首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
几种激素在鳜胃肠道内分泌细胞中存在的免疫细胞化学证据   总被引:24,自引:2,他引:22  
用链酶亲和素-生物素过氧化物酶(Strept Avidin-Biotin-Complex,SABC)免疫细胞化学方法,使用4种兔抗消化 道激血清对鳜胃肠道中的内分泌细胞进行鉴别和定位。结果在鳜鱼胃的贲门、幽门及肠道中均发现不同程度地存在着生长抑素和五羟色胺免疫活性内分泌细胞。在鳜的贲门上皮和贲门腺之间,幽门上皮和幽门腺之间均分布有生长抑素免疫活性阳性细胞,在贲门腺和幽门腺处的分布较密。这些含五羟色胺的肽能神经元具有典型的APUD(Amine Precursor Uptake and Decarboxylation)细胞特征,提示鱼类的胃肠道同哺乳动物的胃肠道一样富含肽能神经元;为神经-内分泌系统的研究提供有力的形态学依据,另外两种抗血清-高血糖素和胃泌素的免疫细胞化学染色在鳜的胃肠道的各部位均未发现阳性反应。  相似文献   

2.
S Iseki  H Kondo 《Acta anatomica》1990,138(1):15-23
Rat liver fatty-acid-binding protein (L-FABP) was originally isolated from the liver parenchymal cells and later found also in the intestinal absorptive cells. By light- and electron-microscopic immunocytochemistry we examined the distribution of L-FABP in the entire digestive system of the rat and revealed two other cell types, i.e. the endocrine D cell and the brush cell, to be specifically immunoreactive for L-FABP. The immunoreactive D cells, identified by the simultaneous immunoreactivity for somatostatin and by characteristic endocrine granules, were found in the stomach epithelium and pancreatic islets. The immunoreactive brush cells, identified by the ultrastructural features of cell apex, were found primarily in the stomach epithelium and also in the epithelia of the rectum and common bile duct. Almost all immunoreactive brush cells had a thin process in contact with the basement membrane. No secretory granules with dense cores similar to those of the endocrine cells were observed in the brush cells. The present findings reveal L-FABP to be a useful marker of the gastrointestinal D cells and brush cells, especially of the latter, confirming that the brush cell is a distinct entity different from any other cell types in the gastrointestinal epithelia. Furthermore, FABP may be involved in the specific functions of these cell types related to fatty acid metabolism.  相似文献   

3.
4.
Summary The distribution of peptide hormone-like immunostaining in the gastrointestinal tract of 11 teleost species was investigated by immunofluorescence.Cells immunoreactive for somatostatin were found in the glandular epithelium of the stomach of four species and in the epithelium of the pyloric appendage of one species. The mid-gut epithelium contained cells reactive with antibodies to glucagon (three species), gastrin (five species), pancreatic polypeptide (five species), and substance P (two species). Cells immunoreactive for met-enkephalin were found in the epithelium of both the mid-gut and the stomach of six species.In six species in which the endocrine pancreas was investigated, insulin-, glucagon-, and somatostatin-like immunoreactivity was observed. Pancreatic polypeptide was definitely localised by immunostaining in cells of the endocrine pancreas of only one out of three species examined.Vasoactive intestinal polypeptide-, neurotensin-, bombesin-, and enkephalin-like immunoreactivity was identified in the gastrointestinal nerve fibres in various species.In view of the considerable species variation found, caution should be exercised in generalising about the peptides present in the gastrointestinal tract of fish.  相似文献   

5.
为了解银鲳(Pampus argenteus)消化道结构特点与其功能及食性的相关性, 采用解剖、石蜡切片、AB-PAS染色及酶活性检测技术对银鲳消化道的形态、组织结构、黏液细胞分布及消化酶活性进行研究。结果显示, 银鲳的消化道由口咽腔(舌)、食道侧囊、食道、胃及肠构成, 胃肠交界处有很多幽门盲囊。食道侧囊呈椭球形, 食道粗短, 胃呈U型, 肠有多个盘曲, 肠指数为2.03。舌上皮内有少量味蕾及较多黏液细胞。食道侧囊、食道、胃及肠均由黏膜层、黏膜下层、肌层及浆膜组成。食道侧囊内皱襞较发达, 被覆复层扁平上皮, 内含较多黏液细胞, 且以Ⅳ型为主, 皱襞顶端及侧面有内含角质刺的次级突起; 黏膜下层及肌层中有固定皱襞的骨质脚根; 侧囊内胃蛋白酶活性较高。食道内皱襞较高, 被覆复层扁平上皮, 内含较多黏液细胞, 且以Ⅳ型为主。胃内皱襞发达, 被覆单层柱状上皮, 未见黏液细胞分布; 胃腺发达, 胃内蛋白酶活性较高。肠道内褶襞多, 高度呈先下降后上升趋势, 黏液细胞密度前、中肠较高, 后肠较低, 且均以Ⅰ型为主; 肠道内胰蛋白酶、脂肪酶、淀粉酶及碱性磷酸酶活性较高。幽门盲囊组织结构与肠相似。银鲳的消化道结构特点、黏液细胞分布及消化酶活性与其功能及偏肉食的杂食性相适应。  相似文献   

6.
Monoclonal antibodies raised to pancreatic glucagon were tested for their ability to detect glucagon-containing endocrine cells in material processed for light and electron microscopy. Samples from man, baboon and rat were used in this investigation. Two antibodies were specific for the pancreatic islet A cells, the remainder detected both pancreatic and enteric endocrine cells. In man and baboon the glucagon-containing cells were confined to the pancreas, lower small intestine and colon. In the rat the distribution was extended to include the corpus of the stomach and the jejunum. The cells identified in the ileum and colon were of three morphological types endocrine, paracrine (type 1) with a single basal process and paracrine (type 2) with multiple small cytoplasmic processes. These antibodies also detected cells in material fixed by conventional methods for electron microscopy. The ultrastructural appearance of the baboon pancreatic glucagon-containing ultracellular secretory granules were demonstrated to be clearly distinct from those described previously in man and rat. The secretory granules averaged 330 +/- 23 nm and lacked the characteristic clear outer halo seen in the other two species.  相似文献   

7.
中华竹鼠胃肠道内分泌细胞分布型的研究   总被引:5,自引:0,他引:5  
杨贵波  王平 《兽类学报》1996,16(4):303-308
本文用免疫组织化学方法(PAP法)对10种GIEC在中华竹鼠(Rhizomyssinensis)15个胃肠段中的分布作了观察和统计分析,以探讨中华竹鼠胃肠内分泌细胞与其特殊食性的适应关系.结果表明:中华竹鼠胃肠中可能至少有7种免疫反应活性内分泌细胞。与大熊猫相比,尽管都以竹类为主食,但由于取食行为不同,它们GIEC的分布型不尽相同.这些结果从一定程度上表明GIEC的分布不仅与食物组成相关。也可能与取食行为有关。  相似文献   

8.
Peptide hormones are secreted from endocrine cells and neurons and exert their actions through activation of G protein-coupled receptors to regulate a diverse number of physiological systems including control of energy homeostasis, gastrointestinal motility, neuroendocrine circuits, and hormone secretion. The glucagon-like peptides, GLP-1 and GLP-2 are prototype peptide hormones released from gut endocrine cells in response to nutrient ingestion that regulate not only energy absorption and disposal, but also cell proliferation and survival. GLP-1 expands islet mass by stimulating pancreatic beta-cell proliferation and induction of islet neogenesis. GLP-1 also promotes cell differentiation, from exocrine cells or immature islet progenitors, toward a more differentiated beta-cell phenotype. GLP-2 stimulates cell proliferation in the gastrointestinal mucosa, leading to expansion of the normal mucosal epithelium, or attenuation of intestinal injury in experimental models of intestinal disease. Both GLP-1 and GLP-2 exert antiapoptotic actions in vivo, resulting in preservation of beta-cell mass and gut epithelium, respectively. Furthermore, GLP-1 and GLP-2 promote direct resistance to apoptosis in cells expressing GLP-1 or GLP-2 receptors. Moreover, an increasing number of structurally related peptide hormones and neuropeptides exert cytoprotective effects through G protein-coupled receptor activation in diverse cell types. Hence, peptide hormones, as exemplified by GLP-1 and GLP-2, may prove to be useful adjunctive tools for enhancement of cell differentiation, tissue regeneration, and cytoprotection for the treatment of human disease.  相似文献   

9.
The gizzard (muscular stomach) of chicks is deficient in endocrine cells at hatching. It has previously been shown that proventricular types and proportions of endocrine cells can be induced in gizzard endoderm under the influence of proventricular (glandular stomach) mesenchyme. In order to test its capacity to form nongastric endocrine cell types, gizzard endoderm of 3.75- to 5-day chick embryos was combined with mesenchyme from the small intestine of 3.5- to 4-day quail embryos. The combinations were grown as chorio-allantoic grafts until they attained an incubation age comparable to that of hatching chicks. Controls comprised reassociated endoderm and mesenchyme of chick gizzard and of quail intestine. In the experimental grafts, morphogenesis was predominantly intestinal but some grafts showed gizzard-like features, particularly if the endoderm had been provided by older donors. All intestinal endocrine cell types, including those also found in the normal proventriculus (serotonin-, glucagon-, pancreatic polypeptide-, neurotensin- and somatostatin-immunoreactive cells) differentiated in experimental grafts, some even where morphogenesis was gizzard-like. Hence progenitors of not only gastric, but also intestinal, endocrine cells are indeed present in gizzard endoderm. The possibility that gizzard mesenchyme is inhibitory to endocrine cell differentiation is mooted. Motilin- and secretin-immunoreactive cells, which are characteristic of the intestine but not of the proventriculus of chicks at hatching, were respectively sparse or absent when the endoderm was derived from older donors. Thus the ability of gizzard endoderm to differentiate into nongastric endocrine cell types declines before its capacity to form gastric types. The unexpected appearance of gastrin-releasing peptide (GRP)-immunoreactive cells, a proventricular type not found in normal chick intestine, suggests that the intestinal mesenchyme, at least in this instance, was exercising a permissive role.  相似文献   

10.
Summary Monoclonal antibodies raised to pancreatic glucagon were tested for their ability to detect glucagon-containing endocrine cells in material processed for light and electron microscopy. Samples from man, baboon and rat were used in this investigation. Two antibodies were specific for the pancreatic islet A cells, the remainder detected both pancreatic and enteric endocrine cells.In man and baboon the glucagon-containing cells were confined to the pancreas, lower small intestine and colon. In the rat the distribution was extended to include the corpus of the stomach and the jejunum. The cells identified in the ileum and colon were of three morphological types endocrine, paracrine (type 1) with a single basal process and paracrine (type 2) with multiple small cytoplasmic processes.These antibodies also detected cells in material fixed by conventional methods for electron microscopy. The ultrastructural appearance of the baboon pancreatic glucagon-containing ultracellular secretory granules were demonstrated to be clearly distinct from those described previously in man and rat. The secretory granules averaged 330±23 nm and lacked the characteristic clear outer halo seen in the other two species.  相似文献   

11.
目的阐明爬行动物蝘蜒消化管各段内分泌细胞的类型、局部分布、分布密度和形态学特征。方法应用免疫组织化学技术中链霉卵白素一过氧化物酶(S-P)法。结果在蝘蜒消化管内鉴别出5种内分泌细胞,即:5—羟色胺(5-hydroxytryptamine,5-HT)、生长抑素(somatostatin,SS)、胃泌素(gastrin,GAS)、高血糖素(glucagon,GLU)、P-物质(substance P,SP)免疫活性(immnoreactive,IR)细胞。5-羟色胺免疫活性细胞是消化管中最主要的内分泌细胞类型,以不同密度分布于消化管各段,其中胃幽门部位分布密度最高。生长抑素免疫活性细胞在消化管内仅局限分布于胃部。胃泌素免疫活性细胞仅见于幽门和十二指肠部位。高血糖素免疫活性细胞仅分布于回肠和直肠。P-物质免疫活性细胞仅出现在直肠部位。蝘蜒消化管内分泌细胞形态多样:圆形、椭圆形、纺锤形、梭形、楔形、锥形以及不规则形。胃部多数内分泌细胞分布于胃腺中,食管和肠管中多数内分泌细胞则分布于上皮细胞间。结论蝘蜒和其它爬行动物胃肠内分泌细胞的分布存在一定共同特征,然而也存在着一些特有的差异。  相似文献   

12.
目的阐明爬行动物蝘蜓消化管各段内分泌细胞的类型、局部分布、分布密度和形态学特征。方法应用免疫组织化学技术中链霉卵白素-过氧化物酶(S-P)法。结果在蜓消化管内鉴别出5种内分泌细胞,即:5-羟色胺(5-hydroxytryptamine,5-HT)、生长抑素(somatostatin,SS)、胃泌素(gastrin,GAS)、高血糖素(glucagon,GLU)、P-物质(substance P,SP)免疫活性(i mmnoreactive,IR)细胞。5-羟色胺免疫活性细胞是消化管中最主要的内分泌细胞类型,以不同密度分布于消化管各段,其中胃幽门部位分布密度最高。生长抑素免疫活性细胞在消化管内仅局限分布于胃部。胃泌素免疫活性细胞仅见于幽门和十二指肠部位。高血糖素免疫活性细胞仅分布于回肠和直肠。P-物质免疫活性细胞仅出现在直肠部位。蝘蜓消化管内分泌细胞形态多样:圆形、椭圆形、纺锤形、梭形、楔形、锥形以及不规则形。胃部多数内分泌细胞分布于胃腺中,食管和肠管中多数内分泌细胞则分布于上皮细胞间。结论蜓和其它爬行动物胃肠内分泌细胞的分布存在一定共同特征,然而也存在着一些特有的差异。  相似文献   

13.
The regional distribution and relative frequency of endocrine cells in the gastrointestinal tract of the camel, Camelus bactrianus, were investigated using immunohistochemical methods. Ten types of immunoreactive (IR) endocrine cells were identified in this study. Among these cell types, only serotonin- and somatostatin-IR cells were detected in almost all regions of the gastrointestinal tract. Most of the cell types showed peak density in the pyloric gland region. The others showed restricted distribution: gastrin, cholecystokinin (CCK), motilin, bovine pancreatic polypeptide (BPP), and (gastric) substance P in the stomach; gastrin, CCK, BPP, gastric inhibitory polypeptide (GIP), glucagon, peptide tyrosine tyrosine (PYY) and substance P in the small intestine; and CCK, motilin, BPP, and PYY in the large intestine. Fundamentally the distribution pattern of endocrine cells in the gastrointestinal tract of the camel is similar to that of cattle. The distribution and frequency of endocrine cells in the glandular sac region are the same as those of the cardiac gland.  相似文献   

14.
M El-Salhy 《Histochemistry》1984,80(2):193-205
The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish, Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scattered islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, alpha-endorphin, beta-endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P- immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

15.
In order to characterize the differentiation of endocrine cells present in Barrett's oesophagus and to determine if they express a single or multiple hormonal pattern, endoscopic biopsies were taken from both the lesion and the fundus of 45 patients and studied at the light microscopical level. Conventional histology revealed three different epithelial patterns: gastric atrophic fundic, intestinal and junctional. A mixture of these patterns was present in 28 cases (62%) and the single type was identified in 17 cases (38%). The use of three silver staining methods and antibodies to human chromogranins allowed us to identify numerous endocrine cells in all but 1 case. Eleven sera against all the most common hormones stored in the endocrine cells of the gut were used to identify the main products of the cells. The following immunoreactivities were identified: 5-hydroxytryptamine (5-HT) (in 75% of the studied cases), somatostatin (87%), motilin (31%), pancreatic polypeptide (PP) (20%), glucose-dependent insulinotropic polypeptide (20%), gastrin (15%), glucagon (15%), peptide tyrosine tyrosine (13%), secretin (7%) and neurotensin (2%). No cholecystokinin-immunoreactive cells were identified. Our results indicated that, in Barrett's epithelium, both gastric and intestinal endocrine cells differentiate, in accordance with the variability of differentiation in the non-endocrine cells present in the different types of columnar epithelium. These findings provide support for the conclusion that Barrett's epithelium arises from a pluripotential stem cell capable of both gastric and intestinal differentiation.  相似文献   

16.
Distribution of phosphodiesterase I in normal human tissues   总被引:1,自引:0,他引:1  
Phosphodiesterase I (PDE I) is an exonuclease capable of hydrolyzing a variety of phosphate ester and pyrophosphate bonds. Cell fractionation and histochemical studies in animal tissues have localized PDE I in the plasma membrane of various epithelia. This suggests a role for the enzyme in active transport. Distribution of PDE I in human tissues has not previously been studied. We have produced a polyclonal antiserum to bovine intestinal PDE I and have demonstrated crossreactivity with the human intestinal enzyme. This polyclonal antiserum was used in PAP immunocytochemistry to localize immunoreactive PDE I in a variety of human tissues. Localization was prominent in the gastrointestinal tract, including the cytoplasm of gastric mucosa parietal cells, cytoplasm of surface epithelium and isolated crypt cells in small intestine, and the colonic epithelial cytoplasm and brush border. Parotid gland acinar cells and scattered ductal cells showed positive cytoplasmic staining. Acinar and scattered pancreatic islet cells contained immunoreactive PDE I, as did Kupffer cells of the liver sinusoids. Immunoreactive PDE I was found in all vascular endothelia. The epithelium of the urinary tract showed extensive immunoreactivity. This included the distal convoluted and collecting tubules of the kidney, and ureteral and bladder urothelium. In previous histochemical studies of animal tissues, no evidence of PDE I activity was noted in male or female reproductive tract. In this study, immunoreactive PDE I was localized to human Sertoli cells and to basal epithelium of the epididymis and prostate acini. Fallopian tube epithelium of female reproductive tract also demonstrated immunoreactive PDI I, as did several cell types in term placenta. Our immunocytochemical results with human tissues differ significantly from previous histochemical studies in animal tissues, principally in the genitourinary system. This may be due in part to the different detection systems employed as well as the higher sensitivity of the immunoperoxidase technique. This underscores the importance of adjunct techniques in tissue surveys. The widespread epithelial distribution of immunoreactive PDE I detected by this polyclonal antibody implies an integral role in cell function, probably in active transport.  相似文献   

17.
Using histological and immunhistochemical techniques, nine endocrine cell types were observed in the mucosa of the gastrointestinal tract of the toad, Bufo regularis, viz. enterochromaffin, somatostatin, glucagon, pancreatic polypeptide (PP), secretin, gastric inhibitory peptide (GIP), gastrin-C-terminal pentapeptide (GTPP), neurotensin and bombesin cells. The enterochromaffin cells were distributed throughout the gastrointestinal tract except the rectum. Somatostatin, glucagon, PP, secretin, GIP and GTPP cells were observed both in the stomach and in the small intestine. Neurotensin cells were seen only in the ileum and bombesin cells only in the pyloric and antral parts of the stomach. Immunostaining of consecutive sections did not reveal more than one polypeptide hormone in any of these cell types. It is concluded from the present results that the toad gastrointestinal mucosa contains endocrine cell types that are more or less homologous to those in the mammal alimentary tract, though some of them exhibit a different topographic distribution.  相似文献   

18.
Summary Using histological and immunhistochemical techniques, nine endocrine cell types were observed in the mucosa of the gastrointestinal tract of the toad,Bufo regularis, viz. enterochromaffin, somatostatin, glucagon, pancreatic polypeptide (PP), secretin, gastric inhibitory peptide (GIP), gastrin-C-terminal pentapeptide (GTPP), neurotensin and bombesin cells. The enterochromaffin cells were distributed throughout the gastrointestinal tract except the rectum. Somatostatin, glucagon, PP, secretin, GIP and GTPP cells were observed both in the ileum and bombesin cells only in the pyloric and antral parts of the stomach. Immunostaining of consecutive sections did not reveal more than one polypeptide hormone in any of these cell types. It is concluded from the present results that the toad gastrointestinal mucosa contains endocrine cell types that are more or less homologous to those in the mammal alimentary tract, though some of them exhibit a different topographic distribution.  相似文献   

19.
The regional distribution and frequency of pancreatic endocrine cells in ddY mice were studied by an immunohistochemical (peroxidase anti-peroxidase; PAP) method using four types of specific antisera against insulin, glucagon, somatostatin and human pancreatic polypeptide (hPP). In the pancreatic islets, most of insulin-immunoreactive (IR) cells were located in the central portion. Most of glucagon- and somatostatin-IR cells were observed in peripheral regions although a somewhat smaller number of cells were also located in the central regions. HPP-IR cells were randomly distributed throughout the entire islets. In the exocrine pancreas, insulin-, glucagon-, somatostatin- and hPP-IR cells were detected; they occurred mainly among the exocrine parenchyma as solitary cells. Cell clusters consisted of only insulin- or only glucagon-IR cells and were distributed in the pancreas parenchyma as small islets. In addition, insulin- and glucagon-IR cells were also demonstrated in the pancreatic duct regions. Insulin-IR cells were located in the epithelium and sub-epithelial connective tissue regions as solitary cells and/or clusters (3-4 cells), and glucagon-IR cells were mainly located in the epithelium as solitary cells. Overall, there were 63.89+/-5.39% insulin-, 26.52+/-3.55% glucagon-, 7.25+/-2.83% somatostatin- and 1.90+/-0.58% hPP-IR cells. In conclusion, some strain-dependent characteristic distributional patterns of pancreatic endocrine cells were found in the ddY mouse.  相似文献   

20.
11 endocrine cell types immunoreactive for either 5-hydroxytryptamine (5-HT), somatostatin, gastrin, cholecystokinin (CCK), gastric inhibitory peptide (GIP), motilin, secretin, neurotensin, pancreatic glucagon, enteroglucagon or bovine pancreatic polypeptide (BPP) were found in gastrointestinal tract of 2 species of insectivorous bats. 5 of these 11 types of endocrine cells were located in the stomach and all 11 types of endocrine cells were found in the intestine. However, the distribution and relative frequency of each immunoreactive endocrine cell varied among the cell types and between the 2 species of bats examined. In Brunner's glands, gastrin- and 5-HT-immunoreactive cells were detected very rarely in Pipistrellus and only occasionally in Plecotus. The present results obtained from the insectivorous bats were compared with those of the sanguivorous vampire bats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号