首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Glutathione peroxidase has been demonstrated in cattle, rabbit and guineapig lenses. 2. The enzyme will oxidize GSH either with hydrogen peroxide added at the start of the reaction or with hydrogen peroxide generated enzymically with glucose oxidase. 3. No product other than GSSG was detected. 4. Oxidation of GSH can be coupled with oxidation of malate through the intermediate reaction of glutathione reductase and NADPH2. 5. Traces of hydrogen peroxide are present in aqueous humour: it is formed when the ascorbic acid of aqueous humour is oxidized. 6. Hydrogen peroxide will diffuse into the explanted intact lens and oxidize the contained GSH. The addition of glucose to the medium together with hydrogen peroxide maintains the concentration of lens GSH. 7. Glutathione peroxidase in lens extracts will couple with the oxidation of ascorbic acid. 8. It is suggested that, as there is only weak catalase activity in lens, glutathione peroxidase may act as one link between the oxygen of the aqueous humour and NADPH2.  相似文献   

2.
We evaluated the presence of Ca, Na, K, Cu and Zn in the lenses and aqueous humour of rabbits treated with an Nd:YAG laser to induce opacity of the crystalline. The mean concentrations of the elements found in control lenses were: Ca: 15.8+/-5.2 mg/kg; Na: 1.2+/-0.6 g/kg; K: 10.3+/-3.3 g/kg; Cu: 0.19+/-0.06 mg/kg; Zn: 20.6+/-3.0 mg/kg. With the exception of K and Zn, the values found in the lenses of treated eyes (Ca: 135+/-24 mg/kg; Na: 4.3+/-1.5 g/kg; K: 10.1 +/- 3.2 g/kg; Cu: 0.47+/-0.17 mg/kg; Zn: 21.8+/-4.2 mg/kg) were significantly higher than in the controls. On the other hand, the concentrations found in the aqueous humour of treated eyes (Ca: 21.7+/-4.5 mg/l; Na: 0.66+/-0.21 g/l; K: 0.29+/-0.10 g/l; Cu: 0.035+/-0.009 mg/l; Zn: 0.079+/-0.01 mg/l) were significantly lower than those of the controls. The greatest difference was observed for Na (-68.6%) and Cu (-52.7%), followed by Ca and Zn (-35.0% and -35.2%, respectively). A positive correlation was found between Ca and Na in treated lenses (r2 = 0.9226, p < 0.0001) whereas inverse correlations were found for both Ca (r2 = 0.9788, p<0.0001) and Na (r2 = 0.9491, p<0.0001) between the concentrations found in the lenses and in the aqueous humour of treated eyes.  相似文献   

3.
本文用蛋白质印迹转移技术分析了正常及硒性白内障大鼠晶状体及房水中蛋白质的性质。结果表明,晶状体中的脲溶性蛋白质可被抗α及抗γ晶体蛋白血清识别,提示α及γ晶体蛋白均为脲溶性蛋白质的主要成份。患白内障时房水中的蛋白质含量明显增加,且主要被抗γ血清识别,而被抗α血清识别的成份很少,表明在大鼠硒性白内障形成过程中,有较多低分子量蛋白质漏出到房水中,且其主要成份为γ晶体蛋白。此外,我们还发现正常及硒性白内障大鼠晶状体膜蛋白质与抗α及抗γ血清起反应的程度及分布有所不同,提示晶状体细胞膜与晶体蛋白之间存在着相互作用。  相似文献   

4.
The ability of transparent and cataractous human, rabbit and mice lenses to metabolize hydrogen peroxide in the surrounding medium was evaluated. Using a chemiluminescence method in a system of luminol-horseradish peroxidase and a photometric technique, the temperature-dependent kinetics of H2O2 decomposition by lenses were measured. The ability of opaque human lenses to catalyze the decomposition of 10?4 M H2O2 was significantly decreased. However, this was reserved by the addition of GSH to the incubation medium. Incubation of the mice lenses with the initial concentration H2O2 10?4 M led to partial depletion of GSH in normal and cataractous lenses. Human cataractous lenses showed decreased activities of glutathione reductase, glutathione peroxidase (catalyzing reduction of organic hydroperoxides including hydroperoxides of lipids), superoxide dismutase, but no signs of depletion in activities of catalase or glutathione peroxidase (utilizing H2O2). The findings indicated an impairment in peroxide metabolism of the mature cataractous lenses compared to normal lenses to be resulted from a deficiency of GSH. An oxidative stress induced by accumulation of lipid peroxidation products in the lens membranes during cataract progression could be considered as a primary cause of GSH deficiency and disturbance of the redox balance in the lens.  相似文献   

5.
Lipid peroxidation in cataract of the human   总被引:6,自引:0,他引:6  
K C Bhuyan  D K Bhuyan  S M Podos 《Life sciences》1986,38(16):1463-1471
Lipid peroxidation was investigated as one of the possible mechanisms of cataractogenesis in the human. Malondialdehyde (MDA), a major breakdown product of lipid peroxides, was significantly higher in cataractous lenses as compared to that in normal lenses. 2-Thiobarbituric acid-reactive material, isolated from cortical cataracts and purified by Sephadex G-10 column chromatography, was identified as MDA. In cataractous lenses the enzymic defenses against reactive species of O2 were impaired as evidenced by the significant decrease in activities of superoxide dismutase, catalase and glutathione peroxidase. Hydrogen peroxide in aqueous humor and vitreous humor of human eyes associated with cataract was increased 2-3 fold. It is possible that carbonyl groups of MDA could interact with primary amino groups of proteins and phospholipids of lenticular plasmalemmae by a cross-linking reaction forming Schiff-base conjugates and these mechanisms might be involved in the pathogenesis of cataract.  相似文献   

6.
Post-translational modifications of lens proteins play a crucial role in the formation of cataract during ageing. The aim of our study was to analyze protein composition of the cataractous lenses by electrophoretic and high-performance liquid chromatographic (HPLC) methods. Samples were obtained after extracapsular cataract surgery performed by phacoemulsification technique from cataract patients with type 2 diabetes mellitus (DM CAT, n = 22) and cataract patients without diabetes (non-DM CAT, n = 20), while non-diabetic non-cataractous lenses obtained from cadaver eyes served as controls (CONTR, n = 17). Lens fragments were derived from the surgical medium by centrifugation. Samples were homogenized in a buffered medium containing protease inhibitor. Soluble and insoluble protein fractions were separated by centrifugation. The electrophoretic studies were performed according to Laemmli on equal amounts of proteins and were followed by silver intensification. Oxidized amino acid and Phe content of the samples were also analyzed by HPLC following acid hydrolysis of proteins. Our results showed that soluble proteins represented a significantly lower portion of the total protein content in cataractous lenses in comparison with the control group (CONTR, 71.25%; non-DM CAT, 32.00%; DM CAT, 33.15%; p < 0.05 vs CONTR for both). Among the proteins, the crystallin-like proteins with low-molecular weight can be found both in the soluble and insoluble fractions, and high-molecular weight aggregates were found mainly in the total homogenates. In our HPLC analysis, oxidatively modified derivatives of phenylalanine were detected in cataractous samples. We found higher levels of m-Tyr, o-Tyr and DOPA in the total homogenates of cataractous samples compared to the supernatants. In all three groups, the median Phe/protein ratio of the total homogenates was also higher than that of the supernatants (total homogenates vs supernatants, in the CONTR group 1102 vs 633 micromol/g, in the DM CAT group 1187 vs 382 micromol/g and in the non-DM CAT group 967 vs 252 micromol/g; p < 0.05 for all). In our study we found that oxidized amino acids accumulate in cataractous lenses, regardless of the origin of the cataract. The accumulation of the oxidized amino acids probably results from oxidation of Phe residues of the non-water soluble lens proteins. We found the presence of high-molecular weight protein aggregates in cataractous total homogenates, and a decrease of protein concentration in the water-soluble phase of cataractous lenses. The oxidation of lens proteins and the oxidative modification of Phe residues in key positions may lead to an altered interaction between protein and water molecules and thus contribute to lens opacification.  相似文献   

7.
Decrease in cholesterol was observed in precataractous, cataractous, advance nuclear cataractous and non-cataractous lenses when 3 beta-(2-diethylaminoethoxy)-androst-5-en-17- oneHCl (U18666A) was injected, sc, to rats. Significant increase in lipid peroxidation was observed before the onset of any apparent lenticular opacity in U18666A treated rats. The results suggest that decrease in cholesterol is capable of altering the structural integrity of lens fibers. However, 12.5% decrease in cholesterol and 5% increase in lipid peroxidation observed in non-cataractous lenses indicated that these changes are not sufficient for any apparent opacification.  相似文献   

8.
The authors prepared water-soluble (WSF), urea-soluble (USF), alkali-soluble (ASF), sonicated (SF), sonicated insoluble (SIF) and membrane (MF) fractions of lens proteins from human senile and diabetic cataractous lenses and age-matched clear lenses. Levels of advanced glycation end products (AGEs) including carboxymethyl lysine (CML), a glycoxidation product, were determined by both non-competitive and competitive enzyme-linked immunosorbent assay (ELISA). Distribution of AGEs in the various protein fractions was ascertained by SDS-PAGE and Western blotting. An overall increase in the levels of AGEs in diabetic cataractous lenses as compared to senile cataractous lenses and clear lenses has been observed. ASF and SF , both of which originated from the urea-insoluble fraction, showed the highest levels of AGEs. However, no clear-cut differences in CML levels were seen among clear lenses and senile and diabetic cataractous lenses. AGEs were found to be distributed mostly in the high molecular aggregates in all the fractions. These data suggest that AGEs contribute to protein aggregation and subsequent insolubilization.  相似文献   

9.
Post-translational modifications of lens proteins play a crucial role in the formation of cataract during ageing. The aim of our study was to analyze protein composition of the cataractous lenses by electrophoretic and high-performance liquid chromatographic (HPLC) methods.

Samples were obtained after extracapsular cataract surgery performed by phacoemulsification technique from cataract patients with type 2 diabetes mellitus (DM CAT, n = 22) and cataract patients without diabetes (non-DM CAT, n = 20), while non-diabetic non-cataractous lenses obtained from cadaver eyes served as controls (CONTR, n = 17). Lens fragments were derived from the surgical medium by centrifugation. Samples were homogenized in a buffered medium containing protease inhibitor. Soluble and insoluble protein fractions were separated by centrifugation. The electrophoretic studies were performed according to Laemmli on equal amounts of proteins and were followed by silver intensification. Oxidized amino acid and Phe content of the samples were also analyzed by HPLC following acid hydrolysis of proteins.

Our results showed that soluble proteins represented a significantly lower portion of the total protein content in cataractous lenses in comparison with the control group (CONTR, 71.25%; non-DM CAT, 32.00%; DM CAT, 33.15%; p < 0.05 vs CONTR for both). Among the proteins, the crystallin-like proteins with low-molecular weight can be found both in the soluble and insoluble fractions, and high-molecular weight aggregates were found mainly in the total homogenates. In our HPLC analysis, oxidatively modified derivatives of phenylalanine were detected in cataractous samples. We found higher levels of m-Tyr, o-Tyr and DOPA in the total homogenates of cataractous samples compared to the supernatants. In all three groups, the median Phe/protein ratio of the total homogenates was also higher than that of the supernatants (total homogenates vs supernatants, in the CONTR group 1102 vs 633 μmol/g, in the DM CAT group 1187 vs 382 μmol/g and in the non-DM CAT group 967 vs 252 μmol/g; p < 0.05 for all).

In our study we found that oxidized amino acids accumulate in cataractous lenses, regardless of the origin of the cataract. The accumulation of the oxidized amino acids probably results from oxidation of Phe residues of the non-water soluble lens proteins. We found the presence of high-molecular weight protein aggregates in cataractous total homogenates, and a decrease of protein concentration in the water-soluble phase of cataractous lenses. The oxidation of lens proteins and the oxidative modification of Phe residues in key positions may lead to an altered interaction between protein and water molecules and thus contribute to lens opacification.  相似文献   

10.
For quantitative evaluation of cataract-related changes in lens proteins and lens water, the relative contents of water and SH residues and changes in the microenvironments of aromatic amino acid residues were quantitatively examined in cataract of the rat lens which had been induced by sodium selenite. Using Raman spectroscopy, results were compared with those of age-matched control lenses. The relative contents of water and SH residues decreased with increasing age in normal lenses from 3 to 8 weeks of age. In the cataractous lens, the relative water content increased constantly as compared with that of age-matched controls. The relative SH residue content continued to decline in the cataractous lenses of animals at every age. The microenvironments of tyrosine residues in cataractous lenses also changed progressively.  相似文献   

11.
The oxidative state of glutathione in red blood cells (RBC) and plasma of diabetic patients and of age-matched volunteers has been studied. Oxidized glutathione (GSSG) levels in plasma from diabetic subjects were higher than those from controls (17.2 +/- 2.5 and 3.3 +/- 0.4 micrograms/ml, respectively). This phenomenon was evident also in in vitro experiments: incubated RBC from diabetic patients released very high amounts of GSSG in medium. Thus, erythrocytes are responsible for the enhanced amounts of GSSG found in plasma from diabetic patients. The fall in the conversion of GSSG to reduced glutathione in RBC could be due to a reduced activity of the glucose-6-phosphate dehydrogenase (G6PDH) enzyme which has been observed in diabetic patients. In this way, G6PDH supplies reduced amounts of NADPH to the glutathione reductase enzyme affecting the integrity of the glutathione system; on the other hand, the activation by glucose of the polyol pathway also reduces the levels of NADPH for the glutathione reductase enzyme.  相似文献   

12.
The high molecular weight aggregates (HMWA) obtained from normal and cataractous human lens nuclei have been resolved by SDS-polyacrylamide gel electrophoresis, and the alpha crystallin band has been probed with antisera made against the whole alpha crystallin molecule and with antisera made against synthetic peptides of alpha crystallin (alpha A2 147-161 and alpha A2 163-173). Quantitation of these antisera binding demonstrated that the anti-alpha A2 163-173 serum and the anti-alpha whole sera bound equally well to the alpha crystallin band from the HMWA fraction from normal and cataractous lenses. In contrast, the anti-alpha A2 147-161 serum bound little, if at all, to alpha crystallin from normal lenses, while it bound well to alpha crystallin from cataractous lenses. These results demonstrate a covalent alteration in the alpha crystallin molecule, and suggest a possible location of a covalent change that may occur during the cataractogenic process in the aged human lens.  相似文献   

13.
Factors in vitreous humour which regulate prostaglandin production were investigated using cultured rabbit chorioretinal fibroblasts. These cells produced predominantly prostaglandin E2, 6-ketoprostaglandin F1 alpha, a compound likely to be a metabolite of prostaglandin E2 and 5-hydroxyeicosatetraenoic acid. The synthesis of 6-ketoprostaglandin F1 alpha was nearly completely inhibited by the cyclooxygenase inhibitor aspirin and partially inhibited by 10(-6) M dexamethasone (49%) and 10(-5) M forskolin (68%). Addition of 10% rabbit vitreous humour to subconfluent cells maintained in Dulbecco's modified Eagle's medium plus 1% fetal bovine serum resulted in stimulation of 6-ketoprostaglandin F1 alpha production by as much as 246% as measured by radioimmunoassay. Chorioretinal fibroblasts labelled by [3H]arachidonic acid incorporation into cellular phospholipids synthesised greater amounts of all labelled arachidonic acid metabolites in response to vitreous humour. It was concluded, therefore, that there are factors present in vitreous humour of molecular weight above 10 kDa which are capable of stimulating cellular cyclooxygenase activity. Confluent cells also responded to a factor(s) present in vitreous humour. The fraction of less than 10 kDa inhibited 6-ketoprostaglandin F1 alpha production by 50% when used at a concentration of 10%. Furthermore, 6-ketoprostaglandin F1 alpha production in confluent cells (but not subconfluent cells) was inhibited to 40% of control levels by vitamin C at a concentration of 1 mg/100 ml. The latter result points to an inhibitory role for vitamin C in vitreous humour. We conclude, therefore, that vitreous humour contains factors important for the regulation of prostaglandin metabolism in the eye.  相似文献   

14.
We have previously shown that biologically uncommon d-beta-aspartic acids (Asp) were localized with very high contents at Asp-151 and Asp-58 of alpha A-crystallin from aged human lenses. The amounts increased with age, and we have proposed the mechanism of this reaction. In the present study, in order to elucidate the possible relationship between the formation of d-beta-aspartic acids in alpha A-crystallin and cataract formation, we measured the d/l ratio of beta-Asp-151 of alpha A-crystallin from both cataractous and age-matched normal human lenses. alpha A-crystallin from total proteins of cataractous and age-matched normal lenses was prepared, followed by tryptic digestion and quantification of d/l ratios for tryptic fragments containing the alpha- and beta-aspartate forms of Asp-151 residues. The results demonstrate that the d/l ratio of beta-Asp-151 of alpha A-crystallin from normal lenses is not statistically significant from that of alpha A-crystallin from cataractous lenses, suggesting that formation of this biologically uncommon amino acid may not play a role in human cataractogenesis.  相似文献   

15.
Elastase and trypsin inhibitory capacities increased significantly on heat treatment of the lens extract for 15 min at 60 degrees C in human infant (mean increase 290 and 335%), human adult (130 and 245%), ovine (90 and 140%), and bovine (70 and 90%) lenses. No increase was observed in human cataractous lenses. Preincubation with target enzymes in the absence of substrate abolished the antitryptic activity in lenses whereas antielastase activity was more resistant. No decrease in antielastase activity in human adult and cataractous lenses was observed on 15-min preincubation whereas about 50% of activity was abolished in human infant lenses. The differences were attributed to the changes in the levels of endogenous proteinases and proenzymes during cataractogenesis and aging.  相似文献   

16.

Background

Glutathione concentration in the lens decreases in aging and cataractous lenses, providing a marker for tissue condition. Experimental procedures requiring unfrozen lenses from donor banks rely on transportation in storage medium, affecting lens homeostasis and alterations in glutathione levels. The aim of the study was to examine the effects of Optisol-GS and castor oil on lens condition, determined from their ability to maintain glutathione concentrations.

Methodology/Principal Findings

Rat lenses were stored in the two types of storage media at varying time intervals up to 3 days. Glutathione concentration was afterwards determined in an enzymatic detection assay, specific for both reduced and oxidized forms. Lenses removed immediately after death exhibited a glutathione concentration of 4.70±0.29 mM. In vitro stored lenses in Optisol-GS lost glutathione quickly, ending with a concentration of 0.60±0.34 mM after 3 days while castor oil stored lenses exhibited a slower decline and ended at 3 times the concentration. A group of lenses were additionally stored under post mortem conditions within the host for 6 hours before its removal. Total glutathione after 6 hours was similar to that of lenses removed immediately after death, but with altered GSH and GSSG concentrations. Subsequent storage of these lenses in media showed changes similar to those in the first series of experiments, albeit to a lesser degree.

Conclusions/Significance

It was determined that storage in Optisol-GS resulted in a higher loss of glutathione than lenses stored in castor oil. Storage for more than 12 hours reduced glutathione to half its original concentration, and was considered unusable after 24 hours.  相似文献   

17.
A diminished level of endogenous antioxidant in cells/tissues is associated with reduced resistance to oxidative stress. Peroxiredoxin 6 (PRDX6), a protective molecule, regulates gene expression/function by controlling reactive oxygen species (ROS) levels. Using PRDX6 protein linked to TAT, the transduction domain from human immunodeficiency virus type 1 TAT protein, we demonstrated that PRDX6 was transduced into lens epithelial cells derived from rat or mouse lenses. The protein was biologically active, negatively regulating apoptosis and delaying progression of cataractogenesis by attenuating deleterious signaling. Lens epithelial cells from cataractous lenses bore elevated levels of ROS and were susceptible to oxidative stress. These cells harbored increased levels of active transforming growth factor (TGF)-beta 1 and of alpha-smooth muscle actin and beta ig-h3, markers for cataractogenesis. Importantly, cataractous lenses showed a 10-fold reduction in PRDX6 expression, whereas TGF-beta1 mRNA and protein levels were elevated. The changes were reversed, and cataractogenesis was delayed when PRDX6 was supplied. Results suggest that delivery of PRDX6 can postpone cataractogenesis, and this should be an effective approach to delaying cataracts and other degenerative diseases that are associated with increased ROS.  相似文献   

18.
Post-translational modifications of proteins take place during the aging of human lens. The present study describes a newly isolated glycation product of lysine, which was found in the human lens. Cataractous and aged human lenses were hydrolyzed and fractionated using reverse-phase and ion-exchange high performance liquid chromatography (HPLC). One of the nonproteinogenic amino acid components of the hydrolysates was identified as a 3-hydroxypyridinium derivative of lysine, 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate (OP-lysine). The compound was synthesized independently from 3-hydroxypyridine and methyl 2-[(tert-butoxycarbonyl)amino]-6-iodohexanoate. The spectral and chromatographic properties of the synthetic OP-lysine and the substance isolated from hydrolyzed lenses were identical. HPLC analysis showed that the amounts of OP-lysine were higher in water-insoluble compared with water-soluble proteins and was higher in a pool of cataractous lenses compared with normal aged lenses, reaching 500 pmol/mg protein. The model incubations showed that an anaerobic reaction mixture of Nalpha-tert-butoxycarbonyllysine, glycolaldehyde, and glyceraldehyde could produce the Nalpha-t-butoxycarbonyl derivative of OP-lysine. The irradiation of OP-lysine with UVA under anaerobic conditions in the presence of ascorbate led to a photochemical bleaching of this compound. Our results argue that OP-lysine is a newly identified glycation product of lysine in the lens. It is a marker of aging and pathology of the lens, and its formation could be considered as a potential cataract risk-factor based on its concentration and its photochemical properties.  相似文献   

19.
本文研究了正常及三种类型白内障大鼠晶状体中脲溶性蛋白质的含量及性质的变化,发现在每种类型白内障晶状体中,水溶性蛋白质均减少,水不溶性蛋白质则都相对增加。经SephadexG-200柱层析及SDS聚丙烯酰胺凝胶电泳发现,晶状体中脲溶性蛋白质主要是由二硫键交联而成的高分子聚合物。经巯基乙醇还原后,绝大部分高分子聚合物可分解成低分子量蛋白质,其分子量与水溶性的γ晶体蛋白相同。这提示晶状体中脲溶性蛋白质的主要成分很可能是以二硫键交联而成的γ晶体蛋白聚合物。此结果与本实验室所得白内障晶状体水溶性蛋白质的变化相吻合。  相似文献   

20.
A high-performance size exclusion chromatographic method with analyte enhanced fluorescence detection is described for the analysis of 2-hydroxypropyl-gamma-cyclodextrin (HPGCD) in different biological fluids. The principle of detection was the in situ complexation of 8-anilinonaphthalene-1-sulfonic acid (ANS) by HPGCD. When HPGCD eluted from the column the increased fluorescence was measured at excitation and emission wavelengths of 270 and 512 nm, respectively. Solid-phase extraction cleanup and concentration of samples resulted in higher than 78% recovery of HPGCD for each of the studied biological fluids. Some important details of the method development as well as the validation of the method for rabbit plasma, rabbit aqueous humour, monkey plasma and monkey urine are given. The limits of quantification varied between 1 and 10 nmol/ml (correspond to 1.5-15 microg/ml) depending on the biological matrix used. The method was successfully adapted in another laboratory proving that HPGCD had not absorbed into aqueous humour and plasma after topical application of HPGCD containing eye drop in rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号