首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have characterized Tdr1, a family of Tc1-like transposable elements found in the genome of zebrafish (Danio rerio). The copy number and distribution of the sequence in the zebrafish genome have been determined, and by these criteria Tdr1 can be classified as a moderately repetitive, interspersed element. Examination of the sequences and structures of several copies of Tdr1 revealed that a particular deletion derivative, 1250 by long, of the transposon has been amplified to become the dominant form of Tdr1. The deletion in these elements encompasses sequences encoding the N-terminal portion of the putative Tdr1 transposase. Sequences corresponding to the deleted region were also detected, and thus allowed prediction of the nucleotide sequence of a hypothetical full-length element. Well conserved segments of Tc1-like transposons were found in the flanking regions of known fish genes, suggesting that these elements have a long evolutionary history in piscine genomes. Tdr1 elements have long, 208 by inverted repeats, with a short DNA motif repeated four times at the termini of the inverted repeats. Although different from that of the prototype C. elegans transposon Tc1, this inverted repeat structure is shared by transposable elements from salmonid fish species and two Drosophila species. We propose that these transposons form a subgroup within the Tc1-like family. Comparison of Tc1-like transposons supports the hypothesis that the transposase genes and their flanking sequences have been shaped by independent evolutionary constraints. Although Tc1-like sequences are present in the genomes of several strains of zebrafish and in salmonid fishes, these sequences are not conserved in the genus Danio, thus raising the possibility that these elements can be exploited for gene tagging and genome mapping.  相似文献   

2.
We have characterized Tdr1, a family of Tc1-like transposable elements found in the genome of zebrafish (Danio rerio). The copy number and distribution of the sequence in the zebrafish genome have been determined, and by these criteria Tdr1 can be classified as a moderately repetitive, interspersed element. Examination of the sequences and structures of several copies of Tdr1 revealed that a particular deletion derivative, 1250 by long, of the transposon has been amplified to become the dominant form of Tdr1. The deletion in these elements encompasses sequences encoding the N-terminal portion of the putative Tdr1 transposase. Sequences corresponding to the deleted region were also detected, and thus allowed prediction of the nucleotide sequence of a hypothetical full-length element. Well conserved segments of Tc1-like transposons were found in the flanking regions of known fish genes, suggesting that these elements have a long evolutionary history in piscine genomes. Tdr1 elements have long, 208 by inverted repeats, with a short DNA motif repeated four times at the termini of the inverted repeats. Although different from that of the prototype C. elegans transposon Tc1, this inverted repeat structure is shared by transposable elements from salmonid fish species and two Drosophila species. We propose that these transposons form a subgroup within the Tc1-like family. Comparison of Tc1-like transposons supports the hypothesis that the transposase genes and their flanking sequences have been shaped by independent evolutionary constraints. Although Tc1-like sequences are present in the genomes of several strains of zebrafish and in salmonid fishes, these sequences are not conserved in the genus Danio, thus raising the possibility that these elements can be exploited for gene tagging and genome mapping.  相似文献   

3.
The facilitated diffusion of monosaccharides across the plasma membrane is mediated by glucose transporters (GLUTs). In contrast to mammals, the glucose transport system of lower vertebrates remains unexplored. We detected glucose transport activity in rainbow trout embryos. Two GLUTs sharing 83% amino acid identity were cloned from juvenile fish, these have been denoted OnmyGLUT1A and OnmyGLUT1B. In adult trout OnmyGLUT1A is predominantly expressed in the heart with low expression in other tissues. An inverse terminal repeat of a Tc1-like transposable element was found in the 3'-untranslated region of OnmyGLUT1B. Phylogenetic analysis suggested that rainbow trout genes share a common ancestor with higher vertebrate GLUT1. We also found GLUT genes in several salmonid species.  相似文献   

4.
We characterized five transposable elements from fish: one from zebrafish (Brachydanio rerio), one from rainbow trout (Salmo gairdneri), and three from Atlantic salmon (Salmo salar). All are closely similar in structure to the Tel transposon of the nematode Caenorhabditis elegans. A comparison of 17 Tc1-like transposons from species representing three phyla (nematodes, arthropods, and chordates) showed that these elements make up a highly conserved transposon family. Most are close to 1.7 kb in length, have inverted terminal repeats, have conserved terminal nucleotides, and each contains a single gene encoding similar poly peptides. The phylogenetic relationships of the transposons were reconstructed from the amino acid sequences of the conceptual proteins and from DNA sequences. The elements are highly diverged and have evidently inhabited the genomes of these diverse species for a long time. To account for the data, it is not necessary to invoke recent horizontal transmission.  相似文献   

5.

Background

We have recently developed several homozygous families of transgenic rainbow trout harbouring cecropin P1 transgene. These fish exhibit resistance characteristic to infection by Aeromonas salmonicida and infectious hematopoietic necrosis virus (IHNV). In our earlier studies we have reported that treatment of a rainbow trout macrophage cell line (RTS11) with a linear cationic α-helical antimicrobial peptide (e.g., cecropin B) resulted in elevated levels of expression of two pro-inflammatory relevant genes (e.g., IL-1β and COX-2). Therefore, we hypothesized that in addition to the direct antimicrobial activity of cecropin P1 in the disease resistant transgenic rainbow trout, this antimicrobial peptide may also affect the expression of immune relevant genes in the host. To confirm this hypothesis, we launched a study to determine the global gene expression profiles in three immune competent organs of cecropin P1 transgenic rainbow trout by using a 44k salmonid microarray.

Results

From the microarray data, a total of 2480 genes in the spleen, 3022 in the kidney, and 2102 in the liver were determined as differentially expressed genes (DEGs) in the cecropin P1 transgenic rainbow trout when compared to the non-transgenics. There were 478 DEGs in common among three tissues. Enrichment analyses conducted by two different bioinformatics tools revealed a tissue specific profile of functional pathway perturbation. Many of them were directly related to innate immune system such as phagocytosis, lysosomal processing, complement activation, antigen processing/presentation, and leukocyte migration. Perturbation of other biological functions that might contribute indirectly to host immunity was also observed.

Conclusions

The gene product of cecropin P1 transgene produced in the disease resistant transgenic rainbow trout not only can kill the pathogens directly but also exert multifaceted immunomodulatory properties to boost host immunity. The identified genes involved in different pathways related to immune function are valuable indicators associated with enhanced host immunity. These genes may serve as markers for selective breeding of rainbow trout or other aquaculture important fish species bearing traits of disease resistance.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-887) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Furunculosis, caused by Aeromonas salmonicida, continues to be a major health problem for the growing salmonid aquaculture. Despite effective vaccination programs regular outbreaks occur at the fish farms calling for repeated antibiotic treatment. We hypothesized that a difference in natural susceptibility to this disease might exist between Baltic salmon and the widely used rainbow trout.

Study Design

A cohabitation challenge model was applied to investigate the relative susceptibility to infection with A. salmonicida in rainbow trout and Baltic salmon. The course of infection was monitored daily over a 30-day period post challenge and the results were summarized in mortality curves.

Results

A. salmonicida was recovered from mortalities during the entire test period. At day 30 the survival was 6.2% and 34.0% for rainbow trout and Baltic salmon, respectively. Significant differences in susceptibility to A. salmonicida were demonstrated between the two salmonids and hazard ratio estimation between rainbow trout and Baltic salmon showed a 3.36 higher risk of dying from the infection in the former.

Conclusion

The finding that Baltic salmon carries a high level of natural resistance to furunculosis might raise new possibilities for salmonid aquaculture in terms of minimizing disease outbreaks and the use of antibiotics.  相似文献   

7.
M J Leaver 《Gene》2001,271(2):203-214
Tc1-like transposons are very widely distributed within the genomes of animal species. They consist of an inverted repeat sequence flanking a transposase gene with homology to the mobile DNA element, Tc1 of the nematode Caenorhabditis elegans. These elements seem particularly to infest the genomes of fish and amphibian species where they can account for 1% of the total genome. However, all vertebrate Tc1-like elements isolated so far are non-functional in that they contain multiple frameshifts within their transposase coding regions. Here I describe a Tc1-like transposon (PPTN) from the genome of a marine flatfish species (Pleuronectes platessa) which bears conserved inverted repeats flanking an apparently intact transposase gene. Closely related, although degenerate, Tc1-like transposons were also isolated from the genomes of Atlantic salmon (SSTN, Salmo salar) and frog (RTTN, Rana temporaria). Consensual nucleic acid sequences were derived by comparing several individual isolates from each species and conceptual amino acid sequences were thence derived for their transposases. Phylogenetic analysis of these sequences with previously isolated Tc1-like transposases shows that the elements from plaice, salmon and frog comprise a new subfamily of Tc1-like transposons. Each member is distinct in that it is not found in the genomes of the other species tested. Plaice genomes contain about 300 copies of PPTN, salmon 1200 copies of SSTN and frog genomes about 500 copies of RTTN. The presence of these closely related elements in the genomes of fish and frog species, representing evolutionary lines, which diverged more than 400 million years ago, is not consistent with a vertical transmission model for their distributions.  相似文献   

8.
Two representatives of Baikal ciscoes—lake cisco and omul—diverged from a common ancestor as recently as 10–20 thousand years ago. We have found an increasing expression level of DTSsa4 Tc1-like DNA transposons in cisco and omul brains. The mapping of the sequences of these transposons from Salmo salar and Danio rerio genomes has shown that in some cases, these transposons are located in the 5′ and 3′ regions, as well as in the promoter regions of various genes. Probably, Tc1-like transposons affect the activity of neighboring genes, providing the adaptive divergence of the cisco population.  相似文献   

9.
The Tc1 transposable element is the most widespread family among animal transposon and these elements consist of an inverted repeat (IR) sequence flanking a transposase gene that belongs to Class II type transposon, which is highly conserved in the genome of the nematode C. elegans. In order to characterize Tc1-like transposable elements from several fishes, PPTN (Tc1-like transposon was isolated from Pleuronectes platessa, marine flatfish species) IR primer-specific amplified elements were cloned from the genomic DNA of several fishes. Transposable elements were found in ridged-eye flounder (Pleuronichthys cornutus) and inshore hagfish (Eptatretus burgeri) and named as PCTN and EBTN, respectively. Amino acid sequence alignment and phylogenetic analysis confirmed that the PPTN-like transposons belonged to the Tc1 superfamily of transposons, but they comprised a unique clade of Tc1-like transposons. The IR-PCR analysis using MMTS-IR and PPTN-IR specific primers from Paralichthys olivaceus (Paralichthyidae), Paraplagusia japonica (Cynoglossidae), P. yokohamae (Pleuronectidae) and Pagurus cornutus (Pleuronectidae) (within the same order, Pleuronectiformes but different families) exhibited mutually exclusive distribution of Tc1 family-derived PPTN and MMTS-like transposons in these fish genomes. These results indicate that Tc1 family-derived PPTN and MMTS related Tc1-like transposable elements have uniquely evolved in piscine genome, and can be used as phylogenetic markers for the distribution of subfamilies of Tc1-like transposon and the involvement of horizontal and vertical transmission in the evolution of fish genome.  相似文献   

10.
11.
Fish cells stably expressing exogenous genes have potential applications in the production of fish recombinant proteins, gene-function studies, gene-trapping, and the production of transgenic fish. However, expression of a gene of interest after random integration may be difficult to predict or control. In the past decade, major contributions have been made in vertebrate-gene transfer, by using tools derived from DNA transposons. Among them, the Sleeping Beauty (SB) and Frog Prince (FP) transposons, derived, respectively, from fish and frog genomes, mediate transposition in a large variety of cells, although with different efficiency. This study was aimed at assessing the activities of the SB and the FP transposases in fish cell lines from genetically distant species (CHSE-214, RTG-2, BF-2, EPC, and SAF-1). Their transpositional ability was evaluated by the plasmid-based excision assay, the colony formation assay, and the footprint patterns. The results reveal that while both transposases are active in all cell lines, the transposition rates and the precision of the transposition are overall higher with FP than SB. Our results also indicated a key role of cell-specific host factors in transposition, which was associated with the presence of Tc1-like endogenous transposases; this effect was more accentuated in the two salmonid cell lines transfected with SB. This result agrees with previous studies supporting the use of transposons in heterologous organisms to prevent from genomic instability and from impeding the precise activity of the exogenous transposase.  相似文献   

12.

Purpose

Life cycle assessment (LCA) has been in the last one decade used as a standardized and structured method of evaluating the environmental impacts of aquaculture arising throughout the entire life cycle. However, aquaculture system hardly applied system expansion whenever a multifunctional process has more than one functional flow. The objective of this study is to develop a methodological approach for consequential LCA and model the system expansion of the different affected processes of aquaculture.

Methods

In this study, we have considered the system expansion in two different stages in the life cycle of the fish production: aquacultural stage, with case study of trout aquaculture, and feed manufacturing stage. Rainbow trout (Oncorhynchus mykiss) production was used as a case study to illustrate the method using different scenarios of system expansion.

Results and discussion

The results of the six different scenarios of system expansion showed considerable variation among the different scenarios towards the environmental impact of trout aquaculture. Regarding global warming potential, the contributions vary by 5-fold; for acidification, variations were up to 32 %, and for land use, the contributions varied from 0.6 to 1.3 m2a/kg of trout demanded in Germany. It appeared that eutrophication is similar in all the scenarios considered.

Conclusions

This article showed that system expansion can be used to handle the allocation issues of the co-products in the rainbow trout supply chain, thus, can be effectively used when analyzing the environmental consequences of changes in future rainbow trout production. Furthermore, consequential LCA may be important when comparing the impacts of alternative meal choices of aquafeeds. This may increase the incentive for speedy replacement of alternative meals, thus, reducing the dependence on the utilization of the limiting fisheries resources.  相似文献   

13.

Background

Rainbow trout have an XX/XY genetic mechanism of sex determination where males are the heterogametic sex. The homology of the sex-determining gene (SDG) in medaka to Dmrt1 suggested that SDGs evolve from downstream genes by gene duplication. Orthologous sequences of the major genes of the mammalian sex determination pathway have been reported in the rainbow trout but the map position for the majority of these genes has not been assigned.

Results

Five loci of four candidate genes (Amh, Dax1, Dmrt1 and Sox6) were tested for linkage to the Y chromosome of rainbow trout. We exclude the role of all these loci as candidates for the primary SDG in this species. Sox6i and Sox6ii, duplicated copies of Sox6, mapped to homeologous linkage groups 10 and 18 respectively. Genotyping fishes of the OSU × Arlee mapping family for Sox6i and Sox6ii alleles indicated that Sox6i locus might be deleted in the Arlee lineage.

Conclusion

Additional candidate genes should be tested for their linkage to the Y chromosome. Mapping data of duplicated Sox6 loci supports previously suggested homeology between linkage groups 10 and 18. Enrichment of the rainbow trout genomic map with known gene markers allows map comparisons with other salmonids. Mapping of candidate sex-determining loci is important for analyses of potential autosomal modifiers of sex-determination in rainbow trout.  相似文献   

14.

Background

Despite vaccination with a commercial vaccine with a documented protective effect against Vibrio anguillarum O1 disease outbreaks caused by this bacterium have been registered among rainbow trout at Danish fish farms. The present study examined specific serum antibody levels as a valid marker for assessing vaccination status in a fish population. For this purpose a highly sensitive enzyme-linked immunosorbent assay (ELISA) was developed and used to evaluate sera from farmed rainbow trout vaccinated against V. anguillarum O1.

Study Design

Immune sera from rainbow trout immunised with an experimental vaccine based on inactivated V. anguillarum O1 bacterin in Freund’s incomplete adjuvant were used for ELISA optimisation. Subsequently, sera from farmed rainbow trout vaccinated with a commercial vaccine against V. anguillarum were analysed with the ELISA. The measured serum antibody levels were compared with the vaccine status of the fish (vaccinated/unvaccinated) as evaluated through visual examination.

Results

Repeated immunisation with the experimental vaccine lead to increasing levels of specific serum antibodies in the vaccinated rainbow trout. The farmed rainbow trout responded with high antibody levels to a single injection with the commercial vaccine. However, the diversity in responses was more pronounced in the farmed fish. Primary visual examinations for vaccine status in rainbow trout from the commercial farm revealed a large pool of unvaccinated specimens (vaccination failure rate = 20%) among the otherwise vaccinated fish. Through serum analyses using the ELISA in a blinded set-up it was possible to separate samples collected from the farmed rainbow trout into vaccinated and unvaccinated fish.

Conclusions

Much attention has been devoted to development of new and more effective vaccines. Here we present a case from a Danish rainbow trout farm indicating that attention should also be directed to the vaccination procedure in order to secure high vaccination frequencies necessary for optimal protection with a reported effective vaccine.  相似文献   

15.
Summary We describe the characteristics of a repetitive DNA sequence from the rainbow trout and related salmonid fishes that is similar to a retroviral long terminal repeat (LTR). The repeat is 160 bp long and contains a region of homology to the LTR of the avian sarcoma virus. Two clones with this repeat from the chum salmon also have a polypurine tract and tRNA binding site, respectively, and these clones may represent the two LTRs of a retrovirus or retroviral-like repetitive element. Copies of the repeat are also adjacent to rainbow trout and chum salmon protamine genes. These repeats may be solo LTRs. There appears to be some polymorphism in restriction sites between individual rainbow trout and considerable differences between salmonid fish species when the repeat is used as a probe.  相似文献   

16.
17.
A divergent non-classical class I gene conserved in salmonids   总被引:8,自引:8,他引:0  
 Complementary DNA for two class I genes of the rainbow trout, Oncorhynchus mykiss, were characterized. MhcOnmy-UBA*01 is similar to Onmy-UA-C32 and the classical major histocompatibility complex class I genes of other fish species, whereas Onmy-UAA*01 is divergent from all class I genes so far characterized. Onmy-UAA*01 is expressed at lower levels than Onmy-UBA*01. Although Onmy-UAA*01 exhibits restriction fragment length polymorphism on Southern blotting, the encoded protein is highly conserved. Two allotypes, which differ only by substitution at amino acid position 223 of the α3 domain, have been defined. Onmy-UAA*01 has an exon-intron organization like other class I genes and contains a Tc1-like transposon element in intron III. Orthologues of Onmy-UAA*01 have been characterized in four other species of salmonid. Between four species of Oncorhynchus, UAA*01 proteins differ by only 2–6 amino acids, whereas comparison of Oncorhynchus with Salmo trutta (brown trout) reveals 14–16 amino acid differences. The Onmy-UAA*01 gene has properties indicative of a particularly divergent non-classical class I gene. Received: 22 September 1998 / Revised: 24 November 1998  相似文献   

18.
Bacterial attachment to fish surfaces and the capacity to compete with pathogens for adhesion sites are essential characteristics in order to select a candidate probiotic for aquaculture. Twelve lactic acid bacteria (LAB) isolated from fish and sediments from Bahía Blanca Estuary, Argentina, were examined for in vitro adhesion to rainbow trout mucus, cell surface properties and competitive exclusion against two salmonid pathogens, Yersinia ruckeri and Aeromonas salmonicida. In order to assess their survival through the digestive tract, pH and rainbow trout bile tolerance were evaluated. All LAB strains survived for 1.5 h incubation in 10% rainbow trout bile. Most of the strains survived 1.5 h at pH 3.0 and three of them showed a reduction of viable counts lower than 2 logarithms, with respect to control (pH 6.5). Only a few strains showed tolerate pH 2.0. All the strains were able to attach to rainbow trout skin mucus (104–106 cells/cm2), to glass (104–105 cells/cm2) and to stainless steel (103–104 cells/cm2). Sixty percent of LAB strains were capable of competing with and successfully excluding Y. ruckeri and all strains were able to displace it. Against A. salmonicida, 75% of LAB strains competed successfully, 50% were capable of displacing and 60% excluded this pathogen. Our data suggest the potential of these strains as anti-infective agents for use in rainbow trout culture. This study is the first report on the probiotic potential of LAB strains isolated from an estuarine environment from Argentina.  相似文献   

19.
Sugars are utilized poorly in fish mainly because of low rates of transport across plasma membrane and phosphorylation. To evaluate whether it is possible to augment carbohydrate metabolism in fish using heterologous genes, expression of human glucose transporter type 1 (hGLUT1) and rat hexokinase type II (rHKII) complementary DNAs cloned with cytomegalovirus promoter was followed in rainbow trout embryos. Both genes were transcribed. Hexokinase activity, undetectable in control, was found in transformed blastulas. Increased rates of 14C-methylglucose uptake and sensitivity to cytochalasin B indicated the presence of facilitative hexose transport due to hGLUT1 expression. Effect of hGLUT1 on production of 14CO2 from glucose was greater than that of rHKII. Coexpression of the genes did not increase the rate of glucose oxidation compared with expression of hGLUT1 alone. Received; accepted June 30, 1998.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号