apoptosis assay, using flow cytometry. (e) Breast cancer cells treated with 5 or 10 μM 5a for indicated time points were stained with Hoechst 33258 dye; apoptotic bodies and chromatin condensation were revealed under a fluorescence microscopy; scale bar, 20 μm  相似文献   

12.

Introduction

Tyrosine kinases are key mediators of multiple signaling pathways implicated in rheumatoid arthritis (RA). We previously demonstrated that imatinib mesylate--a Food and Drug Administration (FDA)-approved, antineoplastic drug that potently inhibits the tyrosine kinases Abl, c-Kit, platelet-derived growth factor receptor (PDGFR), and c-Fms--ameliorates murine autoimmune arthritis. However, which of the imatinib-targeted kinases is the principal culprit in disease pathogenesis remains unknown. Here we examine the role of c-Fms in autoimmune arthritis.

Methods

We tested the therapeutic efficacy of orally administered imatinib or GW2580, a small molecule that specifically inhibits c-Fms, in three mouse models of RA: collagen-induced arthritis (CIA), anti-collagen antibody-induced arthritis (CAIA), and K/BxN serum transfer-induced arthritis (K/BxN). Efficacy was evaluated by visual scoring of arthritis severity, paw thickness measurements, and histological analysis. We assessed the in vivo effects of imatinib and GW2580 on macrophage infiltration of synovial joints in CIA, and their in vitro effects on macrophage and osteoclast differentiation, and on osteoclast-mediated bone resorption. Further, we determined the effects of imatinib and GW2580 on the ability of macrophage colony-stimulating factor (M-CSF; the ligand for c-Fms) to prime bone marrow-derived macrophages to produce tumor necrosis factor (TNF) upon subsequent Fc receptor ligation. Finally, we measured M-CSF levels in synovial fluid from patients with RA, osteoarthritis (OA), or psoriatic arthritis (PsA), and levels of total and phosphorylated c-Fms in synovial tissue from patients with RA.

Results

GW2580 was as efficacious as imatinib in reducing arthritis severity in CIA, CAIA, and K/BxN models of RA. Specific inhibition of c-Fms abrogated (i) infiltration of macrophages into synovial joints of arthritic mice; (ii) differentiation of monocytes into macrophages and osteoclasts; (iii) osteoclast-mediated bone resorption; and (iv) priming of macrophages to produce TNF upon Fc receptor stimulation, an important trigger of synovitis in RA. Expression and activation of c-Fms in RA synovium were high, and levels of M-CSF were higher in RA synovial fluid than in OA or PsA synovial fluid.

Conclusions

These results suggest that c-Fms plays a central role in the pathogenesis of RA by mediating the differentiation and priming of monocyte lineage cells. Therapeutic targeting of c-Fms could provide benefit in RA.  相似文献   

13.

Background

Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas.

Methods

The BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark® XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H2O2 reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatise (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives.

Results

Sequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 – 1.0000) and the ASCO/CAP scoring method with the FISH equivocal cases (95.7%, Simple Kappa = 0.8993%, 95% CI = 0.8068 – 0.9919) and without the FISH equivocal cases (100%, Simple Kappa = 1.0000%, 95% CI = 1.0000 – 1.0000).

Conclusion

Automated BDISH applications for HER2 and CEN 17 targets were successfully developed and it might be able to replace manual two-color HER2 FISH methods. The application also has the potential to be used for other gene targets. The use of BDISH technology allows the simultaneous analyses of two DNA targets within the context of tissue morphological observation.  相似文献   

14.

Background

The non-receptor tyrosine kinase, SRMS (Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites) is a member of the BRK family kinases (BFKs) which represents an evolutionarily conserved relative of the Src family kinases (SFKs). Tyrosine kinases are known to regulate a number of cellular processes and pathways via phosphorylating substrate proteins directly and/or by partaking in signaling cross-talks leading to the indirect modulation of various signaling intermediates. In a previous study, we profiled the tyrosine-phosphoproteome of SRMS and identified multiple candidate substrates of the kinase. The broader cellular signaling intermediates of SRMS are unknown.

Methods

In order to uncover the broader SRMS-regulated phosphoproteome and identify the SRMS-regulated indirect signaling intermediates, we performed label-free global phosphoproteomics analysis on cells expressing wild-type SRMS. Using computational database searching and bioinformatics analyses we characterized the dataset.

Results

Our analyses identified 60 hyperphosphorylated (phosphoserine/phosphothreonine) proteins mapped from 140 hyperphosphorylated peptides. Bioinfomatics analyses identified a number of significantly enriched biological and cellular processes among which DNA repair pathways were found to be upregulated while apoptotic pathways were found to be downregulated. Analyses of motifs derived from the upregulated phosphosites identified Casein kinase 2 alpha (CK2α) as one of the major potential kinases contributing to the SRMS-dependent indirect regulation of signaling intermediates.

Conclusions

Overall, our phosphoproteomics analyses identified serine/threonine phosphorylation dynamics as important secondary events of the SRMS-regulated phosphoproteome with implications in the regulation of cellular and biological processes.
  相似文献   

15.

Background

A contemporary view of the cancer genome reveals extensive rearrangement compared to normal cells. Yet how these genetic alterations translate into specific proteomic changes that underpin acquiring the hallmarks of cancer remains unresolved. The objectives of this study were to quantify alterations in protein expression in two HER2+ cellular models of breast cancer and to infer differentially regulated signaling pathways in these models associated with the hallmarks of cancer.

Results

A proteomic workflow was used to identify proteins in two HER2 positive tumorigenic cell lines (BT474 and SKBR3) that were differentially expressed relative to a normal human mammary epithelial cell line (184A1). A total of 64 (BT474-184A1) and 69 (SKBR3-184A1) proteins were uniquely identified that were differentially expressed by at least 1.5-fold. Pathway inference tools were used to interpret these proteins in terms of functionally enriched pathways in the tumor cell lines. We observed "protein ubiquitination" and "apoptosis signaling" pathways were both enriched in the two breast cancer models while "IGF signaling" and "cell motility" pathways were enriched in BT474 and "amino acid metabolism" were enriched in the SKBR3 cell line.

Conclusion

While "protein ubiquitination" and "apoptosis signaling" pathways were common to both the cell lines, the observed patterns of protein expression suggest that the evasion of apoptosis in each tumorigenic cell line occurs via different mechanisms. Evidently, apoptosis is regulated in BT474 via down regulation of Bid and in SKBR3 via up regulation of Calpain-11 as compared to 184A1.  相似文献   

16.
17.

Background

Gene set analysis based on Gene Ontology (GO) can be a promising method for the analysis of differential expression patterns. However, current studies that focus on individual GO terms have limited analytical power, because the complex structure of GO introduces strong dependencies among the terms, and some genes that are annotated to a GO term cannot be found by statistically significant enrichment.

Results

We proposed a method for enriching clustered GO terms based on semantic similarity, namely cluster enrichment analysis based on GO (CeaGO), to extend the individual term analysis method. Using an Affymetrix HGU95aV2 chip dataset with simulated gene sets, we illustrated that CeaGO was sensitive enough to detect moderate expression changes. When compared to parent-based individual term analysis methods, the results showed that CeaGO may provide more accurate differentiation of gene expression results. When used with two acute leukemia (ALL and ALL/AML) microarray expression datasets, CeaGO correctly identified specifically enriched GO groups that were overlooked by other individual test methods.

Conclusion

By applying CeaGO to both simulated and real microarray data, we showed that this approach could enhance the interpretation of microarray experiments. CeaGO is currently available at http://chgc.sh.cn/en/software/CeaGO/.  相似文献   

18.

Introduction

Progressive fibrosis in systemic sclerosis (SSc) is linked to aberrant transforming growth factor beta (TGF-beta) signaling. Peroxisome proliferator-activated receptor gamma (PPAR-gamma) blocks fibrogenic TGF-beta responses in vitro and in vivo. Reduced expression and function of PPAR-gamma in patients with SSc may contribute to progression of fibrosis. Here we evaluated the levels of adiponectin, a sensitive and specific index of PPAR-gamma activity, as a potential fibrogenic biomarker in SSc.

Methods

Adiponectin levels were determined in the sera of 129 patients with SSc and 86 healthy controls, and serial determinations were performed in 27 patients. Levels of adiponectin mRNA in skin biopsies from SSc patients were assessed in an expression profiling microarray dataset. Regulation of adiponectin gene expression in explanted human subcutaneous preadipocytes and fibroblasts was examined by real-time quantitative PCR.

Results

Patients with diffuse cutaneous SSc had reduced serum adiponectin levels. A significant inverse correlation between adiponectin levels and the modified Rodnan skin score was observed. In longitudinal studies changes in serum adiponectin levels were inversely correlated with changes in skin fibrosis. Skin biopsies from a subset of SSc patients showed reduced adiponectin mRNA expression which was inversely correlated with the skin score. An agonist ligand of PPAR-gamma potently induced adiponectin expression in explanted mesenchymal cells in vitro.

Conclusions

Levels of adiponectin, reflecting PPAR-gamma activity, are correlated with skin fibrosis and might have potential utility as a biomarker in SSc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号