首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The role of PPARs in atherosclerosis   总被引:4,自引:0,他引:4  
  相似文献   

2.
3.
4.
5.
6.
7.
8.
Amyloid deposition within the brains of Alzheimer's Disease patients results in the activation of microglial cells and the induction of a local inflammatory response. The interaction of microglia or monocytes with beta-amyloid (A beta) fibrils elicits the activation a complex tyrosine kinase-based signal transduction cascade leading to stimulation of multiple independent signaling pathways and ultimately to changes in proinflammatory gene expression. The A beta-stimulated expression of proinflammatory genes in myeloid lineage cells is antagonized by the action of a family of ligand-activated nuclear hormone receptors, the peroxisome proliferator-activated receptors (PPARs). We report that THP-1 monocytes express predominantly PPAR gamma isoform and lower levels of PPAR alpha and PPAR delta isoforms. PPAR mRNA levels are not affected by differentiation of the cells into a macrophage phenotype, nor are they altered following exposure to the classical immune stimulus, lipopolysaccharide. Previous studies have found that PPAR gamma agonists act broadly to inhibit inflammatory responses. The present study explored the action of the PPAR alpha isoform and found that PPAR alpha agonists inhibited the A beta-stimulated expression of TNFalpha and IL-6 reporter genes in a dose-dependent manner. Moreover, the PPAR alpha agonist WY14643 inhibited macrophage differentiation and COX-2 gene expression. However, the PPAR alpha agonists failed to inhibit A beta-stimulated elaboration of neurotoxic factors by THP-1 cells. These findings demonstrate that PPAR alpha acts to suppress a diverse array of inflammatory responses in monocytes.  相似文献   

9.
10.
11.
The effects of bezafibrate (PPAR alpha activator) and troglitazone (PPAR gamma activator) on the expression of plasminogen activator inhibitor type-1 (PAI-1) in HepG2 cells were investigated. Exposure of the cells for 24 hours to either oleic acid or insulin showed no obvious effects on PAI-1 synthesis, whereas the combination of the two agents induced a 2.3-fold increase in PAI-1 synthesis, which was accompanied by a 3-fold increase in both the 2.2 kb and 3.2 kb forms of PAI-1 mRNA. This up-regulation of PAI-1 synthesis was attenuated by bezafibrate in a dose-dependent manner (1-100 microM) with 30% reversal at 100 microM. In contrast, troglitazone further stimulated PAI-1 synthesis to 140% of the level obtained in the presence of both oleic acid and insulin. This attenuation by bezafibrate and enhancement by troglitazone required the presence of both oleic acid and insulin. It is interesting that PAI-1 expression was affected so differently by these two PPAR activators.  相似文献   

12.
Retinoids, naturally-occurring vitamin A derivatives, regulate metabolism by activating specific nuclear receptors, including the retinoic acid receptor (RAR) and the retinoid X receptor (RXR). RXR, an obligate heterodimeric partner for other nuclear receptors, including peroxisome proliferator-activated receptors (PPARs), helps coordinate energy balance. Recently, many groups have identified new connections between retinoid metabolism and PPAR responses. We found that retinaldehyde (Rald), a molecule that can yield RA through the action of retinaldehyde dehydrogenases (Raldh), is present in fat in vivo and can inhibit PPAR gamma-induced adipogenesis. In vitro, Rald inhibits RXR and PPAR gamma activation. Raldh1-deficient mice have increased Rald levels in fat, higher metabolic rates and body temperatures, and are protected against diet-induced obesity and insulin resistance. Interestingly, one specific asymmetric beta-carotene cleavage product, apo-14'-carotenal, can also inhibit PPAR gamma and PPAR alpha responses. These data highlight how pathways of beta-carotene metabolism and specific retinoid metabolites may have direct distinct metabolic effects.  相似文献   

13.
14.
15.
PPAR家族及其与代谢综合征的关系   总被引:17,自引:0,他引:17  
过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors,PPARs)是配体激活的转录因子核受体超家族成员之一。目前已知有三种亚型:PPARα、-β/δ和-γ。它们在脂肪生成、脂质代谢、胰岛素敏感性、炎症和血压调节中起着关键作用,因而近年来倍受关注。越来越多的研究表明,PPARs与代谢综合征,包括胰岛素抵抗、糖耐量受损、2型糖尿病、肥胖、高脂血症、高血压病、动脉粥样硬化和蛋白尿之间存在因果关系。重要的是,PPARα的激动剂如贝丁酸类降脂药(Fibrate)和PPARγ的激动剂如噻唑烷二酮(Thiazolidinedione,TZD)均已被证实有改善代谢综合征的作用。此外,三种PPAR亚型在2型糖尿病及糖尿病肾病的发展中均有重要作用。不断增加的证据提示,PPARs有可能成为代谢综合征及其相关并发症的潜在治疗靶点。本文将就PPARs的生物学活性、配体选择性和生理学功能作一综述,并对其在代谢综合征发病机制中的作用和PPAR配体对2型糖尿病的治疗效用进行重点讨论。  相似文献   

16.
17.
Hypertriglyceridemia (HTG) is associated with insulin resistance, increased cholesteryl ester transfer (CET), and low HDL cholesterol. Phospholipid transfer protein (PLTP) may be involved in these relationships. Associations between CET, lipids, insulin resistance, CETP and PLTP activities, and PLTP mass were investigated in 18 HTG patients and 20 controls. Effects of 6 weeks of bezafibrate treatment were studied in HTG patients. HTG patients had higher serum triglycerides, insulin resistance, free fatty acid (FFA), and CET, lower levels of HDL cholesterol (-44%) and PLTP mass (-54%), and higher CETP (+20%) and PLTP activity (+48%) than controls. Bezafibrate reduced triglycerides, CET (-37%), insulin resistance (-53%), FFA (-48%), CETP activity (-12%), PLTP activity (-8%), and increased HDL cholesterol (+27%), whereas PLTP mass remained unchanged. Regression analysis showed a positive contribution of PLTP mass (P = 0.001) but not of PLTP activity to HDL cholesterol, whereas insulin resistance positively contributed to PLTP activity (P < 0.01). Bezafibrate-induced change in CET and HDL cholesterol correlated with changes in CETP activity and FFAs, but not with change in PLTP activity. Bezafibrate-induced change in PLTP activity correlated with change in FFAs (r = 0.455, P = 0.058). We propose that elevated PLTP activity in HTG is related to insulin resistance and not to increased PLTP mass. Bezafibrate-induced diminished insulin resistance is associated with a reduction of CET and PLTP activity.  相似文献   

18.
Because of their wide range of actions on glucose homeostasis, lipid metabolism and vascular inflammation, peroxisome proliferator-activated receptors (PPARs) are promising targets for the development of new drugs for the treatment of metabolic disorders such as diabetes, dyslipidemia and atherosclerosis. In clinical practice, PPARalpha agonists, such as the already available fibrates, improve dyslipidemia, while PPARgamma agonists, such as thiazolidinediones, improve insulin resistance and diabetes. The complementary action of simultaneous activation of each PPAR in patients suffering from metabolic syndrome and type 2 diabetes has led to new pharmacological strategies focused on the development of agonists targeting more than one receptor such as the dual PPARalpha/gamma agonists. However, despite the proven benefits of targeting PPARs, safety concerns have recently led to late stage development failures of various PPAR agonists including novel specific PPARgamma agonists and dual PPARalpha/gamma agonists. These safety concerns include potential carcinogenicity in rodents, signs of myopathy and rhabdomyolysis, increase in plasma creatinine and homocysteine, weight gain, fluid retention, peripheral edema and potential increased risk of cardiac failure. Although the discontinued compounds shared common side effects, the reason for discontinuation was always compound specific and the toxicological or adverse effects which have motivated the discontinuation could be either due to the activation of PPARgamma, PPARalpha or both (class effect) or due to a PPAR unrelated effect. Thus, the risk evaluation of each adverse effect should be viewed on a case by case basis considering both the PPAR profile of the drug, its absorption/distribution profile, the nature of the side effect and the putative PPAR-related mechanism of action. This review mainly focuses on the preclinical and clinical adverse events of PPAR agonists that could be of concern when considering the development of new PPAR agonists. The selective modulation of PPAR activities is a promising approach to develop new drugs with preserved efficacy but diminished adverse effects.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号