首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Urbanization has a great impact on the composition of the vector system and malaria transmission dynamics. In Dakar, some malaria cases are autochthonous but parasite rates and incidences of clinical malaria attacks have been recorded at low levels. Ecological heterogeneity of malaria transmission was investigated in Dakar, in order to characterize the Anopheles breeding sites in the city and to study the dynamics of larval density and adult aggressiveness in ten characteristically different urban areas.

Methods

Ten study areas were sampled in Dakar and Pikine. Mosquitoes were collected by human landing collection during four nights in each area (120 person-nights). The Plasmodium falciparum circumsporozoite (CSP) index was measured by ELISA and the entomological inoculation rates (EIR) were calculated. Open water collections in the study areas were monitored weekly for physico-chemical characterization and the presence of anopheline larvae. Adult mosquitoes and hatched larvae were identified morphologically and by molecular methods.

Results

In September-October 2007, 19,451 adult mosquitoes were caught among which, 1,101 were Anopheles gambiae s.l. The Human Biting Rate ranged from 0.1 bites per person per night in Yoff Village to 43.7 in Almadies. Seven out of 1,101 An. gambiae s.l. were found to be positive for P. falciparum (CSP index = 0.64%). EIR ranged from 0 infected bites per person per year in Yoff Village to 16.8 in Almadies. The An. gambiae complex population was composed of Anopheles arabiensis (94.8%) and Anopheles melas (5.2%). None of the An. melas were infected with P. falciparum. Of the 54 water collection sites monitored, 33 (61.1%) served as anopheline breeding sites on at least one observation. No An. melas was identified among the larval samples. Some physico-chemical characteristics of water bodies were associated with the presence/absence of anopheline larvae and with larval density. A very close parallel between larval and adult densities was found in six of the ten study areas.

Conclusion

The results provide evidence of malaria transmission in downtown Dakar and its surrounding suburbs. Spatial heterogeneity of human biting rates was very marked and malaria transmission was highly focal. In Dakar, mean figures for transmission would not provide a comprehensive picture of the entomological situation; risk evaluation should therefore be undertaken on a small scale.  相似文献   

2.

Background

Pools of salt water and puddles created by giant waves from the sea due to the tsunami that occurred on 26th December 2004 would facilitate increased breeding of brackish water malaria vector, Anopheles sundaicus. Land uplifts in North Andaman and subsidence in South Andaman have been reported and subsidence may lead to environmental disturbances and vector proliferation. This warrants a situation analysis and vector surveillance in the tsunami hit areas endemic for malaria transmitted by brackish water mosquito, An. sundaicus to predict the risk of outbreak.

Methods

An extensive survey was carried out in the tsunami-affected areas in Andaman district of the Andaman and Nicobar Islands, India to assess the extent of breeding of malaria vectors in the habitats created by seawater flooding. Types of habitats in relation to source of seawater inundation and frequency were identified. The salinity of the water samples and the mosquito species present in the larval samples collected from these habitats were recorded. The malaria situation in the area was also analysed.

Results

South Andaman, covering Port Blair and Ferrargunj sub districts, is still under the recurring phenomenon of seawater intrusion either directly from the sea or through a network of creeks. Both daily cycles of high tides and periodical spring tides continue to cause flooding. Low-lying paddy fields and fallow land, with a salinity ranging from 3,000 to 42,505 ppm, were found to support profuse breeding of An. sundaicus, the local malaria vector, and Anopheles subpictus, a vector implicated elsewhere. This area is endemic for both vivax and falciparum malaria. Malaria slide positivity rate has started increasing during post-tsunami period, which can be considered as an indication of risk of malaria outbreak.

Conclusion

Paddy fields and fallow land with freshwater, hitherto not considered as potential sites for An. sundaicus, are now major breeding sites due to saline water. Consequently, there is a risk of vector abundance with enhanced malaria transmission potential, due to the vastness of these tsunami-created breeding grounds and likelihood of them becoming permanent due to continued flooding in view of land subsidence. The close proximity of the houses and paucity of cattle may lead to a higher degree of man/vector contact causing a threat of malaria outbreak in this densely populated area. Measures to prevent the possible outbreak of malaria in this tsunami-affected area are discussed.  相似文献   

3.

Background

The Anopheles dirus complex includes efficient malaria vectors of the Asian forested zone. Studies suggest ecological and biological differences between the species of the complex but variations within species suggest possible environmental influences. Behavioural variation might determine vector capacity and adaptation to changing environment. It is thus necessary to clarify the species distributions and the influences of environment on behavioural heterogeneity.

Methods

A literature review highlights variation between species, influences of environmental drivers, and consequences on vector status and control. The localisation of collection sites from the literature and from a recent project (MALVECASIA) produces detailed species distributions maps. These facilitate species identification and analysis of environmental influences.

Results

The maps give a good overview of species distributions. If species status partly explains behavioural heterogeneity, occurrence and vectorial status, some environmental drivers have at least the same importance. Those include rainfall, temperature, humidity, shade, soil type, water chemistry and moon phase. Most factors are probably constantly favourable in forest. Biological specificities, behaviour and high human-vector contact in the forest can explain the association of this complex with high malaria prevalence, multi-drug resistant Plasmodium falciparum and partial control failure of forest malaria in Southeast Asia.

Conclusion

Environmental and human factors seem better than species specificities at explaining behavioural heterogeneity. Although forest seems essential for mosquito survival, adaptations to orchards and wells have been recorded. Understanding the relationship between landscape components and mosquito population is a priority in foreseeing the influence of land-cover changes on malaria occurrence and in shaping control strategies for the future.  相似文献   

4.

Background

The question whether Plasmodium falciparum infection affects the fitness of mosquito vectors remains open. A hurdle for resolving this question is the lack of appropriate control, non-infected mosquitoes that can be compared to the infected ones. It was shown recently that heating P. falciparum gametocyte-infected blood before feeding by malaria vectors inhibits the infection. Therefore, the same source of gametocyte-infected blood could be divided in two parts, one heated, serving as the control, the other unheated, allowing the comparison of infected and uninfected mosquitoes which fed on exactly the same blood otherwise. However, before using this method for characterizing the cost of infection to mosquitoes, it is necessary to establish whether feeding on previously heated blood affects the survival and fecundity of mosquito females.

Methods

Anopheles gambiae M molecular form females were exposed to heated versus non-heated, parasite-free human blood to mimic blood meal on non-infectious versus infectious gametocyte-containing blood. Life history traits of mosquito females fed on blood that was heat-treated or not were then compared.

Results

The results reveal that heat treatment of the blood did not affect the survival and fecundity of mosquito females. Consistently, blood heat treatment did not affect the quantity of blood ingested.

Conclusions

The study indicates that heat inactivation of gametocyte-infected blood will only inhibit mosquito infection and that this method is suitable for quantifying the fitness cost incurred by mosquitoes upon infection by P. falciparum.  相似文献   

5.

Background

Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of botanical origin have been reported as useful for control of mosquitoes. Azadirachta indica (Meliaceae) and its derived products have shown a variety of insecticidal properties. The present paper discusses the larvicidal activity of neem-based biopesticide for the control of mosquitoes.

Methods

Larvicidal efficacy of an emulsified concentrate of neem oil formulation (neem oil with polyoxyethylene ether, sorbitan dioleate and epichlorohydrin) developed by BMR & Company, Pune, India, was evaluated against late 3rd and early 4th instar larvae of different genera of mosquitoes. The larvae were exposed to different concentrations (0.5–5.0 ppm) of the formulation along with untreated control. Larvicidal activity of the formulation was also evaluated in field against Anopheles, Culex, and Aedes mosquitoes. The formulation was diluted with equal volumes of water and applied @ 140 mg a.i./m2 to different mosquito breeding sites with the help of pre calibrated knapsack sprayer. Larval density was determined at pre and post application of the formulation using a standard dipper.

Results

Median lethal concentration (LC50) of the formulation against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti was found to be 1.6, 1.8 and 1.7 ppm respectively. LC50 values of the formulation stored at 26°C, 40°C and 45°C for 48 hours against Ae. aegypti were 1.7, 1.7, 1.8 ppm while LC90 values were 3.7, 3.7 and 3.8 ppm respectively. Further no significant difference in LC50 and LC90 values of the formulation was observed against Ae. aegypti during 18 months storage period at room temperature. An application of the formulation at the rate of 140 mg a.i./m2 in different breeding sites under natural field conditions provided 98.1% reduction of Anopheles larvae on day 1; thereafter 100% reduction was recorded up to week 1 and more than 80% reduction up to week 3, while percent reduction against Culex larvae was 95.5% on day 1, and thereafter 80% reduction was achieved up to week 3. The formulation also showed 95.1% and, 99.7% reduction of Aedes larvae on day 1 and day 2 respectively; thereafter 100% larval control was observed up to day 7.

Conclusion

The neem oil formulation was found effective in controlling mosquito larvae in different breeding sites under natural field conditions. As neem trees are widely distributed in India, their formulations may prove to be an effective and eco-friendly larvicide, which could be used as an alternative for malaria control.  相似文献   

6.

Background

Immature stages of the malaria mosquito Anopheles gambiae experience high mortality, but its cause is poorly understood. Here we study the impact of rainfall, one of the abiotic factors to which the immatures are frequently exposed, on their mortality.

Methodology/Principal Findings

We show that rainfall significantly affected larval mosquitoes by flushing them out of their aquatic habitat and killing them. Outdoor experiments under natural conditions in Kenya revealed that the additional nightly loss of larvae caused by rainfall was on average 17.5% for the youngest (L1) larvae and 4.8% for the oldest (L4) larvae; an additional 10.5% (increase from 0.9 to 11.4%) of the L1 larvae and 3.3% (from 0.1 to 3.4%) of the L4 larvae were flushed away and larval mortality increased by 6.9% (from 4.6 to 11.5%) and 1.5% (from 4.1 to 5.6%) for L1 and L4 larvae, respectively, compared to nights without rain. On rainy nights, 1.3% and 0.7% of L1 and L4 larvae, respectively, were lost due to ejection from the breeding site.

Conclusions/Significance

This study demonstrates that immature populations of malaria mosquitoes suffer high losses during rainfall events. As these populations are likely to experience several rain showers during their lifespan, rainfall will have a profound effect on the productivity of mosquito breeding sites and, as a result, on the transmission of malaria. These findings are discussed in the light of malaria risk and changing rainfall patterns in response to climate change.  相似文献   

7.

Background

Successful malaria vector control depends on understanding behavioural interactions between mosquitoes and humans, which are highly setting-specific and may have characteristic features in urban environments. Here mosquito biting patterns in Dar es Salaam, Tanzania are examined and the protection against exposure to malaria transmission that is afforded to residents by using an insecticide-treated net (ITN) is estimated.

Methods

Mosquito biting activity over the course of the night was estimated by human landing catch in 216 houses and 1,064 residents were interviewed to determine usage of protection measures and the proportion of each hour of the night spent sleeping indoors, awake indoors, and outdoors.

Results

Hourly variations in biting activity by members of the Anopheles gambiae complex were consistent with classical reports but the proportion of these vectors caught outdoors in Dar es Salaam was almost double that of rural Tanzania. Overall, ITNs confer less protection against exophagic vectors in Dar es Salaam than in rural southern Tanzania (59% versus 70%). More alarmingly, a biting activity maximum that precedes 10 pm and much lower levels of ITN protection against exposure (38%) were observed for Anopheles arabiensis, a vector of modest importance locally, but which predominates transmission in large parts of Africa.

Conclusion

In a situation of changing mosquito and human behaviour, ITNs may confer lower, but still useful, levels of personal protection which can be complemented by communal transmission suppression at high coverage. Mosquito-proofing houses appeared to be the intervention of choice amongst residents and further options for preventing outdoor transmission include larviciding and environmental management.  相似文献   

8.

Background

Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya.

Methods

Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates.

Results

Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR?=?0.94, 95% CI 0.90–0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010.

Conclusion

Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.  相似文献   

9.

Background

The most important factor for effective zooprophylaxis in reducing malaria transmission is a predominant population of a strongly zoophilic mosquito, Anopheles arabiensis. The feeding preference behaviour of Anopheline mosquitoes was evaluated in odour-baited entry trap (OBET).

Methods

Mosquitoes were captured daily using odour-baited entry traps, light traps and hand catch both indoor and in pit traps. Experimental huts were used for release and recapture experiment. The mosquitoes collected were compared in species abundances.

Results

Anopheles arabiensis was found to account for over 99% of Anopheles species collected in the study area in Lower Moshi, Northern Tanzania. In experimental release/capture trials conducted at the Mabogini verandah huts, An. arabiensis was found to have higher exophilic tendency (80.7%) compared to Anopheles gambiae (59.7%) and Culex spp. (60.8%). OBET experiments conducted at Mabogini collected a total of 506 An. arabiensis in four different trials involving human, cattle, sheep, goat and pig. Odours from the cattle attracted 90.3% (243) compared to odours from human, which attracted 9.7% (26) with a significant difference at P = 0.005. Odours from sheep, goat and pig attracted 9.7%, 7.2% and 7.3%, respectively. Estimation of HBI in An. arabiensis collected from houses in three lower Moshi villages indicated lower ratios for mosquitoes collected from houses with cattle compared to those without cattles. HBI was also lower in mosquitoes collected outdoors (0.1–0.3) compared to indoor (0.4–0.9).

Conclusion

In discussing the results, reference has been made to observation of exophilic, zoophilic and feeding tendencies of An. arabiensis, which are conducive for zooprophylaxis. It is recommended that in areas with a predominant An. arabiensis population, cattle should be placed close to dwelling houses in order to maximize the effects of zooprophylaxis. Protective effects of human from malaria can further be enhanced by keeping cattle in surroundings of residences.  相似文献   

10.

Background

Anopheles gambiae is the main vector of Plasmodium falciparum in Africa. The mosquito midgut constitutes a barrier that the parasite must cross if it is to develop and be transmitted. Despite the central role of the mosquito midgut in the host/parasite interaction, little is known about its protein composition. Characterisation of An. gambiae midgut proteins may identify the proteins that render An. gambiae receptive to the malaria parasite.

Methods

We carried out two-dimensional gel electrophoresis of An. gambiae midgut proteins and compared protein profiles for midguts from males, sugar-fed females and females fed on human blood.

Results

Very few differences were detected between male and female mosquitoes for the approximately 375 silver-stained proteins. Male midguts contained ten proteins not detected in sugar-fed or blood-fed females, which are therefore probably involved in male-specific functions; conversely, female midguts contained twenty-three proteins absent from male midguts. Eight of these proteins were specific to sugar-fed females, and another ten, to blood-fed females.

Conclusion

Mass spectrometry analysis of the proteins found only in blood-fed female midguts, together with data from the recent sequencing of the An. gambiae genome, should make it possible to determine the role of these proteins in blood digestion or parasite receptivity.  相似文献   

11.

Background

Mosquitoes commute between blood-meal hosts and water. Thus, heterogeneity in human biting reflects underlying spatial heterogeneity in the distribution and suitability of larval habitat as well as inherent differences in the attractiveness, suitability and distribution of blood-meal hosts. One of the possible strategies of malaria control is to identify local vector species and then attack water bodies that contain their larvae.

Methods

Biting and host seeking, not oviposition, have been the focus of most previous studies of mosquitoes and malaria transmission. This study presents a mathematical model that incorporates mosquito oviposition behaviour.

Results

The model demonstrates that oviposition is one potential factor explaining heterogeneous biting and vector distribution in a landscape with a heterogeneous distribution of larval habitat. Adult female mosquitoes tend to aggregate around places where they oviposit, thereby increasing the risk of malaria, regardless of the suitability of the habitat for larval development. Thus, a water body may be unsuitable for adult mosquito emergence, but simultaneously, be a source for human malaria.

Conclusion

Larval density may be a misleading indicator of a habitat's importance for malaria control. Even if mosquitoes could be lured to oviposit in sprayed larval habitats, this would not necessarily mitigate – and might aggravate – the risk of malaria transmission. Forcing mosquitoes to fly away from humans in search of larval habitat may be a more efficient way to reduce the risk of malaria than killing larvae. Thus, draining, fouling, or filling standing water where mosquitoes oviposit can be more effective than applying larvicide.  相似文献   

12.
C Liu  MG Mauk  R Hart  M Bonizzoni  G Yan  HH Bau 《PloS one》2012,7(8):e42222

Background

Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30–40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission.

Methodology/Principal Findings

An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark.

Conclusions/Significance

The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to track the geographical distribution of mosquito populations and community structure alterations due to environmental changes and malaria intervention measures.  相似文献   

13.

Background

Knowledge on insecticide resistance in target species is a basic requirement to guide insecticide use in malaria control programmes. Malaria transmission in the Mekong region is mainly concentrated in forested areas along the country borders, so that decisions on insecticide use should ideally be made at regional level. Consequently, cross-country monitoring of insecticide resistance is indispensable to acquire comparable baseline data on insecticide resistance.

Methods

A network for the monitoring of insecticide resistance, MALVECASIA, was set up in the Mekong region in order to assess the insecticide resistance status of the major malaria vectors in Cambodia, Laos, Thailand, and Vietnam. From 2003 till 2005, bioassays were performed on adult mosquitoes using the standard WHO susceptibility test with diagnostic concentrations of permethrin 0.75% and DDT 4%. Additional tests were done with pyrethroid insecticides applied by the different national malaria control programmes.

Results

Anopheles dirus s.s., the main vector in forested malaria foci, was susceptible to permethrin. However, in central Vietnam, it showed possible resistance to type II pyrethroids. In the Mekong delta, Anopheles epiroticus was highly resistant to all pyrethroid insecticides tested. It was susceptible to DDT, except near Ho Chi Minh City where it showed possible DDT resistance. In Vietnam, pyrethroid susceptible and tolerant Anopheles minimus s.l. populations were found, whereas An. minimus s.l. from Cambodia, Laos and Thailand were susceptible. Only two An. minimus s.l. populations showed DDT tolerance. Anopheles vagus was found resistant to DDT and to several pyrethroids in Vietnam and Cambodia.

Conclusion

This is the first large scale, cross-country survey of insecticide resistance in Anopheles species in the Mekong Region. A unique baseline data on insecticide resistance for the Mekong region is now available, which enables the follow-up of trends in susceptibility status in the region and which will serve as the basis for further resistance management. Large differences in insecticide resistance status were observed among species and countries. In Vietnam, insecticide resistance was mainly observed in low or transmission-free areas, hence an immediate change of malaria vector control strategy is not required. Though, resistance management is important because the risk of migration of mosquitoes carrying resistance genes from non-endemic to endemic areas. Moreover, trends in resistance status should be carefully monitored and the impact of existing vector control tools on resistant populations should be assessed.  相似文献   

14.

Background and aims

Strawberry (Fragaria x ananassa) is a high-value crop worldwide. Fusarium oxysporum f. sp. fragariae causes rapid wilting and death of strawberry plants and severe economic losses worldwide. To date, no studies have been conducted to determine colonisation of either susceptible or resistant strawberry plants by F. oxysporum f. sp. fragariae, or whether plant colonisation by F. oxysporum f. sp. fragariae differs between susceptible and resistant cultivars.

Methods

Colonisation of strawberry plants by a pathogenic isolate of F. oxysporum f. sp. fragariae was examined both on the root surface and within root tissue of one resistant cv. Festival and one susceptible cv. Camarosa using light and scanning electron microscopy from 4?h to 7?d post inoculation (pi).

Results

Resistant cv. Festival significantly impeded the spore germination and penetration from 4 to 12 hpi and subsequent growth and colonisation by this pathogen until 7 dpi compared with susceptible cv. Camarosa. At 7 dpi, fungal colonisation in resistant cv. Festival remained mainly confined to the epidermal layer of the root, while in susceptible cv. Camarosa, hyphae not only had heavily colonised the cortical tissue throughout but had also colonised vascular tissues.

Conclusions

This study demonstrates for the first time that resistance of a strawberry cultivar to F. oxysporum f. sp. fragariae is a result of impedance of pathogen growth and colonisation both on the plant surface and within host tissues. Resistance mechanisms identified in this study will be of high value for breeding programmes in developing new disease-resistant cultivars to manage this serious strawberry disorder.  相似文献   

15.

Background

Zooprophylaxis, the diversion of disease carrying insects from humans to animals, may reduce transmission of diseases such as malaria. However, as the number of animals increases, improved availability of blood meals may increase mosquito survival, thereby countering the impact of diverting feeds.

Methods

Computer simulation was used to examine the effects of animals on the transmission of human diseases by mosquitoes. Three scenarios were modelled: (1) endemic transmission, where the animals cannot be infected, eg. malaria; (2) epidemic transmission, where the animals cannot be infected but humans remain susceptible, e.g. malaria; (3) epidemic disease, where both humans and animals can be infected, but develop sterile immunity, eg. Japanese encephalitis B. For each, the passive impact of animals as well as the use of animals as bait to attract mosquitoes to insecticide was examined. The computer programmes are available from the author. A teaching model accompanies this article.

Results

For endemic and epidemic malaria with significant searching-associated vector mortality, changing animal numbers and accessibility had little impact. Changing the accessibility of the humans had a much greater effect. For diseases with an animal amplification cycle, the most critical factor was the proximity of the animals to the mosquito breeding sites.

Conclusion

Estimates of searching-associated vector mortality are essential before the effects of changing animal husbandry practices can be predicted. With realistic values of searching-associated vector mortality rates, zooprophylaxis may be ineffective. However, use of animals as bait to attract mosquitoes to insecticide is predicted to be a promising strategy.  相似文献   

16.

Background

The length of the gonotrophic cycle varies the vectorial capacity of a mosquito vector and therefore its exact estimation is important in epidemiological modelling. Because the gonotrophic cycle length depends on temperature, its estimation can be satisfactorily computed by means of physiological time analysis.

Methods

A model of physiological time was developed and calibrated for Anopheles pseudopunctipennis, one of the main malaria vectors in South America, using data from laboratory temperature controlled experiments. The model was validated under varying temperatures and could predict the time elapsed from blood engorgement to oviposition according to the temperature.

Results

In laboratory experiments, a batch of An. pseudopunctipennis fed at the same time may lay eggs during several consecutive nights (2–3 at high temperature and > 10 at low temperature). The model took into account such pattern and was used to predict the range of the gonotrophic cycle duration of An. pseudopunctipennis in four characteristic sites of Bolivia. It showed that the predicted cycle duration for An. pseudopunctipennis exhibited a seasonal pattern, with higher variances where climatic conditions were less stable. Predicted mean values of the (minimum) duration ranged from 3.3 days up to > 10 days, depending on the season and the geographical location. The analysis of ovaries development stages of field collected biting mosquitoes indicated that the phase 1 of Beklemishev might be of significant duration for An. pseudopunctipennis. The gonotrophic cycle length of An. pseudopunctipennis correlates with malaria transmission patterns observed in Bolivia which depend on locations and seasons.

Conclusion

A new presentation of cycle length results taking into account the number of ovipositing nights and the proportion of mosquitoes laying eggs is suggested. The present approach using physiological time analysis might serve as an outline to other similar studies and allows the inclusion of temperature effects on the gonotrophic cycle in transmission models. However, to better explore the effects of temperature on malaria transmission, the others parameters of the vectorial capacity should be included in the analysis and modelled accordingly.  相似文献   

17.

Background

As the population of Africa rapidly urbanizes, large populations could be protected from malaria by controlling aquatic stages of mosquitoes if cost-effective and scalable implementation systems can be designed.

Methods

A recently initiated Urban Malaria Control Programme in Dar es Salaam delegates responsibility for routine mosquito control and surveillance to modestly-paid community members, known as Community-Owned Resource Persons (CORPs). New vector surveillance, larviciding and management systems were designed and evaluated in 15 city wards to allow timely collection, interpretation and reaction to entomologic monitoring data using practical procedures that rely on minimal technology. After one year of baseline data collection, operational larviciding with Bacillus thuringiensis var. israelensis commenced in March 2006 in three selected wards.

Results

The procedures and staff management systems described greatly improved standards of larval surveillance relative to that reported at the outset of this programme. In the first year of the programme, over 65,000 potential Anopheles habitats were surveyed by 90 CORPs on a weekly basis. Reaction times to vector surveillance at observations were one day, week and month at ward, municipal and city levels, respectively. One year of community-based larviciding reduced transmission by the primary malaria vector, Anopheles gambiae s.l., by 31% (95% C.I. = 21.6–37.6%; p = 0.04).

Conclusion

This novel management, monitoring and evaluation system for implementing routine larviciding of malaria vectors in African cities has shown considerable potential for sustained, rapidly responsive, data-driven and affordable application. Nevertheless, the true programmatic value of larviciding in urban Africa can only be established through longer-term programmes which are stably financed and allow the operational teams and management infrastructures to mature by learning from experience.  相似文献   

18.

Background

An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus.

Methods

Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin.

Results

The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed.

Conclusion

This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations.  相似文献   

19.

Background

Malaria vector control in Africa depends upon effective insecticides in bed nets and indoor residual sprays. This study investigated the extent of insecticide resistance in Anopheles gambiae s.l., Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya where ownership of insecticide-treated bed nets has risen steadily from the late 1990s to 2010. Temporal and spatial variation in the frequency of a knock down resistance (kdr) allele in A. gambiae s.s. was quantified, as was variation in phenotypic resistance among geographic populations of A. gambiae s.l.

Methods

To investigate temporal variation in kdr frequency, individual specimens of A. gambiae s.s. from two sentinel sites were genotyped using RT-PCR from 1996-2010. Spatial variation in kdr frequency, species composition, and resistance status were investigated in additional populations of A. gambiae s.l. sampled in western Kenya in 2009 and 2010. Specimens were genotyped for kdr as above and identified to species via conventional PCR. Field-collected larvae were reared to adulthood and tested for insecticide resistance using WHO bioassays.

Results

Anopheles gambiae s.s. showed a dramatic increase in kdr frequency from 1996 - 2010, coincident with the scale up of insecticide-treated nets. By 2009-2010, the kdr L1014S allele was nearly fixed in the A. gambiae s.s. population, but was absent in A. arabiensis. Near Lake Victoria, A. arabiensis was dominant in samples, while at sites north of the lake A. gambiae s.s was more common but declined relative to A. arabiensis from 2009 to 2010. Bioassays demonstrated that A. gambiae s.s. had moderate phenotypic levels of resistance to DDT, permethrin and deltamethrin while A. arabiensis was susceptible to all insecticides tested.

Conclusions

The kdr L1014S allele has approached fixation in A. gambiae s.s. populations of western Kenya, and these same populations exhibit varying degrees of phenotypic resistance to DDT and pyrethroid insecticides. The near absence of A. gambiae s.s. from populations along the lakeshore and the apparent decline in other populations suggest that insecticide-treated nets remain effective against this mosquito despite the increase in kdr allele frequency. The persistence of A. arabiensis, despite little or no detectable insecticide resistance, is likely due to behavioural traits such as outdoor feeding and/or feeding on non-human hosts by which this species avoids interaction with insecticide-treated nets.  相似文献   

20.
Incursion of water hyacinth, Eichhornia crassipes, has been a potential threat to Lake Tana and its ecosystem services. Its expansion is currently managed by abstraction (removing by hand); nonetheless, the disposal of mats and formation of pools are remaining problematic. This study aimed to assess the potential effects of water hyacinth and its management on water quality and human health. Biotic and abiotic data were collected on open water, water hyacinth covered and water hyacinth cleared out habitats. A total of 3673 invertebrates belonging to twenty-one families were collected from 45 sites. Culicidae was the most abundant family accounting (37.2%), followed by Unionoidae (19.4%) and Sphaeriidae (8.1%). Abundance of anopheline and culicine larvae were significantly higher in water hyacinth cleared out habitats (p?<?0.05). Water conductivity and total dissolved solids were significantly higher in habitats covered with water hyacinth (p?<?0.05). In conclusion, water hyacinth infestation had a negative impact on water quality and biotic communities. The physical abstraction of water hyacinth provided a very good habitat for the proliferation of mosquito larvae. Therefore, integrating water hyacinth management practices along with mosquito larvae control strategy could help to abate the potential risk of malaria outbreak in the region. In addition, developing watershed scale nutrient management systems could have a vital contribution for managing water hyacinth invasion in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号