首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals.

Methods

We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle.

Results

The 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus.

Conclusions

To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.  相似文献   

2.

Background

The cellular activity of many factors and pathways is required to execute the complex replication cycle of the human immunodeficiency virus type 1 (HIV-1). To reveal these cellular components, several extensive RNAi screens have been performed, listing numerous 'HIV-dependency factors'. However, only a small overlap between these lists exists, calling for further evaluation of the relevance of specific factors to HIV-1 replication and for the identification of additional cellular candidates. TBC1D20, the GTPase-activating protein (GAP) of Rab1, regulates endoplasmic reticulum (ER) to Golgi trafficking, was not identified in any of these screens, and its involvement in HIV-1 replication cycle is tested here.

Findings

Excessive TBC1D20 activity perturbs the early trafficking of HIV-1 envelope protein through the secretory pathway. Overexpression of TBC1D20 hampered envelope processing and reduced its association with detergent-resistant membranes, entailing a reduction in infectivity of HIV-1 virion like particles (VLPs).

Conclusions

These findings add TBC1D20 to the network of host factors regulating HIV replication cycle.  相似文献   

3.
4.

Background

Increased cellular iron levels are associated with high mortality in HIV-1 infection. Moreover iron is an important cofactor for viral replication, raising the question whether highly divergent lentiviruses actively modulate iron homeostasis. Here, we evaluated the effect on cellular iron uptake upon expression of the accessory protein Nef from different lentiviral strains.

Results

Surface Transferrin receptor (TfR) levels are unaffected by Nef proteins of HIV-1 and its simian precursors but elevated in cells expressing Nefs from most other primate lentiviruses due to reduced TfR internalization. The SIV Nef-mediated reduction of TfR endocytosis is dependent on an N-terminal AP2 binding motif that is not required for downmodulation of CD4, CD28, CD3 or MHCI. Importantly, SIV Nef-induced inhibition of TfR endocytosis leads to the reduction of Transferrin uptake and intracellular iron concentration and is accompanied by attenuated lentiviral replication in macrophages.

Conclusion

Inhibition of Transferrin and thereby iron uptake by SIV Nef might limit viral replication in myeloid cells. Furthermore, this new SIV Nef function could represent a virus-host adaptation that evolved in natural SIV-infected monkeys.  相似文献   

5.

Background

HIV-1 envelope gp41 is a transmembrane protein that promotes fusion of the virus with the plasma membrane of the host cells required for virus entry. In addition, gp41 is an important target for the immune response and development of antiviral and vaccine strategies, especially when targeting the highly variable envelope gp120 has not met with resounding success. Mutations in gp41 may affect HIV-1 entry, replication, pathogenesis, and transmission. We, therefore, characterized the molecular properties of gp41, including genetic diversity, functional motifs, and evolutionary dynamics from five mother-infant pairs following perinatal transmission.

Results

The gp41 open reading frame (ORF) was maintained with a frequency of 84.17% in five mother-infant pairs' sequences following perinatal transmission. There was a low degree of viral heterogeneity and estimates of genetic diversity in gp41 sequences. Both mother and infant gp41 sequences were under positive selection pressure, as determined by ratios of non-synonymous to synonymous substitutions. Phylogenetic analysis of 157 mother-infant gp41 sequences revealed distinct clusters for each mother-infant pair, suggesting that the epidemiologically linked mother-infant pairs were evolutionarily closer to each other as compared with epidemiologically unlinked sequences. The functional domains of gp41, including fusion peptide, heptad repeats, glycosylation sites and lentiviral lytic peptides were mostly conserved in gp41 sequences analyzed in this study. The CTL recognition epitopes and motifs recognized by fusion inhibitors were also conserved in the five mother-infant pairs.

Conclusion

The maintenance of an intact envelope gp41 ORF with conserved functional domains and a low degree of genetic variability as well as positive selection pressure for adaptive evolution following perinatal transmission is consistent with an indispensable role of envelope gp41 in HIV-1 replication and pathogenesis.  相似文献   

6.
7.
8.

Background

Small molecule inhibitors of RNA virus replication are potent antiviral drugs and useful to dissect selected steps in the replication process. To identify antiviral compounds against Tomato bushy stunt virus (TBSV), a model positive stranded RNA virus, we tested acridine derivatives, such as chlorpromazine (CPZ) and quinacrine (QC), which are active against prion-based diseases.

Methodology/Principal Findings

Here, we report that CPZ and QC compounds inhibited TBSV RNA accumulation in plants and in protoplasts. In vitro assays revealed that the inhibitory effects of these compounds were manifested at different steps of TBSV replication. QC was shown to have an effect on multiple steps, including: (i) inhibition of the selective binding of the p33 replication protein to the viral RNA template, which is required for recruitment of viral RNA for replication; (ii) reduction of minus-strand synthesis by the tombusvirus replicase; and (iii) inhibition of translation of the uncapped TBSV genomic RNA. In contrast, CPZ was shown to inhibit the in vitro assembly of the TBSV replicase, likely due to binding of CPZ to intracellular membranes, which are important for RNA virus replication.

Conclusion/Significance

Since we found that CPZ was also an effective inhibitor of other plant viruses, including Tobacco mosaic virus and Turnip crinkle virus, it seems likely that CPZ has a broad range of antiviral activity. Thus, these inhibitors constitute effective tools to study similarities in replication strategies of various RNA viruses.  相似文献   

9.

Background

The HIV-1 genome encodes a well-conserved accessory gene product, Vpr, that serves multiple functions in the retroviral life cycle, including the enhancement of viral replication in nondividing macrophages, the induction of G2 cell-cycle arrest, and the modulation of HIV-1-induced apoptosis. We previously reported the genetic selection of a panel of di-tryptophan (W)-containing peptides capable of interacting with HIV-1 Vpr and inhibiting its cytostatic activity in Saccharomyces cerevisiae (Yao, X.-J., J. Lemay, N. Rougeau, M. Clément, S. Kurtz, P. Belhumeur, and E. A. Cohen, J. Biol. Chem. v. 277, p. 48816–48826, 2002). In this study, we performed a mutagenic analysis of Vpr to identify sequence and/or structural determinants implicated in the interaction with di-W-containing peptides and assessed the effect of mutations on Vpr-induced cytostatic activity in S. cerevisiae.

Results

Our data clearly shows that integrity of N-terminal α-helix I (17–33) and α-helix III (53–83) is crucial for Vpr interaction with di-W-containing peptides as well as for the protein-induced cytostatic effect in budding yeast. Interestingly, several Vpr mutants, mainly in the N- and C-terminal domains, which were previously reported to be defective for cell-cycle arrest or apoptosis in human cells, still displayed a cytostatic activity in S. cerevisiae and remained sensitive to the inhibitory effect of di-W-containing peptides.

Conclusions

Vpr-induced growth arrest in budding yeast can be effectively inhibited by GST-fused di-W peptide through a specific interaction of di-W peptide with Vpr functional domain, which includes α-helix I (17–33) and α-helix III (53–83). Furthermore, the mechanism(s) underlying Vpr-induced cytostatic effect in budding yeast are likely to be distinct from those implicated in cell-cycle alteration and apoptosis in human cells.  相似文献   

10.
11.

Background

The zinc-finger antiviral protein (ZAP) specifically inhibits the replication of certain viruses, including murine leukemia virus (MLV), by preventing the accumulation of viral mRNA in the cytoplasm. ZAP directly binds to the viral mRNA through the zinc-finger motifs and recruits the RNA exosome to degrade the target RNA. RNA helicase p72 is required for the optimal function of ZAP. In an attempt to understand the structure-function relationship of ZAP, we performed alanine scanning analysis.

Results

A series of ZAP mutants was generated, in which three consecutive amino acids were replaced with three alanines. The mutants were analyzed for their antiviral activities against pseudotyped MLV vector. Out of the nineteen mutants analyzed, seven displayed significantly lower antiviral activities. Two mutations were in the very N-terminal domain, and five mutations were within or around the first and second zinc-finger motifs. These mutants were further analyzed for their abilities to bind to the target RNA, the exosome, and the RNA helicase p72. Mutants Nm3 and Nm63 lost the ability to bind to RNA. Mutants Nm 63 and Nm93 displayed compromised interaction with p72, while the binding of Nm133 to p72 was very modest. The interactions of all the mutants with the exosome were comparable to wild type ZAP.

Conclusions

The integrity of the very N-terminal domain and the first and second zinc-finger motifs appear to be required for ZAP's antiviral activity. Analyses of the mutants for their abilities to interact with the target RNA and RNA helicase p72 confirmed our previous results. The mutants that bind normally to the target RNA, the exosome, and the RNA helicase p72 may be useful tools for further understanding the mechanism underlying ZAP's antiviral activity.  相似文献   

12.

Background

It remains unclear whether retroviruses can encode and express an intragenomic microRNA (miRNA). Some have suggested that processing by the Drosha and Dicer enzymes might preclude the viability of a replicating retroviral RNA genome that contains a cis-embedded miRNA. To date, while many studies have shown that lentiviral vectors containing miRNAs can transduce mammalian cells and express the inserted miRNA efficiently, no study has examined the impact on the replication of a lentivirus such as HIV-1 after the deliberate intragenomic insertion of a bona fide miRNA.

Results

We have constructed several HIV-1 molecular clones, each containing a discrete cellular miRNA positioned in Nef. These retroviral genomes express the inserted miRNA and are generally replication competent in T-cells. The inserted intragenomic miRNA was observed to elicit two different consequences for HIV-1 replication. First, the expression of miRNAs with predicted target sequences in the HIV-1 genome was found to reduce viral replication. Second, in one case, where an inserted miRNA was unusually well-processed by Drosha, this processing event inhibited viral replication.

Conclusion

This is the first study to examine in detail the replication competence of HIV-1 genomes that express cis-embedded miRNAs. The results indicate that a replication competent retroviral genome is not precluded from encoding and expressing a viral miRNA.  相似文献   

13.

Background

Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals.

Methods

We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle.

Results

The 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus.

Conclusions

To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.  相似文献   

14.

Background

Many novel studies and therapies are possible with the use of human embryonic stem cells (hES cells) and their differentiated cell progeny. The hES cell derived CD34 hematopoietic stem cells can be potentially used for many gene therapy applications. Here we evaluated the capacity of hES cell derived CD34 cells to give rise to normal macrophages as a first step towards using these cells in viral infection studies and in developing novel stem cell based gene therapy strategies for AIDS.

Results

Undifferentiated normal and lentiviral vector transduced hES cells were cultured on S17 mouse bone marrow stromal cell layers to derive CD34 hematopoietic progenitor cells. The differentiated CD34 cells isolated from cystic bodies were further cultured in cytokine media to derive macrophages. Phenotypic and functional analyses were carried out to compare these with that of fetal liver CD34 cell derived macrophages. As assessed by FACS analysis, the hES-CD34 cell derived macrophages displayed characteristic cell surface markers CD14, CD4, CCR5, CXCR4, and HLA-DR suggesting a normal phenotype. Tests evaluating phagocytosis, upregulation of the costimulatory molecule B7.1, and cytokine secretion in response to LPS stimulation showed that these macrophages are also functionally normal. When infected with HIV-1, the differentiated macrophages supported productive viral infection. Lentiviral vector transduced hES cells expressing the transgene GFP were evaluated similarly like above. The transgenic hES cells also gave rise to macrophages with normal phenotypic and functional characteristics indicating no vector mediated adverse effects during differentiation.

Conclusion

Phenotypically normal and functionally competent macrophages could be derived from hES-CD34 cells. Since these cells are susceptible to HIV-1 infection, they provide a uniform source of macrophages for viral infection studies. Based on these results, it is also now feasible to transduce hES-CD34 cells with anti-HIV genes such as inhibitory siRNAs and test their antiviral efficacy in down stream differentiated cells such as macrophages which are among the primary cells that need to be protected against HIV-1 infection. Thus, the potential utility of hES derived CD34 hematopoietic cells for HIV-1 gene therapy can be evaluated.  相似文献   

15.

Key message

Two virus inhibitory proteins were purified from Cyamopsis tetragonoloba , induced to resist virus infections by CIP-29, a systemic resistance inducing protein from Clerodendrum inerme , and characterized. One of them shared homology with a lectin.

Abstract

CIP-29, a known 29 kDa systemic antiviral resistance inducing protein isolated from Clerodendrum inerme, has been used to induce systemic resistance in Cyamopsis tetragonoloba against Sunn-hemp rosette virus (SRV). Paper reports the detection of virus inhibitory activity in induced-resistant leaf sap of C. tetragonoloba, and the purification of two virus inhibitory agents (VIAs) thereof. VIA activity was recorded as a reduction in lesion number of SRV, Tobacco mosaic virus, and Papaya ringspot virus, when they were incubated separately with resistant sap and inoculated onto susceptible C. tetragonoloba, Nicotiana tabacum cv. Xanthi-nc, and Chenopodium quinoa, respectively. The two VIAs were isolated from resistant C. tetragonoloba plant leaves using combinations of column chromatography. Both were basic proteins, and since their M r was 32 and 62 kDa, these VIAs were called CT-VIA-32 and CT-VIA-62, respectively, on the basis of their molecular mass and the host. CT-VIA-62 displayed better activity, and was thus studied further. It tested positive for a glycoprotein, and was serologically detected only in leaf tissue post-induction. Tryptic peptides generated in-gel, post SDS-PAGE of CT-VIA-62, were sequenced through LC/MS/MS. All CT-VIA-62 peptides were found to share homologies with proteins from Medicago truncatula that possess a mannose-binding lectin domain.  相似文献   

16.
17.

Background

The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication.

Results

Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1) as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1) strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1) virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK), a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD) located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction.

Conclusion

As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.  相似文献   

18.

Background

Hepatitis C virus (HCV) infection is a major public health problem with more than 170 million cases of chronic infections worldwide. There is no protective vaccine currently available for HCV, therefore the development of novel strategy to prevent chronic infection is important. We reported earlier that a recombinant human antibody clone blocks viral NS3 helicase activity and inhibits replication of HCV 1b virus. This study was performed further to explore the mechanism of action of this recombinant antibody and to determine whether or not this antibody inhibits replication and infectivity of a highly efficient JFH1 HCV 2a virus clone.

Results

The antiviral effect of intracellular expressed antibody against the HCV 2a virus strain was examined using a full-length green fluorescence protein (GFP) labeled infectious cell culture system. For this purpose, a Huh-7.5 cell line stably expressing the NS3 helicase gene specific IgG1 antibody was prepared. Replication of full-length HCV-GFP chimera RNA and negative-strand RNA was strongly inhibited in Huh-7.5 cells stably expressing NS3 antibody but not in the cells expressing an unrelated control antibody. Huh-7.5 cells stably expressing NS3 helicase antibody effectively suppressed infectious virus production after natural infection and the level of HCV in the cell free supernatant remained undetectable after first passage. In contrast, Huh-7.5 cells stably expressing an control antibody against influenza virus had no effect on virus production and high-levels of infectious HCV were detected in culture supernatants over four rounds of infectivity assay. A recombinant adenovirus based expression system was used to demonstrate that Huh-7.5 replicon cell line expressing the intracellular antibody strongly inhibited the replication of HCV-GFP RNA.

Conclusion

Recombinant human anti-HCV NS3 antibody clone inhibits replication of HCV 2a virus and infectious virus production. Intracellular expression of this recombinant antibody offers a potential antiviral strategy to inhibit intracellular HCV replication and production.  相似文献   

19.
Gene therapy is considered a promising approach to treating infections caused by human immunodeficiency virus (HIV). One strategy is to introduce antiviral genes into cells in order to impart resistance to HIV. In this work, the antiviral activity of new anti-HIV lentiviral vector pT has been studied. The vector carries a combination that consists of two identical artificial miRNA mic13lg and the TRIM5α-HRH gene. Two mic13lg microRNAs suppress the expression of the CCR5 gene, which encodes the HIV coreceptor and, thus, prevents the penetration of R5-tropic HIV strains into the cell. It has been shown that pT effectively inhibits the expression of CCR5 in both the HT1080 CCR5-EGFP model cell line and in human primary lymphocytes. The second line of protection against R5- and X4-tropic HIV is provided by the TRIM5α-HRH protein, which binds virus capsids after the virus enters the cell. Indeed, when infecting cells of the SupT1 line, which contains four copies of the vector per cell, with the X-4 tropic HIV, more than 1000-fold suppression of viral replication has been observed. The process of generation of the pT vector and conditions of transduction of CD4+ lymphocytes were optimized for testing the antiviral activity of the vector on primary human lymphocytes. As a result, the transduction efficiency for the pT vector was 28%. After infection with the R5-tropic strain of the virus, the survival of cells in the culture of lymphocytes with the vector was significantly higher than in the control. However, the complete suppression of HIV replication was not achieved, presumably due to the inadequate fraction of cells that carry the vector in culture. In the future, it is planned to find the best way to enrich the lymphocyte culture with modified cells to increase resistance to HIV.  相似文献   

20.

Background

Down-modulation of the CD4 receptor is one of the hallmarks of HIV-1 infection and it is believed to confer a selective replicative advantage to the virus in vivo. This process is mainly mediated by three viral proteins: Env, Vpu and Nef. To date, the mechanisms that lead to CD4 depletion from the surface of infected cells during HIV-1 infection are still only partially characterized. In this study, we sought to identify and characterize cellular host factors in HIV-1-induced CD4 down-modulation.

Results

To identify host factors involved in CD4 down-regulation, we used a whole genome-targeting shRNA lentiviral library in HeLa CD4+ cells expressing Nef as an inducer of CD4 down-modulation. We identified 55 genes, mainly encoding for proteins involved in various steps of clathrin-mediated endocytosis. For confirmation and further selection of the hits we performed several rounds of validation, using individual shRNA lentiviral vectors with a different target sequence for gene knock-down in HIV-1-infected T cells. By this stringent validation set-up, we could demonstrate that the knock-down of DNM3 (dynamin 3), SNX22 (sorting nexin 22), ATP6AP1 (ATPase, H+ Transporting, Lysosomal Accessory Protein 1), HRBL (HIV-Rev binding protein Like), IDH3G (Isocitrate dehydrogenase), HSP90B1 (Heat shock protein 90 kDa beta member 1) and EPS15 (Epidermal Growth Factor Receptor Pathway Substrate 15) significantly increases CD4 levels in HIV-infected SupT1 T cells compared to the non-targeting shRNA control. Moreover, EPS15, DNM3, IDH3G and ATP6AP1 knock-down significantly decreases HIV-1 replication in T cells.

Conclusions

We identified seven genes as cellular co-factors for HIV-1-mediated CD4 down-regulation in T cells. The knock-down of four out of seven of these genes also significantly reduces HIV-1 replication in T cells. Next to a role in HIV-mediated CD4 down-regulation, these genes might however affect HIV-1 replication in another way. Our findings give insights in the HIV-1-mediated CD4 down-regulation at the level of the plasma membrane and early endosomes and identify four possible new HIV-1 replication co-factors.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号