首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Most commonly used malaria diagnostic tests, including microscopy and antigen-detecting rapid tests, cannot reliably detect low-density infections which are frequent in low transmission settings. Molecular methods such as polymerase chain reaction (PCR) are highly sensitive but remain too laborious for field deployment. In this study, the applicability of a malaria diagnosis kit based on loop-mediated isothermal amplification (mLAMP) was assessed in malaria endemic areas of Colombia with Plasmodium vivax predominance.

Methodology/Principal Findings

First, a passive case detection (PCD) study on 278 febrile patients recruited in Tierralta (department of Cordoba) was conducted to assess the diagnostic performance of the mLAMP method. Second, an active case detection (ACD) study on 980 volunteers was conducted in 10 sentinel sites with different epidemiological profiles. Whole blood samples were processed for microscopic and mLAMP diagnosis. Additionally RT-PCR and nested RT-PCR were used as reference tests. In the PCD study, P. falciparum accounted for 23.9% and P. vivax for 76.1% of the infections and no cases of mixed-infections were identified. Microscopy sensitivity for P. falciparum and P. vivax were 100% and 86.1%, respectively. mLAMP sensitivity for P. falciparum and P. vivax was 100% and 91.4%, respectively. In the ACD study, mLAMP detected 65 times more cases than microscopy. A high proportion (98.0%) of the infections detected by mLAMP was from volunteers without symptoms.

Conclusions/Significance

mLAMP sensitivity and specificity were comparable to RT-PCR. LAMP was significantly superior to microscopy and in P. vivax low-endemicity settings and under minimum infrastructure conditions, it displayed sensitivity and specificity similar to that of single-well RT-PCR for detection of both P. falciparum and P. vivax infections. Here, the dramatically increased detection of asymptomatic malaria infections by mLAMP demonstrates the usefulness of this new tool for diagnosis, surveillance, and screening in elimination strategies.  相似文献   

2.

Background

Rapid diagnosis and correct treatment of cases are the main objectives of control programs in malaria-endemic areas.

Methods and results

To evaluate these criteria and in a comparative study, blood specimens were collected from 120 volunteers seeking care at the Malaria Health Center in Chahbahar district. One hundred and seven out of 120 Giemsa-stained slides were positive for malaria parasites by microscopy. Eighty-four (70%) and 20 (16.7%) were identified as having only Plasmodium vivax and Plasmodium falciparum infections, respectively, while only 3 (2.5%) were interpreted as having mixed P. vivax-P. falciparum infections. The target DNA sequence of the 18S small sub-unit ribosomal RNA (ssrRNA) gene was amplified by Polymerase Chain Reaction (PCR) and used for the diagnosis of malaria in south-eastern Iran. One hundred twenty blood samples were submitted and the results were compared to those of routine microscopy. The sensitivity of PCR for detection of P. vivax and P. falciparum malaria was higher than that of microscopy: nested PCR detected 31 more mixed infections than microscopy and parasite positive reactions in 9 out of the 13 microscopically negative samples. The results also confirmed the presence of P. vivax and P. falciparum.

Conclusions

These results suggest that, in places where transmission of both P. vivax and P. falciparum occurs, nested PCR detection of malaria parasites can be a very useful complement to microscopical diagnosis.  相似文献   

3.

Background

In order to prepare the field site for future interventions, the prevalence of asymptomatic Plasmodium falciparum infection was evaluated in a cohort of children living in Brazzaville. Plasmodium falciparum merozoite surface protein 2 gene (msp2) was used to characterize the genetic diversity and the multiplicity of infection. The prevalence of mutant P. falciparum chloroquine resistance transporter (pfcrt) allele in isolates was also determined.

Methods

Between April and June 2010, 313 children below 10 years of age enrolled in the cohort for malaria surveillance were screened for P. falciparum infection using microscopy and polymerase chain reaction (PCR). The children were selected on the basis of being asymptomatic. Plasmodium falciparum msp2 gene was genotyped by allele-specific nested PCR and the pfcrt K76T mutation was detected using nested PCR followed by restriction endonuclease digestion.

Results

The prevalence of asymptomatic P. falciparum infections was 8.6% and 16% by microscopy and by PCR respectively. Allele typing of the msp2 gene detected 55% and 45% of 3D7 and FC27 allelic families respectively. The overall multiplicity of infections (MOI) was 1.3. A positive correlation between parasite density and multiplicity of infection was found. The prevalence of the mutant pfcrt allele (T76) in the isolates was 92%.

Conclusion

This is the first molecular characterization of P. falciparum field isolates in Congolese children, four years after changing the malaria treatment policy from chloroquine (CQ) to artemisinin-based combination therapy (ACT). The low prevalence of asymptomatic infections and MOI is discussed in the light of similar studies conducted in Central Africa.  相似文献   

4.

Background

Malaria is the direct cause of approximately one million deaths worldwide each year, though it is both preventable and curable. Increasing the understanding of the transmission dynamics of falciparum and vivax malaria and their relationship could suggest improvements for malaria control efforts. Here the weekly number of malaria cases due to Plasmodium falciparum (1994–2006) and Plasmodium vivax (1999–2006) in Perú at different spatial scales in conjunction with associated demographic, geographic and climatological data are analysed.

Methods

Malaria periodicity patterns were analysed through wavelet spectral analysis, studied patterns of persistence as a function of community size and assessed spatial heterogeneity via the Lorenz curve and the summary Gini index.

Results

Wavelet time series analyses identified annual cycles in the incidence of both malaria species as the dominant pattern. However, significant spatial heterogeneity was observed across jungle, mountain and coastal regions with slightly higher levels of spatial heterogeneity for P. vivax than P. falciparum. While the incidence of P. falciparum has been declining in recent years across geographic regions, P. vivax incidence has remained relatively steady in jungle and mountain regions with a slight decline in coastal regions. Factors that may be contributing to this decline are discussed. The time series of both malaria species were significantly synchronized in coastal (ρ = 0.9, P < 0.0001) and jungle regions (ρ = 0.76, P < 0.0001) but not in mountain regions. Community size was significantly associated with malaria persistence due to both species in jungle regions, but not in coastal and mountain regions.

Conclusion

Overall, findings highlight the importance of highly refined spatial and temporal data on malaria incidence together with demographic and geographic information in improving the understanding of malaria persistence patterns associated with multiple malaria species in human populations, impact of interventions, detection of heterogeneity and generation of hypotheses.  相似文献   

5.

Background

New frontier settlements across the Amazon Basin pose a major challenge for malaria elimination in Brazil. Here we describe the epidemiology of malaria during the early phases of occupation of farming settlements in Remansinho area, Brazilian Amazonia. We examine the relative contribution of low-density and asymptomatic parasitemias to the overall Plasmodium vivax burden over a period of declining transmission and discuss potential hurdles for malaria elimination in Remansinho and similar settings.

Methods

Eight community-wide cross-sectional surveys, involving 584 subjects, were carried out in Remansinho over 3 years and complemented by active and passive surveillance of febrile illnesses between the surveys. We used quantitative PCR to detect low-density asexual parasitemias and gametocytemias missed by conventional microscopy. Mixed-effects multiple logistic regression models were used to characterize independent risk factors for P. vivax infection and disease.

Principal Findings/Conclusions

P. vivax prevalence decreased from 23.8% (March–April 2010) to 3.0% (April–May 2013), with no P. falciparum infections diagnosed after March–April 2011. Although migrants from malaria-free areas were at increased risk of malaria, their odds of having P. vivax infection and disease decreased by 2–3% with each year of residence in Amazonia. Several findings indicate that low-density and asymptomatic P. vivax parasitemias may complicate residual malaria elimination in Remansinho: (a) the proportion of subpatent infections (i.e. missed by microscopy) increased from 43.8% to 73.1% as P. vivax transmission declined; (b) most (56.6%) P. vivax infections were asymptomatic and 32.8% of them were both subpatent and asymptomatic; (c) asymptomatic parasite carriers accounted for 54.4% of the total P. vivax biomass in the host population; (d) over 90% subpatent and asymptomatic P. vivax had PCR-detectable gametocytemias; and (e) few (17.0%) asymptomatic and subpatent P. vivax infections that were left untreated progressed to clinical disease over 6 weeks of follow-up and became detectable by routine malaria surveillance.  相似文献   

6.

Background

Intermittent preventive treatment (IPT), the main strategy to prevent malaria and reduce anaemia and low birthweight, focuses on the second half of pregnancy. However, intrauterine growth restriction may occur earlier in pregnancy. The aim of this study was to measure the effects of malaria in the first half of pregnancy by comparing the fetal biparietal diameter (BPD) of infected and uninfected women whose pregnancies had been accurately dated by crown rump length (CRL) before 14 weeks of gestation.

Methodology/Principal Findings

In 3,779 women living on the Thai-Myanmar border who delivered a normal singleton live born baby between 2001–10 and who had gestational age estimated by CRL measurement <14 weeks, the observed and expected BPD z-scores (<24 weeks) in pregnancies that were (n = 336) and were not (n = 3,443) complicated by malaria between the two scans were compared. The mean (standard deviation) fetal BPD z-scores in women with Plasmodium (P) falciparum and/or P.vivax malaria infections were significantly lower than in non-infected pregnancies; −0.57 (1.13) versus −0.10 (1.17), p<0.001. Even a single or an asymptomatic malaria episode resulted in a significantly lower z-score. Fetal female sex (p<0.001) and low body mass index (p = 0.01) were also independently associated with a smaller BPD in multivariate analysis.

Conclusions/Significance

Despite early treatment in all positive women, one or more (a)symptomatic P.falciparum or P.vivax malaria infections in the first half of pregnancy result in a smaller than expected mid-trimester fetal head diameter. Strategies to prevent malaria in pregnancy should include early pregnancy.  相似文献   

7.

Background

The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum.

Methodology/Principal Findings

We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF)-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85), P. falciparum (n = 30), or both species (n = 12), and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL)-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN)-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species.

Conclusions

Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction of regulatory cytokines may be a critical mechanism protecting vivax malaria patients from severe clinical complications.  相似文献   

8.

Background

In sub-Saharan Africa, Plasmodium falciparum and hepatitis A (HAV) infections are common, especially in children. Co-infections with these two pathogens may therefore occur, but it is unknown if temporal clustering exists.

Materials and Methods

We studied the pattern of co-infection of P. falciparum malaria and acute HAV in Kenyan children under the age of 5 years in a cohort of children presenting with uncomplicated P. falciparum malaria. HAV status was determined during a 3-month follow-up period.

Discussion

Among 222 cases of uncomplicated malaria, 10 patients were anti-HAV IgM positive. The incidence of HAV infections during P. falciparum malaria was 1.7 (95% CI 0.81–3.1) infections/person-year while the cumulative incidence of HAV over the 3-month follow-up period was 0.27 (95% CI 0.14–0.50) infections/person-year. Children with or without HAV co-infections had similar mean P. falciparum asexual parasite densities at presentation (31,000/µL vs. 34,000/µL, respectively), largely exceeding the pyrogenic threshold of 2,500 parasites/µL in this population and minimizing risk of over-diagnosis of malaria as an explanation.

Conclusion

The observed temporal association between acute HAV and P. falciparum malaria suggests that co-infections of these two hepatotrophic human pathogens may result from changes in host susceptibility. Testing this hypothesis will require larger prospective studies.  相似文献   

9.
Over the past decades, the malaria burden in Thailand has substantially declined. Most infections now originate from the national border regions. In these areas, the prevalence of asymptomatic infections is still substantial and poses a challenge for the national malaria elimination program. To determine epidemiological parameters as well as risk factors for malaria infection in western Thailand, we carried out a cohort study in Kanchanaburi and Ratchaburi provinces on the Thailand-Myanmar border. Blood samples from 999 local participants were examined for malaria infection every 4 weeks between May 2013 and Jun 2014. Prevalence of Plasmodium falciparum and Plasmodium vivax was determined by quantitative PCR (qPCR) and showed a seasonal variation with values fluctuating from 1.7% to 4.2% for P. vivax and 0% to 1.3% for P. falciparum. Ninety percent of infections were asymptomatic. The annual molecular force of blood-stage infection (molFOB) was estimated by microsatellite genotyping to be 0.24 new infections per person-year for P. vivax and 0.02 new infections per person-year for P. falciparum. The distribution of infections was heterogenous, that is, the vast majority of infections (>80%) were found in a small number of individuals (<8% of the study population) who tested positive at multiple timepoints. Significant risk factors were detected for P. vivax infections, including previous clinical malaria, occupation in agriculture and travel to Myanmar. In contrast, indoor residual spraying was associated with a protection from infection. These findings provide a recent landscape of malaria epidemiology and emphasize the importance of novel strategies to target asymptomatic and imported infections.  相似文献   

10.

Background

Pregnancy is a known risk factor for malaria which is associated with increased maternal and infant mortality and morbidity in areas of moderate-high malaria transmission intensity where Plasmodium falciparum predominates. The nature and impact of malaria, however, is not well understood in pregnant women residing in areas of low, unstable malaria transmission where P. falciparum and P. vivax co-exist.

Methods

A large longitudinal active surveillance study of malaria was conducted in the Chittagong Hill Districts of Bangladesh. Over 32 months in 2010–2013, the period prevalence of asymptomatic P. falciparum infections was assessed by rapid diagnostic test and blood smear and compared among men, non-pregnant women and pregnant women. A subset of samples was tested for infection by PCR. Hemoglobin was assessed. Independent risk factors for malaria infection were determined using a multivariate logistic regression model.

Results

Total of 34 asymptomatic P. falciparum infections were detected by RDT/smear from 3,110 tests. The period prevalence of asymptomatic P. falciparum infection in pregnant women was 2.3%, compared to 0.5% in non-pregnant women and 0.9% in men. All RDT/smear positive samples that were tested by PCR were PCR-positive, and PCR detected additional 35 infections that were RDT/smear negative. In a multivariate logistic regression analysis, pregnant women had 5.4-fold higher odds of infection as compared to non-pregnant women. Malaria-positive pregnant women, though asymptomatic, had statistically lower hemoglobin than those without malaria or pregnancy. Asymptomatic malaria was found to be evenly distributed across space and time, in contrast to symptomatic infections which tend to cluster.

Conclusion

Pregnancy is a risk factor for asymptomatic P. falciparum infection in the Chittagong Hill Districts of Bangladesh, and pregnancy and malaria interact to heighten the effect of each on hemoglobin. The even distribution of asymptomatic malaria, without temporal and spatial clustering, may have critical implications for malaria elimination strategies.  相似文献   

11.

Background

Plasmodium vivax is the second most prevalent malaria parasite affecting more than 75 million people each year, mostly in South America and Asia. In addition to major morbidity this parasite is associated with relapses and a reduction in birthweight. The emergence and spread of drug resistance in Plasmodium falciparum is a major factor in the resurgence of this parasite. P. vivax resistance to drugs has more recently emerged and monitoring the situation would be helped, as for P. falciparum, by molecular methods that can be used to characterize parasites in field studies and drug efficacy trials.

Methods

Practical PCR genotyping protocols based on polymorphic loci present in two P. vivax genetic markers, Pvcs and Pvmsp1, were developed. The methodology was evaluated using 100 P. vivax isolates collected in Thailand.

Results and Discussion

Analysis revealed that P. vivax populations in Thailand are highly diverse genetically, with mixed genotype infections found in 26 % of the samples (average multiplicity of infection = 1.29). A large number of distinguishable alleles were found for the two markers, 23 for Pvcs and 36 for Pvmsp1. These were generally randomly distributed amongst the isolates. A total of 68 distinct genotypes could be enumerated in the 74 isolates with a multiplicity of infection of 1.

Conclusion

These results indicate that the genotyping protocols presented can be useful in the assessment of in vivo drug efficacy clinical trials conducted in endemic areas and for epidemiological studies of P. vivax infections.  相似文献   

12.

Background

The protection afforded by human erythrocyte polymorphisms against the malaria parasite, Plasmodium falciparum, has been proposed to be due to reduced ability of the parasite to invade or develop in erythrocytes. If this were the case, variable levels of parasitaemia and rates of seroconversion to infected-erythrocyte variant surface antigens (VSA) should be seen in different host genotypes.

Methods

To test this hypothesis, P. falciparum parasitaemia and anti-VSA antibody levels were measured in a cohort of 555 asymptomatic children from an area of intense malaria transmission in Papua New Guinea. Linear mixed models were used to investigate the effect of α+-thalassaemia, complement receptor-1 and south-east Asian ovalocytosis, as well as glucose-6-phosphate dehydrogenase deficiency and ABO blood group on parasitaemia and age-specific seroconversion to VSA.

Results

No host polymorphism showed a significant association with both parasite prevalence/density and age-specific seroconversion to VSA.

Conclusion

Host erythrocyte polymorphisms commonly found in Papua New Guinea do not effect exposure to blood stage P. falciparum infection. This contrasts with data for sickle cell trait and highlights that the above-mentioned polymorphisms may confer protection against malaria via distinct mechanisms.  相似文献   

13.

Background

Sub-microscopic (SM) Plasmodium infections represent transmission reservoirs that could jeopardise malaria elimination goals. A better understanding of the epidemiology of these infections and factors contributing to their occurrence will inform effective elimination strategies. While the epidemiology of SM P. falciparum infections has been documented, that of SM P. vivax infections has not been summarised. The objective of this study is to address this deficiency.

Methodology/Principal Findings

A systematic search of PubMed was conducted, and results of both light microscopy (LM) and polymerase chain reaction (PCR)-based diagnostic tests for P. vivax from 44 cross-sectional surveys or screening studies of clinical malaria suspects were analysed. Analysis revealed that SM P. vivax is prevalent across different geographic areas with varying transmission intensities. On average, the prevalence of SM P. vivax in cross-sectional surveys was 10.9%, constituting 67.0% of all P. vivax infections detected by PCR. The relative proportion of SM P. vivax is significantly higher than that of the sympatric P. falciparum in these settings. A positive relationship exists between PCR and LM P. vivax prevalence, while there is a negative relationship between the proportion of SM P. vivax and the LM prevalence for P. vivax. Amongst clinical malaria suspects, however, SM P. vivax was not identified.

Conclusions/Significance

SM P. vivax is prevalent across different geographic areas, particularly areas with relatively low transmission intensity. Diagnostic tools with sensitivity greater than that of LM are required for detecting these infection reservoirs. In contrast, SM P. vivax is not prevalent in clinical malaria suspects, supporting the recommended use of quality LM and rapid diagnostic tests in clinical case management. These findings enable malaria control and elimination programs to estimate the prevalence and proportion of SM P. vivax infections in their settings, and develop appropriate elimination strategies to tackle SM P. vivax to interrupt transmission.  相似文献   

14.

Background

When both parasite species are co-endemic, Plasmodium vivax incidence peaks in younger children compared to P. falciparum. To identify differences in the number of blood stage infections of these species and its potential link to acquisition of immunity, we have estimated the molecular force of blood-stage infection of P. vivax (molFOB, i.e. the number of genetically distinct blood-stage infections over time), and compared it to previously reported values for P. falciparum.

Methods

P. vivax molFOB was estimated by high resolution genotyping parasites in samples collected over 16 months in a cohort of 264 Papua New Guinean children living in an area highly endemic for P. falciparum and P. vivax. In this cohort, P. vivax episodes decreased three-fold over the age range of 1–4.5 years.

Results

On average, children acquired 14.0 new P. vivax blood-stage clones/child/year-at-risk. While the incidence of clinical P. vivax illness was strongly associated with molFOB (incidence rate ratio (IRR) = 1.99, 95% confidence interval (CI95) [1.80, 2.19]), molFOB did not change with age. The incidence of P. vivax showed a faster decrease with age in children with high (IRR = 0.49, CI95 [0.38, 0.64] p<0.001) compared to those with low exposure (IRR = 0.63, CI95[0.43, 0.93] p = 0.02).

Conclusion

P. vivax molFOB is considerably higher than P. falciparum molFOB (5.5 clones/child/year-at-risk). The high number of P. vivax clones that infect children in early childhood contribute to the rapid acquisition of immunity against clinical P. vivax malaria.  相似文献   

15.

Background

Severe malaria (SM) is classically associated with Plasmodium falciparum infection. Little information is available on the contribution of P. vivax to severe disease. There are some epidemiological indications that P. vivax or mixed infections protect against complications and deaths. A large morbidity surveillance conducted in an area where the four species coexist allowed us to estimate rates of SM among patients infected with one or several species.

Methods and Findings

This was a prospective cohort study conducted within the framework of the Malaria Vaccine Epidemiology and Evaluation Project. All presumptive malaria cases presenting at two rural health facilities over an 8-y period were investigated with history taking, clinical examination, and laboratory assessment. Case definition of SM was based on the World Health Organization (WHO) criteria adapted for the setting (i.e., clinical diagnosis of malaria associated with asexual blood stage parasitaemia and recent history of fits, or coma, or respiratory distress, or anaemia [haemoglobin < 5 g/dl]). Out of 17,201 presumptive malaria cases, 9,537 (55%) had a confirmed Plasmodium parasitaemia. Among those, 6.2% (95% confidence interval [CI] 5.7%–6.8%) fulfilled the case definition of SM, most of them in children <5 y. In this age group, the proportion of SM was 11.7% (10.4%–13.2%) for P. falciparum, 8.8% (7.1%–10.7%) for P. vivax, and 17.3% (11.7%–24.2%) for mixed P. falciparum and P. vivax infections. P. vivax SM presented more often with respiratory distress than did P. falciparum (60% versus 41%, p = 0.002), but less often with anaemia (19% versus 41%, p = 0.0001).

Conclusion

P. vivax monoinfections as well as mixed Plasmodium infections are associated with SM. There is no indication that mixed infections protected against SM. Interventions targeted toward P. falciparum only might be insufficient to eliminate the overall malaria burden, and especially severe disease, in areas where P. falciparum and P. vivax coexist.  相似文献   

16.

Background

Resistance to anti-malarial drugs hampers control efforts and increases the risk of morbidity and mortality from malaria. The efficacy of standard therapies for uncomplicated Plasmodium falciparum and Plasmodium vivax malaria was assessed in Chumkiri, Kampot Province, Cambodia.

Methods

One hundred fifty-one subjects with uncomplicated falciparum malaria received directly observed therapy with 12 mg/kg artesunate (over three days) and 25 mg/kg mefloquine, up to a maximum dose of 600 mg artesunate/1,000 mg mefloquine. One hundred nine subjects with uncomplicated vivax malaria received a total of 25 mg/kg chloroquine, up to a maximum dose of 1,500 mg, over three days. Subjects were followed for 42 days or until recurrent parasitaemia was observed. For P. falciparum infected subjects, PCR genotyping of msp1, msp2, and glurp was used to distinguish treatment failures from new infections. Treatment failure rates at days 28 and 42 were analyzed using both per protocol and Kaplan-Meier survival analysis. Real Time PCR was used to measure the copy number of the pfmdr1 gene and standard 48-hour isotopic hypoxanthine incorporation assays were used to measure IC50 for anti-malarial drugs.

Results

Among P. falciparum infected subjects, 47.0% were still parasitemic on day 2 and 11.3% on day 3. The PCR corrected treatment failure rates determined by survival analysis at 28 and 42 days were 13.1% and 18.8%, respectively. Treatment failure was associated with increased pfmdr1 copy number, higher initial parasitaemia, higher mefloquine IC50, and longer time to parasite clearance. One P. falciparum isolate, from a treatment failure, had markedly elevated IC50 for both mefloquine (130 nM) and artesunate (6.7 nM). Among P. vivax infected subjects, 42.1% suffered recurrent P. vivax parasitaemia. None acquired new P. falciparum infection.

Conclusion

The results suggest that artesunate-mefloquine combination therapy is beginning to fail in southern Cambodia and that resistance is not confined to the provinces at the Thai-Cambodian border. It is unclear whether the treatment failures are due solely to mefloquine resistance or to artesunate resistance as well. The findings of delayed clearance times and elevated artesunate IC50 suggest that artesunate resistance may be emerging on a background of mefloquine resistance.  相似文献   

17.

Background

Protective immunity to malaria is acquired after repeated infections in endemic areas. Asymptomatic multiclonal P. falciparum infections are common and may predict host protection. Here, we have investigated the effect of clearing asymptomatic infections on the risk of clinical malaria.

Methods

Malaria episodes were continuously monitored in 405 children (1–6 years) in an area of moderate transmission, coastal Kenya. Blood samples collected on four occasions were assessed by genotyping the polymorphic P. falciparum merozoite surface protein 2 using fluorescent PCR and capillary electrophoresis. Following the second survey, asymptomatic infections were cleared with a full course of dihydroartemisinin.

Results

Children who were parasite negative by PCR had a lower risk of subsequent malaria regardless of whether treatment had been given. Children with ≥2 clones had a reduced risk of febrile malaria compared with 1 clone after clearance of asymptomatic infections, but not if asymptomatic infections were not cleared. Multiclonal infection was associated with an increased risk of re-infection after drug treatment. However, among the children who were re-infected, multiclonal infections were associated with a shift from clinical malaria to asymptomatic parasitaemia.

Conclusion

The number of clones was associated with exposure as well as blood stage immunity. These effects were distinguished by clearing asymptomatic infection with anti-malarials. Exposure to multiple P. falciparum infections is associated with protective immunity, but there appears to be an additional effect in untreated multiclonal infections that offsets this protective effect.  相似文献   

18.

Background

Multiplicity of infection (MOI) refers to the average number of distinct parasite genotypes concurrently infecting a patient. Although several studies have reported on MOI and the frequency of multiclonal infections in Plasmodium falciparum, there is limited data on Plasmodium vivax. Here, MOI and the frequency of multiclonal infections were studied in areas from South America where P. vivax and P. falciparum can be compared.

Methodology/Principal Findings

As part of a passive surveillance study, 1,328 positive malaria patients were recruited between 2011 and 2013 in low transmission areas from Colombia. Of those, there were only 38 P. vivax and 24 P. falciparum clinically complicated cases scattered throughout the time of the study. Samples from uncomplicated cases were matched in time and location with the complicated cases in order to compare the circulating genotypes for these two categories. A total of 92 P. vivax and 57 P. falciparum uncomplicated cases were randomly subsampled. All samples were genotyped by using neutral microsatellites. Plasmodium vivax showed more multiclonal infections (47.7%) than P. falciparum (14.8%). Population genetics and haplotype network analyses did not detect differences in the circulating genotypes between complicated and uncomplicated cases in each parasite. However, a Fisher exact test yielded a significant association between having multiclonal P. vivax infections and complicated malaria. No association was found for P. falciparum infections.

Conclusion

The association between multiclonal infections and disease severity in P. vivax is consistent with previous observations made in rodent malaria. The contrasting pattern between P. vivax and P. falciparum could be explained, at least in part, by the fact that P. vivax infections have lineages that were more distantly related among them than in the case of the P. falciparum multiclonal infections. Future research should address the possible role that acquired immunity and exposure may have on multiclonal infections and their association with disease severity.  相似文献   

19.

Background

Where P. vivax and P. falciparum occur in the same population, the peak burden of P. vivax infection and illness is often concentrated in younger age groups. Experiences from malaria therapy patients indicate that immunity is acquired faster to P. vivax than to P. falciparum challenge. There is however little prospective data on the comparative risk of infection and disease from both species in young children living in co-endemic areas.

Methodology/Principal Findings

A cohort of 264 Papua New Guinean children aged 1-3 years (at enrolment) were actively followed-up for Plasmodium infection and febrile illness for 16 months. Infection status was determined by light microscopy and PCR every 8 weeks and at each febrile episode. A generalised estimating equation (GEE) approach was used to analyse both prevalence of infection and incidence of clinical episodes. A more pronounced rise in prevalence of P. falciparum compared to P. vivax infection was evident with increasing age. Although the overall incidence of clinical episodes was comparable (P. falciparum: 2.56, P. vivax 2.46 episodes / child / yr), P. falciparum and P. vivax infectious episodes showed strong but opposing age trends: P. falciparum incidence increased until the age of 30 months with little change thereafter, but incidence of P. vivax decreased significantly with age throughout the entire age range. For P. falciparum, both prevalence and incidence of P. falciparum showed marked seasonality, whereas only P. vivax incidence but not prevalence decreased in the dry season.

Conclusions/Significance

Under high, perennial exposure, children in PNG begin acquiring significant clinical immunity, characterized by an increasing ability to control parasite densities below the pyrogenic threshold to P. vivax, but not to P. falciparum, in the 2nd and 3rd year of life. The ability to relapse from long-lasting liver-stages restricts the seasonal variation in prevalence of P. vivax infections.  相似文献   

20.

Background

Several studies have shown a prolonged or increased susceptibility to malaria in the post-partum period. A matched cohort study was conducted to evaluate prospectively the susceptibility to malaria of post-partum women in an area where P.falciparum and P.vivax are prevalent.

Methods

In an area of low seasonal malaria transmission on the Thai-Myanmar border pregnant women attending antenatal clinics were matched to a non-pregnant, non-post-partum control and followed up prospectively until 12 weeks after delivery.

Results

Post-partum women (n = 744) experienced significantly less P.falciparum episodes than controls (hazard ratio (HR) 0.39 (95%CI 0.21–0.72) p = 0.003) but significantly more P.vivax (HR 1.34 (1.05–1.72) p = 0.018). The reduced risk of falciparum malaria was accounted for by reduced exposure, whereas a history of P.vivax infection during pregnancy was a strong risk factor for P.vivax in post-partum women (HR 13.98 (9.13–21.41), p<0.001). After controlling for effect modification by history of P.vivax, post-partum women were not more susceptible to P.vivax than controls (HR: 0.33 (0.21–0.51), p<0.001). Genotyping of pre-and post-partum infections (n⊕ = ⊕10) showed that each post-partum P.falciparum was a newly acquired infection.

Conclusions

In this area of low seasonal malaria transmission post-partum women were less likely to develop falciparum malaria but more likely to develop vivax malaria than controls. This was explained by reduced risk of exposure and increased risk of relapse, respectively. There was no evidence for altered susceptibility to malaria in the post-partum period. The treatment of vivax malaria during and immediately after pregnancy needs to be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号