首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

We previously demonstrated that 25-hydroxyvitamin D3 concentrations in gingival crevicular fluid are 300 times higher than those in the plasma of patients with aggressive periodontitis. Here we explored whether 25-hydroxyvitamin D3 can be synthesized by periodontal soft tissue cells. We also investigated which of the two main kinds of hydroxylases, CYP27A1 and CYP2R1, is the key 25-hydroxylase in periodontal soft tissue cells.

Methodology/Principal Findings

Primary cultures of human gingival fibroblasts and periodontal ligament cells from 5 individual donors were established. CYP27A1 mRNA, CYP2R1 mRNA and CYP27A1 protein were detected in human gingival fibroblasts and periodontal ligament cells, whereas CYP2R1 protein was not. After incubation with the 25-hydroxylase substrate vitamin D3, human gingival fibroblasts and periodontal ligament cells generated detectable 25-hydroxyvitamin D3 that resulted in the production of 1α,25-dihydroxyvitamin D3. Specific knockdown of CYP27A1 in human gingival fibroblasts and periodontal ligament cells using siRNA resulted in a significant reduction in both 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 production. Knockdown of CYP2R1 did not significantly influence 25-hydroxyvitamin D3 synthesis. Sodium butyrate did not influence significantly CYP27A1 mRNA expression; however, interleukin-1β and Porphyromonas gingivalis lipopolysaccharide strongly induced CYP27A1 mRNA expression in human gingival fibroblasts and periodontal ligament cells.

Conclusions

The activity of 25-hydroxylase was verified in human gingival fibroblasts and periodontal ligament cells, and CYP27A1 was identified as the key 25-hydroxylase in these cells.  相似文献   

2.
CCN3 is a matricellular protein that belongs to the CCN family. CCN3 consists of 4 domains: insulin-like growth factor-binding protein-like domain (IGFBP), von Willebrand type C-like domain (VWC), thrombospondin type 1-like domain (TSP1), and the C-terminal domain (CT) having a cysteine knot motif. Periostin is a secretory protein that binds to extracellular matrix proteins such as fibronectin and collagen. In this study, we found that CCN3 interacted with periostin. Immunoprecipitation analysis revealed that the TSP1-CT interacted with the 4 repeats of the Fas 1 domain of periostin. Immunofluorescence analysis showed co-localization of CCN3 and periostin in the periodontal ligament of mice. In addition, targeted disruption of the periostin gene in mice decreased the matricellular localization of CCN3 in the periodontal ligament. Thus, these results indicate that periostin was required for the matricellular localization of CCN3 in the periodontal ligament, suggesting that periostin mediated an interaction between CCN3 and the extracellular matrix.  相似文献   

3.
Nephroblastoma overexpressed gene encodes a matricellular protein (CCN3/NOV) of the CCN family, comprising CCN1 (CYR61), CCN2 (CTGF), CCN4 (WISP-1), CCN5 (WISP-2), and CCN6 (WISP-3). CCN proteins are involved in the regulation of mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration in multiple cell types. Compared to CCN2/CTGF, known as a profibrotic protein, the biological role of CCN3/NOV in liver fibrosis remains obscure. In this study we showed ccn3/nov mRNA to increase dramatically following hepatic stellate cell activation, reaching peak levels in fully transdifferentiated myofibroblasts. In models of experimental hepatic fibrosis, CCN3/NOV increased significantly at the mRNA and protein levels. CCN3/NOV was found mainly in non-parenchymal cells along the areas of tissue damage and repair. In the bile-duct ligation model, CCN3/NOV was localized mainly along portal tracts, while the repeated application of carbon tetrachloride resulted in CCN3/NOV expression mainly in the centrilobular areas. In contrast to CCN2/CTGF, the profibrotic cytokines platelet-derived growth factor-B and -D as well as transforming growth factor-β suppressed CCN3/NOV expression. In vitro, CCN3/NOV siRNA attenuated migration in the cirrhotic fat storing cell line CFSC well in line with in vivo findings that various types of cells expressing CCN3/NOV migrate into the area of tissue damage and regeneration. The suppression of CCN3/NOV enhanced expression of profibrotic marker proteins, such as α-smooth muscle actin, collagen type I, fibronectin, CCN2/CTGF and TIMP-1 in primary rat hepatic stellate cells and in CFSC. We further found that adenoviral overexpression of CCN2/CTGF suppressed CCN3/NOV expression, while the overexpression of CCN3/NOV as well as the suppression of CCN3/NOV by targeting siRNAs both resulted in enhanced CCN2/CTGF expression. These results indicate the complexity of CCN actions that are far beyond the classic Yin/Yang interplay.  相似文献   

4.

Background

Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce α−smooth muscle actin (α-SMA), type I collagen and CCN2 (connective tissue growth factor, CTGF). The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies.

Methods and Findings

Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc) patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and α−SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and α−SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766.

Conclusion

Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc.  相似文献   

5.

Background  

Connective Tissue Growth Factor (CTGF/CCN2), a known matrix-associated protein, is required for the lactogenic differentiation of mouse mammary epithelial cells. An HC11 mammary epithelial cell line expressing CTGF/CCN2 was constructed to dissect the cellular responses to CTGF/CCN2 that contribute to this differentiation program.  相似文献   

6.

Introduction

A protein analysis using a mass spectrometry indicated that there are serum proteins showing significant quantitative changes after the administration of infliximab. Among them, connective tissue growth factor (CTGF) seems to be related to the pathogenesis of rheumatoid arthritis (RA). Therefore, this study was conducted to investigate how CTGF is associated with the disease progression of RA.

Methods

Serum samples were collected from RA patients in active or inactive disease stages, and before or after treatments with infliximab. CTGF production was evaluated by ELISA, RT-PCR, indirect immunofluorescence microscopy, and immunoblotting. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase (TRAP) staining, a bone resorption assay and osteoclasts specific catalytic enzymes productions.

Results

The serum concentrations of CTGF in RA were greater than in normal healthy controls and disease controls. Interestingly, those were significantly higher in active RA patients compared to inactive RA patients. Furthermore, the CTGF levels significantly were decreased by infliximab concomitant with the disease amelioration. In addition, tumour necrosis factor (TNF)α can induce the CTGF production from synovial fibroblasts even though TNFα can oppositely inhibit the production of CTGF from chondrocytes. CTGF promoted the induction of the quantitative and qualitative activities of osteoclasts in combination with M-CSF and receptor activator of NF-κB ligand (RANKL). In addition, we newly found integrin αVβ3 on the osteoclasts as a CTGF receptor.

Conclusions

These results indicate that aberrant CTGF production induced by TNFα plays a central role for the abnormal osteoclastic activation in RA patients. Restoration of aberrant CTGF production may contribute to the inhibition of articular destruction in infliximab treatment.  相似文献   

7.
Matrix metalloproteinase-3 (MMP-3) expression is promoted after pulpotomy, and application of MMP-3 to dental pulp after pulpotomy accelerates angiogenesis and hard tissue formation. However, the mechanism by which MMP-3 promotes dental pulp wound healing is still unclear. Connective tissue growth factor/CCN family 2 (CTGF/CCN2), a protein belonging to the CCN family, is considered to participate in wound healing, angiogenesis, and cell migration. In this study, we examined the involvement of CTGF/CCN2 in MMP-3-induced cell migration in human dental pulp (fibroblast-like) cells. In human dental pulp cells, MMP-3 promoted cell migration, but this effect was clearly blocked in the presence of anti-CTGF/CCN2 antibody. MMP-3 provoked mRNA and protein expression and secretion of CTGF/CCN2 in a concentration- and time-dependent manner. The MMP-3 inhibitor NNGH failed to suppress MMP-3-induced CTGF/CCN2 protein expression. The potent dynamin inhibitor dynasore clearly inhibited MMP-3-induced CTGF/CCN2 expression. These results strongly suggest that MMP-3 induces CTGF/CCN2 production independently of the protease activity of MMP-3 and dependently on dynamin-related endocytosis, which is involved in cell migration in human dental pulp cells.  相似文献   

8.
Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates α1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.  相似文献   

9.

Background

Connective tissue growth factor (CTGF; also known as CCN2) is an inflammatory mediator, and shows elevated levels in regions of severe injury and inflammatory diseases. CTGF is abundantly expressed in osteoarthritis (OA). However, the relationship between CTGF and IL-6 in OA synovial fibroblasts (OASFs) is mostly unknown.

Methodology/Principal Findings

OASFs showed significant expression of CTGF, and expression was higher than in normal SFs. OASFs stimulation with CTGF induced concentration-dependent increases in IL-6 expression. CTGF mediated IL-6 production was attenuated by αvβ5 integrin neutralized antibody and apoptosis signal-regulating kinase 1 (ASK1) shRNA. Pretreatment with p38 inhibitor (SB203580), JNK inhibitor (SP600125), AP-1 inhibitors (Curcumin and Tanshinone IIA), and NF-κB inhibitors (PDTC and TPCK) also inhibited the potentiating action of CTGF. CTGF-mediated increase of NF-κB and AP-1 luciferase activity was inhibited by SB203580 and SP600125 or ASK1 shRNA or p38 and JNK mutant.

Conclusions/Significance

Our results suggest that CTGF increased IL-6 production in OASFs via the αvβ5 integrin, ASK1, p38/JNK, and AP-1/NF-κB signaling pathways.  相似文献   

10.
Matricellular proteins play a critical role in the development of tubulointerstitial fibrosis and renal disease progression. Connective tissue growth factor (CTGF/CCN2), a CCN family member of matricellular proteins, represents an important mediator during development of glomerular and tubulointerstitial fibrosis in progressive kidney disease. We have recently reported that oncostatin M (OSM) is a potent inhibitor of TGF-β1-induced CTGF expression in human proximal tubular cells (PTC). In the present study we examined the role of TGF-β1- and OSM-induced signaling mechanisms in the regulation of CTGF mRNA expression in human proximal tubular HK-2 cells. Utilizing siRNA-mediated gene silencing we found that TGF-β1-induced expression of CTGF mRNA after 2h of stimulation at least partially depends on SMAD3 but not on SMAD2. In contrast to TGF-β1, OSM seems to exert a time-dependent dual effect on CTGF mRNA expression in these cells. While OSM led to a rapid and transient induction of CTGF mRNA expression between 15min and 1h of stimulation it markedly suppressed basal and TGF-β1-induced CTGF mRNA levels thereafter. Silencing of STAT1 or STAT3 attenuated basal CTGF mRNA levels indicating that both STAT isoforms may be involved in the regulation of basal CTGF mRNA expression. However, knockdown of STAT3 but not STAT1 prevented OSM-mediated suppression of basal and TGF-β1-induced upregulation of CTGF mRNA expression. Together these results suggest that the inhibitory effect of OSM on TGF-β1-induced CTGF mRNA expression is mainly driven by STAT3, thereby providing a signaling mechanism whereby OSM may contribute to tubulointerstitial protection.  相似文献   

11.

Background

Cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed (CCN) 3 has been recently reported to play a role in regulating inflammation of vascular endothelial cells. However, the role of CCN3 in atherosclerosis, which is characterized by vascular inflammation, remains unclear.

Hypothesis and Objectives

Overexpression of CCN3 may relieve the inflammation response in and inhibit the progress of atherosclerosis. We aimed to explore the potential roles of CCN3 in inflammation in atherosclerosis.

Strategy and Main Results

In in vitro studies using cultured human aortic endothelial cells and human umbilical vein endothelial cells, CCN3 mRNA and protein expression significantly decreased in response to tumor necrosis factor-α and interleukin-1β treatments (p<0.05), when analyzed by quantitative real-time polymerase chain reaction and Western blot. Using a mouse model of atherosclerosis, the mRNA and protein levels of CCN3 decreased by 72.2% (p = 0.041) and 86.4% (p = 0.036), respectively, compared with levels in wild-type control mice, respectively. Overexpression of CCN3 by adenovirus-mediated gene overexpression decreased low-density lipoprotein cholesterol by 48.9% (p = 0.017), total cholesterol by 58.9% (p = 0.031), and triglycerides by 56.8% (p = 0.022), and it increased high-density lipoprotein cholesterol level by 2.16-fold (p = 0.039), compared with control groups. Additionally, a reduced plaque area and increased fibrous cap were observed (p<0.05). Furthermore, CCN3 overexpression decreased cell adhesion molecule-1 mRNA expression by 84.7% (p = 0.007) and intercellular adhesion molecule-1 mRNA expression by 61.2% (p = 0.044). Inflammatory factors, including matrix metalloproteinases, cyclooxygenase 2, and tissue factor also significantly (p<0.05) decreased with CCN3 overexpression in the atherosclerotic mouse model. Additionally, CCN1 and CCN2, which have been reported to be highly expressed in aortic atherosclerotic plaques, were significantly downregulated (p<0.05) by CCN3 overexpression.

Conclusion

CCN3 overexpression is associated with control of inflammatory processes and reversion of dyslipidemia in the process of atherosclerosis, which implies that CCN3 may be a promising target in the treatment of atherosclerosis.  相似文献   

12.
CCN2/connective tissue growth factor (CCN2/CTGF) is a critical signaling modulator of mesenchymal tissue development. This study investigated the localization and expression of CCN2/CTGF as a factor supporting angiogenesis and chondrogenesis during development of secondary ossification centers in the mouse tibial epiphysis. Formation of the secondary ossification center was initiated by cartilage canal formation and blood vessel invasion at 7 days of age, and onset of ossification was observed at 14 days. In situ hybridization showed that CCN2/CTGF mRNA was distinctively expressed in the region of the cartilage canal and capsule-attached marginal tissues at 7 days of age, and distinct expression was also observed in proliferating chondrocytes around the marrow space at 14 days of age. Immunostaining showed that CCN2/CTGF was distributed broadly around the expressed cells located in the central region of the epiphysis, where the chondrocytes become hypertrophic and the cartilage canal enters into the hypertrophic mass. Furthermore, an overlapping distribution of metalloproteinase (MMP)9 and CCN2/CTGF was found in the secondary ossification center. These findings suggest that the CCN2/CTGF is involved in establishing epiphyseal vascularization and remodeling, which eventually determines the secondary ossification center in the developing epiphysial cartilage.  相似文献   

13.
The periodontal ligament (PDL) is a specialized, mechanically responsive tissue that adapts via cellular responses to equilibrate the effects of mechanical stress on teeth. However, the mechanism of remodelling by which individual cells in periodontal tissue detect and respond to mechanical stress is not well understood. To identify the cellular mechanisms induced by mechanical stress in the periodontal ligament, we examined the effects of cyclic stretching on periodontal ligament fibroblast-like cells (PDL cells). Furthermore, we investigated the effects of 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and interaction with peripheral blood mononuclear cells (PBMCs) on mechanically-simulated PDL cells. PDL cells were cultured on type I collagen-coated silicon membranes with 10% FBS alpha-MEM, and then subjected to cyclic mechanical stimulation (1 s stretching/1 s relaxation, 15% maximum elongation). Alkaline phosphatase activity was monitored by cytochemical and spectrophotometric methods. Morphologically, the cells assumed a spindle shape, and the cytoskeletal components, including microtubules and F-actin filaments, were aligned perpendicular to the strain force vector. Cyclic stretching decreased ALPase activity in PDL cells. The anabolic systemic hormone 1,25(OH)(2)D(3) increased ALPase activity, but this effect was suppressed by cyclic stretching. ALPase activities were reduced by co-culture with PBMCs, including lymphocytes and monocytes. This PBMC-induced ALPase reduction was synergistically reduced by cyclic stretching. ALPase activity was decreased by co-culture with PBMCs, and ALPase activity was reduced synergistically by treatment with PBMCs and cyclic stretching. We conclude that PDL cells changed their shape and alignment in response to cyclic stretching. Furthermore, local factors, such as mechanical stress and PBMCs, showed synergistic suppressive effects on ALPase activity.  相似文献   

14.
High mechanical loading was hypothesized to induce the expression of angiogenic and/or lymphangiogenic extracellular matrix (ECM) proteins in skeletal muscle. Eight men performed a strenuous exercise protocol, which consisted of 100 unilateral maximal drop jumps followed by submaximal jumping until exhaustion. Muscle biopsies were taken 30 min and 48 h postexercise from the vastus lateralis muscle and analyzed for the following parameters: mRNA and protein expression of ECM-associated CCN proteins [cysteine-rich angiogenic protein 61 (Cyr61)/CCN1, connective tissue growth factor (CTGF)/CCN2], and mRNA expression of vascular endothelial growth factors (VEGFs) and hypoxia-inducible factor-1alpha. The mRNA expression of Cyr61 and CTGF increased 30 min after the exercise (14- and 2.5-fold, respectively; P < 0.001). Cyr61 remained elevated 48 h postexercise (threefold; P < 0.05). The mRNA levels of VEGF-A, VEGF-B, VEGF-C, VEGF-D, or hypoxia-inducible factor-1alpha did not change significantly at either 30 min or 48 h postexercise; however, the variation between subjects increased markedly in VEGF-A and VEGF-B mRNA. Cyr61 protein levels were higher at both 30 min and 48 h after the exercise compared with the control (P < 0.05). Cyr61 and CTGF proteins were localized to muscle fibers and the surrounding ECM by immunohistochemistry. Fast fibers stained more intensively than slow fibers. In conclusion, mechanical loading induces rapid expression of CCN proteins in human skeletal muscle. This may be one of the early mechanisms involved in skeletal muscle remodeling after exercise, since Cyr61 and CTGF regulate the expression of genes involved in angiogenesis and ECM remodeling.  相似文献   

15.
16.
17.

Introduction

The aim of this study was to examine the effect of blocking Toll-like receptor 2 (TLR2) in rheumatoid arthritis (RA) synovial cells.

Methods

RA synovial tissue biopsies, obtained under direct visualization at arthroscopy, were established as synovial explant cultures ex vivo or snap frozen for immunohistology. Mononuclear cell cultures were isolated from peripheral blood and synovial fluid of RA patients. Cultures were incubated with the TLR1/2 ligand, Pam3CSK4 (200 ng, 1 and 10 μg/ml), an anti-TLR2 antibody (OPN301, 1 μg/ml) or an immunoglobulin G (IgG) (1 μg/ml) matched control. The comparative effect of OPN301 and adalimumab (anti-tumour necrosis factor alpha) on spontaneous release of proinflammatory cytokines from RA synovial explants was determined using quantitative cytokine MSD multiplex assays or ELISA. OPN301 penetration into RA synovial tissue explants cultures was assessed by immunohistology.

Results

Pam3CSK4 significantly upregulated interleukin (IL)-6 and IL-8 in RA peripheral blood mononuclear cells (PBMCs), RA synovial fluid mononuclear cells (SFMCs) and RA synovial explant cultures (P < 0.05). OPN301 significantly decreased Pam3CSK4-induced cytokine production of tumour necrosis factor alpha (TNF-α), IL-1β, IL-6, interferon (IFN)-γ and IL-8 compared to IgG control in RA PBMCs and SFMCs cultures (all P < 0.05). OPN301 penetration of RA synovial tissue cultures was detected in the lining layer and perivascular regions. OPN301 significantly decreased spontaneous cytokine production of TNF-α, IL-1β, IFN-γ and IL-8 from RA synovial tissue explant cultures (all P < 0.05). Importantly, the inhibitory effect of OPN on spontaneous cytokine secretion was comparable to inhibition by anti-TNFα monoclonal antibody adalimumab.

Conclusions

These findings further support targeting TLR2 as a potential therapeutic agent for the treatment of RA.  相似文献   

18.
19.
20.

Background

Extrapulmonary manifestations of tuberculosis have become increasingly important in the era of HIV/AIDS.

Case presentation

We describe a case of tuberculosis (TB) dactylitis in a patient with AIDS who originated from the Ivory Coast. The diagnosis was established by direct visualization of acid-fast bacilli on joint fluid and bone biopsy of the proximal phalanx. Imaging of the chest revealed multiple bilateral nodules. Confirmation of the diagnosis was made by isolation of Mycobacterium tuberculosis from sputum and bone cultures.

Conclusion

Tuberculosis should be considered in patients with unusual soft tissue or skeletal lesions, especially when an immunosuppressive condition is present. Ziehl-Neelsen staining and culture of tissue obtained via surgical biopsy offer the most direct approach to diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号