首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cholinergic system is a critical regulator of Pavlovian fear learning and extinction. As such, we have begun investigating the cholinergic system's involvement in individual differences in cued fear extinction using a transgenic ChAT::Cre rat model. The current study extends behavioral phenotyping of a transgenic ChAT::Cre rat line by examining both freezing behavior and ultrasonic vocalizations (USVs) during a Pavlovian cued fear learning and extinction paradigm. Freezing, 22 kHz USVs, and 50 kHz USVs were compared between male and female transgenic ChAT::Cre+ rats and their wildtype (Cre-) littermates during fear learning, contextual and cue-conditioned fear recall, cued fear extinction, and generalization to a novel tone. During contextual and cued fear recall ChAT::Cre+ rats froze slightly more than their Cre- littermates, and displayed significant sex differences in contextual and cue-conditioned freezing, 22 kHz USVs, and 50 kHz USVs. Females showed more freezing than males in fear recall trials, but fewer 22 kHz distress calls during fear learning and recall. Females also produced more 50 kHz USVs during exposure to the testing chambers prior to tone (or shock) presentation compared with males, but this effect was blunted in ChAT::Cre+ females. Corroborating previous studies, ChAT::Cre+ transgenic rats overexpressed vesicular acetylcholine transporter immunolabeling in basal forebrain, striatum, basolateral amygdala, and hippocampus, but had similar levels of acetylcholinesterase and numbers of ChAT+ neurons as Cre- rats. This study suggests that variance in behavior between ChAT::Cre+ and wildtype rats is sex dependent and advances theories that distinct neural circuits and processes regulate sexually divergent fear responses.  相似文献   

3.
The Emotional Brain, Fear, and the Amygdala   总被引:18,自引:0,他引:18  
1. Considerable progress has been made over the past 20 years in relating specific circuits of the brain to emotional functions. Much of this work has involved studies of Pavlovian or classical fear conditioning, a behavioral procedure that is used to couple meaningless environmental stimuli to emotional (defense) response networks.2. The major conclusion from studies of fear conditioning is that the amygdala plays critical role in linking external stimuli to defense responses.3. Before describing research on the role of the amygdala in fear conditioning, though, it will be helpful to briefly examine the historical events that preceded modern research on conditioned fear.  相似文献   

4.
Identifying higher brain central region(s) that are responsible for the unpleasantness of pain is the focus of many recent studies. Here we show that direct stimulation of the anterior cingulate cortex (ACC) in mice produced fear-like freezing responses and induced long-term fear memory, including contextual and auditory fear memory. Auditory fear memory required the activation of N-methyl-D-aspartate (NMDA) receptors in the amygdala. To test the hypothesis that neuronal activity in the ACC contributes to unpleasantness, we injected a GABAA receptor agonist, muscimol bilaterally into the ACC. Both contextual and auditory memories induced by foot shock were blocked. Furthermore, activation of metabotropic glutamate receptors in the ACC enhanced behavioral escape responses in a noxious hot-plate as well as spinal nociceptive tail-flick reflex. Our results provide strong evidence that the excitatory activity in the ACC contribute to pain-related fear memory as well as descending facilitatory modulation of spinal nociception.  相似文献   

5.
6.
7.
8.
Molecular chaperones protect cells from the deleterious effects of protein misfolding and aggregation. Neurotoxicity of amyloid-beta (Aβ) aggregates and their deposition in senile plaques are hallmarks of Alzheimer''s disease (AD). We observed that the overall content of αB-crystallin, a small heat shock protein molecular chaperone, decreased in AD model mice in an age-dependent manner. We hypothesized that αB-crystallin protects cells against Aβ toxicity. To test this, we crossed αB-crystallin/HspB2 deficient (CRYAB-/-HSPB2-/-) mice with AD model transgenic mice expressing mutant human amyloid precursor protein. Transgenic and non-transgenic mice in chaperone-sufficient or deficient backgrounds were examined for representative behavioral paradigms for locomotion and memory network functions: (i) spatial orientation and locomotion was monitored by open field test; (ii) sequential organization and associative learning was monitored by fear conditioning; and (iii) evoked behavioral response was tested by hot plate method. Interestingly, αB-crystallin/HspB2 deficient transgenic mice were severely impaired in locomotion compared to each genetic model separately. Our results highlight a synergistic effect of combining chaperone deficiency in a transgenic mouse model for AD underscoring an important role for chaperones in protein misfolding diseases.  相似文献   

9.
The auditory sensitivity of the lemur   总被引:1,自引:0,他引:1  
  相似文献   

10.
Scavenger receptor class B, type I (SR-BI) and its adaptor protein PDZK1 mediate responses to HDL cholesterol in endothelium. Whether the receptor-adaptor protein tandem serves functions in other vascular cell types is unknown. The current work determined the roles of SR-BI and PDZK1 in vascular smooth muscle (VSM). To evaluate possible VSM functions of SR-BI and PDZK1 in vivo, neointima formation was assessed 21 days post-ligation in the carotid arteries of wild-type, SR-BI-/- or PDZK1-/- mice. Whereas neointima development was negligible in wild-type and SR-BI-/-, there was marked neointima formation in PDZK1-/- mice. PDZK1 expression was demonstrated in primary mouse VSM cells, and compared to wild-type cells, PDZK1-/- VSM displayed exaggerated proliferation and migration in response to platelet derived growth factor (PDGF). Tandem affinity purification-mass spectrometry revealed that PDZK1 interacts with breakpoint cluster region kinase (Bcr), which contains a C-terminal PDZ binding sequence and is known to enhance responses to PDGF in VSM. PDZK1 interaction with Bcr in VSM was demonstrated by pull-down and by coimmunoprecipitation, and the augmented proliferative response to PDGF in PDZK1-/- VSM was abrogated by Bcr depletion. Furthermore, compared with wild-type Bcr overexpression, the introduction of a Bcr mutant incapable of PDZK1 binding into VSM cells yielded an exaggerated proliferative response to PDGF. Thus, PDZK1 has novel SR-BI-independent function in VSM that affords protection from neointima formation, and this involves PDZK1 suppression of VSM cell proliferation via an inhibitory interaction with Bcr.  相似文献   

11.
Brain-derived neurotrophic factor (BDNF) has been implicated in hippocampal-dependent learning processes, and carriers of the Met allele of the Val66Met BDNF genotype are characterized by reduced hippocampal structure and function. Recent nonhuman animal work suggests that BDNF is also crucial for amygdala-dependent associative learning. The present study sought to examine fear conditioning as a function of the BDNF polymorphism. Fifty-seven participants were genotyped for the BDNF polymorphism and took part in a differential-conditioning paradigm. Participants were shocked following a particular conditioned stimulus (CS+) and were also presented with stimuli that ranged in perceptual similarity to the CS+ (20, 40 or 60% smaller or larger than the CS+). The eye blink component of the startle response was measured to quantify fear conditioning; post-task shock likelihood ratings for each stimulus were also obtained. All participants reported that shock likelihood varied with perceptual similarity to the CS+ and showed potentiated startle in response to CS ± 20% stimuli. However, only the Val/Val group had potentiated startle responses to the CS+. Met allele carrying individuals were characterized by deficient fear conditioning – evidenced by an attenuated startle response to CS+ stimuli. Variation in the BDNF genotype appears related to abnormal fear conditioning, consistent with nonhuman animal work on the importance of BDNF in amygdala-dependent associative learning. The relation between genetic variation in BDNF and amygdala-dependent associative learning deficits is discussed in terms of potential mechanisms of risk for psychopathology.  相似文献   

12.
Individuals with autism spectrum disorder (ASD) have altered sensory processing but may ineffectively communicate their experiences. Here, we used a battery of nociceptive behavioral tests to assess sensory alterations in two commonly used mouse models of ASD, BTBR T+Itpr3tf/J (BTBR), and fragile-X mental retardation-1 knockout (Fmr1-KO) mice. We also asked whether emotional contagion, a primitive form of empathy, was altered in BTBR and Fmr1 KO mice when experiencing pain with a social partner. BTBR mice demonstrated mixed nociceptive responses with hyporesponsivity to mechanical/thermal stimuli and intraplantar injections of formalin and capsaicin while displaying hypersensitivity on the acetic acid test. Fmr1-KO mice were hyposensitive to mechanical stimuli and intraplantar injections of capsaicin and formalin. BTBR and Fmr1-KO mice developed significantly less mechanical allodynia following intraplantar injections of complete Freund's adjuvant, while BTBR mice developed slightly more thermal hyperalgesia. Finally, as measured by the formalin and acetic acid writhing tests, BTBR and Fmr1-KO mice did not show emotional contagion of pain. In sum, our findings indicate that depending on the sensation, pain responses may be mixed, which reflects findings in ASD individuals.  相似文献   

13.
Pavlovian fear conditioning is often used in combination with functional magnetic resonance imaging (fMRI) in humans to investigate the neural substrates of associative learning 1-5. In these studies, it is important to provide behavioral evidence of conditioning to verify that differences in brain activity are learning-related and correlated with human behavior. Fear conditioning studies often monitor autonomic responses (e.g. skin conductance response; SCR) as an index of learning and memory 6-8. In addition, other behavioral measures can provide valuable information about the learning process and/or other cognitive functions that influence conditioning. For example, the impact unconditioned stimulus (UCS) expectancies have on the expression of the conditioned response (CR) and unconditioned response (UCR) has been a topic of interest in several recent studies 9-14. SCR and UCS expectancy measures have recently been used in conjunction with fMRI to investigate the neural substrates of aware and unaware fear learning and memory processes 15. Although these cognitive processes can be evaluated to some degree following the conditioning session, post-conditioning assessments cannot measure expectations on a trial-to-trial basis and are susceptible to interference and forgetting, as well as other factors that may distort results 16,17 .Monitoring autonomic and behavioral responses simultaneously with fMRI provides a mechanism by which the neural substrates that mediate complex relationships between cognitive processes and behavioral/autonomic responses can be assessed. However, monitoring autonomic and behavioral responses in the MRI environment poses a number of practical problems. Specifically, 1) standard behavioral and physiological monitoring equipment is constructed of ferrous material that cannot be safely used near the MRI scanner, 2) when this equipment is placed outside of the MRI scanning chamber, the cables projecting to the subject can carry RF noise that produces artifacts in brain images, 3) artifacts can be produced within the skin conductance signal by switching gradients during scanning, 4) the fMRI signal produced by the motor demands of behavioral responses may need to be distinguished from activity related to the cognitive processes of interest. Each of these issues can be resolved with modifications to the setup of physiological monitoring equipment and additional data analysis procedures. Here we present a methodology to simultaneously monitor autonomic and behavioral responses during fMRI, and demonstrate the use of these methods to investigate aware and unaware memory processes during fear conditioning. Download video file.(83M, mov)  相似文献   

14.
Modulation of serotonin transporter (5-HTT) function causes changes in affective behavior, both in humans and rodents. Stressful life events likewise affect emotional behavior. In humans, a low-expressing genetic 5-htt variant, the s allele of the 5-htt linked promoter region, has been associated with increased risk for depression only where there was a history of stressful life events. To investigate this gene by environment interaction in mice, we compared the effects of inescapable shocks on the behavior of wild-type (5-htt+/+), heterozygote (5-htt+/-) and serotonin transporter deficient (5-htt-/-) mice. Inescapable shocks induce behavioral changes including a shock escape deficit, in a subsequent test when escape is possible. Confirming a gene by environment interaction, we found that stress increases escape latencies in a gene-dose dependent manner (5-htt-/->5-htt+/->5-htt +/+), where as there were no differences among the genotypes in the unstressed condition. The vulnerability to increased escape latency could not be accounted for by enhanced fear learning, as 5-htt-/- mice did not show heightened fear conditioning. The interaction of 5-htt genotype and stress appeared to produce a selective behavioral vulnerability, because no interaction of 5-htt genotype and stress was observed in other measures of anxiety and depression-linked behavior, including the open field, novelty suppressed feeding, and forced swim tests. We replicated prior findings that the 5-htt-/- displays heightened anxiety and depression-like behavior at baseline (unstressed condition). In conclusion, our data offer the possibility for future investigation of the neural basis underlying 5-htt genotype-by-stress interaction shown here.  相似文献   

15.
P311 is an 8-kDa protein that is expressed in many brain regions, particularly the hippocampus, cerebellum and olfactory lobes, and is under stringent regulation by developmental, mitogenic and other physiological stimuli. P311 is thought to be involved in the transformation and motility of neural cells; however, its role in normal brain physiology is undefined. To address this point, P311-deficient mice were developed through gene targeting and their behaviors were characterized. Mutants displayed no overt abnormalities, bred normally and had normal survival rates. Additionally, no deficiencies were noted in motor co-ordination, balance, hearing or olfactory discrimination. Nevertheless, P311-deficient mice showed altered behavioral responses in learning and memory. These included impaired responses in social transmission of food preference, Morris water maze and contextual fear conditioning. Additionally, mutants displayed altered emotional responses as indicated by decreased freezing in contextual and cued fear conditioning and reduced fear-potentiated startle. Together, these data establish P311 as playing an important role in learning and memory processes and emotional responses.  相似文献   

16.
Although T-type Ca(2+) channels are implicated in nociception, the function of specific subtypes has not been well defined. Here, we compared pain susceptibility in mice lacking Ca(V)3.2 subtype of T-type Ca(2+) channels (Ca(V)3.2(-/-)) with wild-type littermates in various behavioral models of pain to explore the roles of Ca(V)3.2 in the processing of noxious stimuli in vivo. In acute mechanical, thermal and chemical pain tests, Ca(V)3.2(-/-) mice showed decreased pain responses compared to wild-type mice. Ca(V)3.2(-/-) mice also displayed attenuated pain responses to tonic noxious stimuli such as intraperitoneal injections of irritant agents and intradermal injections of formalin. In spinal nerve ligation-induced neuropathic pain, however, behavioral responses of Ca(V)3.2(-/-) mice were not different from those of wild-type mice. The present study reveals that the Ca(V)3.2 subtype of T-type Ca(2+) channels are important in the peripheral processing of noxious signals, regardless of modality, duration or affected tissue type.  相似文献   

17.
Chen CC  Shen JW  Chung NC  Min MY  Cheng SJ  Liu IY 《PloS one》2012,7(1):e29384
Among all voltage-gated calcium channels, the T-type Ca2+ channels encoded by the Cav3.2 genes are highly expressed in the hippocampus, which is associated with contextual, temporal and spatial learning and memory. However, the specific involvement of the Cav3.2 T-type Ca2+ channel in these hippocampus-dependent types of learning and memory remains unclear. To investigate the functional role of this channel in learning and memory, we subjected Cav3.2 homozygous and heterozygous knockout mice and their wild-type littermates to hippocampus-dependent behavioral tasks, including trace fear conditioning, the Morris water-maze and passive avoidance. The Cav3.2 −/− mice performed normally in the Morris water-maze and auditory trace fear conditioning tasks but were impaired in the context-cued trace fear conditioning, step-down and step-through passive avoidance tasks. Furthermore, long-term potentiation (LTP) could be induced for 180 minutes in hippocampal slices of WTs and Cav3.2 +/− mice, whereas LTP persisted for only 120 minutes in Cav3.2 −/− mice. To determine whether the hippocampal formation is responsible for the impaired behavioral phenotypes, we next performed experiments to knock down local function of the Cav3.2 T-type Ca2+ channel in the hippocampus. Wild-type mice infused with mibefradil, a T-type channel blocker, exhibited similar behaviors as homozygous knockouts. Taken together, our results demonstrate that retrieval of context-associated memory is dependent on the Cav3.2 T-type Ca2+ channel.  相似文献   

18.
Pharmacological evidence suggests that the neuropeptide somatostatin (SST) exerts anxiolytic action via the amygdala, but findings concerning the putative role of endogenous SST in the regulation of emotional responses are contradictory. We hypothesized that an endogenous regulation of SST expression over the course of the day may determine its function and tested both SST gene expression and the behavior of SST knock out (SST-/-) mice in different aversive tests in relation to circadian rhythm. In an open field and a light/dark avoidance test, SST-/- mice showed significant hyperactivity and anxiety-like behavior during the second, but not during the first half of the active phase, failing to show the circadian modulation of behavior that was evident in their wild type littermates. Behavioral differences occurred independently of changes of intrinsically motivated activity in the home cage. A circadian regulation of SST mRNA and protein expression that was evident in the basolateral complex of the amygdala of wild type mice may provide a neuronal substrate for the observed behavior. However, fear memory towards auditory cue or the conditioning context displayed neither a time- nor genotype-dependent modulation. Together this indicates that SST, in a circadian manner and putatively via its regulation of expression in the amygdala, modulates behavior responding to mildly aversive conditions in mice.  相似文献   

19.
Adult mice communicate by emitting ultrasonic vocalizations (USVs) during the appetitive phases of sexual behavior. However, little is known about the genes important in controlling call production. Here, we study the induction and regulation of USVs in muscarinic and dopaminergic receptor knockout (KO) mice as well as wild-type controls during sexual behavior. Female mouse urine, but not female rat or human urine, induced USVs in male mice, whereas male urine did not induce USVs in females. Direct contact of males with females is required for eliciting high level of USVs in males. USVs (25 to120 kHz) were emitted only by males, suggesting positive state; however human-audible squeaks were produced only by females, implying negative state during male-female pairing. USVs were divided into flat and frequency-modulated calls. Male USVs often changed from continuous to broken frequency-modulated calls after initiation of mounting. In M2 KO mice, USVs were lost in about 70-80% of the mice, correlating with a loss of sexual interaction. In M5 KO mice, mean USVs were reduced by almost 80% even though sexual interaction was vigorous. In D2 KOs, the duration of USVs was extended by 20%. In M4 KOs, no significant differences were observed. Amphetamine dose-dependently induced USVs in wild-type males (most at 0.5 mg/kg i.p.), but did not elicit USVs in M5 KO or female mice. These studies suggest that M2 and M5 muscarinic receptors are needed for male USV production during male-female interactions, likely via their roles in dopamine activation. These findings are important for the understanding of the neural substrates for positive affect.  相似文献   

20.
Empathy is an important emotional process that involves the ability to recognize and share emotions with others. We have previously developed an observational fear learning (OFL) behavioral assay to measure empathic fear in mice. In the OFL task, a mouse is conditioned for context‐dependent fear when it observes a conspecific demonstrator receiving aversive stimuli. In the present study, by comparing 11 different inbred mouse strains that are commonly used in the laboratory, we found that empathic fear response was highly variable between different strains. Five strains – C57BL/6J, C57BL/6NTac, 129S1/SvImJ, 129S4/SvJae and BTBR T+ Itpr3tf/J – showed observational fear (OF) responses, whereas AKR/J, BALB/cByJ, C3H/HeJ, DBA/2J, FVB/NJ and NOD/ShiLtJ mice exhibited low empathic fear response. Importantly, day 2 OF memory was significantly correlated with contextual memory in the classical fear conditioning among the 11 strains. Innate differences in anxiety, locomotor activity, sociability and preference for social novelty were not significantly correlated with OFL. Interestingly, early adolescent C57BL/6J mice exhibited an increase in acquisition of OF. The level of OFL in C57BL/6J strain was not affected by sex or strains of the demonstrator. Taken together, these data strongly suggest that there are naturally occurring OFL‐specific genetic variations modulating empathic fear behaviors in mice. The identification of causal genes may uncover novel genetic pathways and underlying neural mechanisms that modulate empathic fear and, ultimately, provide new targets for therapeutic intervention in human mental disorders associated with impaired empathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号