首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Eukaryotic translation initiation factor 5 (eIF5) forms a complex with eIF2 by interacting with the beta subunit of eIF2. This interaction is essential for eIF5-promoted hydrolysis of GTP bound to the 40 S initiation complex. In this work, we show that, in addition to the eIF2 beta-binding region at the C terminus of eIF5, the N-terminal region of eIF5 is also required for eIF5-dependent GTP hydrolysis. Like other GTPase-activating proteins, eIF5 contains an invariant arginine residue (Arg-15) at its N terminus that is essential for its function. Mutation of this arginine residue to alanine or even to conservative lysine caused a severe defect in the ability of eIF5 to promote GTP hydrolysis from the 40 S initiation complex, although the ability of these mutant proteins to bind to eIF2 beta remained unchanged. These mutants were also defective in overall protein synthesis as well as in their ability to support cell growth of a Delta TIF5 yeast strain. Additionally, alanine substitution mutagenesis of eIF5 defined Lys-33 and Lys-55 as also critical for eIF5 function in vitro and in vivo. The implications of these results in relation to other well characterized GAPs are discussed and provide additional evidence that eIF5 functions as a GTPase-activating protein.  相似文献   

2.
Shin BS  Maag D  Roll-Mecak A  Arefin MS  Burley SK  Lorsch JR  Dever TE 《Cell》2002,111(7):1015-1025
Translation initiation factor eIF5B/IF2 is a GTPase that promotes ribosomal subunit joining. We show that eIF5B mutations in Switch I, an element conserved in all GTP binding domains, impair GTP hydrolysis and general translation but not eIF5B subunit joining function. Intragenic suppressors of the Switch I mutation restore general translation, but not eIF5B GTPase activity. These suppressor mutations reduce the ribosome affinity of eIF5B and increase AUG skipping/leaky scanning. The uncoupling of translation and eIF5B GTPase activity suggests a regulatory rather than mechanical function for eIF5B GTP hydrolysis in translation initiation. The translational defect suggests eIF5B stabilizes Met-tRNA(i)(Met) binding and that GTP hydrolysis by eIF5B is a checkpoint monitoring 80S ribosome assembly in the final step of translation initiation.  相似文献   

3.
Eukaryotic initiation factor 5 (eIF5) plays multiple roles in translation initiation. Its N-terminal domain functions as a GTPase-activator protein (GAP) for GTP bound to eIF2, while its C-terminal region nucleates the interactions between multiple translation factors, including eIF1, which acts to inhibit GTP hydrolysis or P(i) release, and the beta subunit of eIF2. These proteins and the events in which they participate are critical for the accurate recognition of the correct start codon during translation initiation. Here, we report the three-dimensional solution structure of the N-terminal domain of human eIF5, comprising two subdomains, both reminiscent of nucleic-acid-binding modules. The N-terminal subdomain contains the "arginine finger" motif that is essential for GAP function but which, unusually, resides in a partially disordered region of the molecule. This implies that a conformational reordering of this portion of eIF5 is likely to occur upon formation of a competent complex for GTP hydrolysis, following the appropriate activation signal. Interestingly, the N-terminal subdomain of eIF5 reveals an alpha/beta fold structurally similar to both the archaeal orthologue of the beta subunit of eIF2 and, unexpectedly, to eIF1. These results reveal a novel protein fold common to several factors involved in related steps of translation initiation. The implications of these observations are discussed in terms of the mechanism of translation initiation.  相似文献   

4.
Eukaryotic and archaeal translation initiation processes involve a heterotrimeric GTPase e/aIF2 crucial for accuracy of start codon selection. In eukaryotes, the GTPase activity of eIF2 is assisted by a GTPase-activating protein (GAP), eIF5. In archaea, orthologs of eIF5 are not found and aIF2 GTPase activity is thought to be non-assisted. However, no in vitro GTPase activity of the archaeal factor has been reported to date. Here, we show that aIF2 significantly hydrolyses GTP in vitro. Within aIF2γ, H97, corresponding to the catalytic histidine found in other translational GTPases, and D19, from the GKT loop, both participate in this activity. Several high-resolution crystal structures were determined to get insight into GTP hydrolysis by aIF2γ. In particular, a crystal structure of the H97A mutant was obtained in the presence of non-hydrolyzed GTP. This structure reveals the presence of a second magnesium ion bound to GTP and D19. Quantum chemical/molecular mechanical simulations support the idea that the second magnesium ion may assist GTP hydrolysis by helping to neutralize the developing negative charge in the transition state. These results are discussed in light of the absence of an identified GAP in archaea to assist GTP hydrolysis on aIF2.  相似文献   

5.
Little is known about the molecular mechanics of the late events of translation initiation in eukaryotes. We present a kinetic dissection of the transition from a preinitiation complex after start codon recognition to the final 80S initiation complex. The resulting framework reveals that eukaryotic initiation factor (eIF)5B actually accelerates the rate of ribosomal subunit joining, and this acceleration is influenced by the conformation of the GTPase active site of the factor mediated by the bound nucleotide. eIF1A accelerates joining through its C-terminal interaction with eIF5B, and eIF1A release from the initiating ribosome, which occurs only after subunit joining, is accelerated by GTP hydrolysis by eIF5B. Following subunit joining, GTP hydrolysis by eIF5B alters the conformation of the final initiation complex and clears a path to promote rapid release of eIF1A. Our data, coupled with previous work, indicate that eIF1A is present on the ribosome throughout the entire initiation process and plays key roles at every stage.  相似文献   

6.
The translation initiation GTPase eukaryotic translation initiation factor 5B (eIF5B) binds to the factor eIF1A and catalyzes ribosomal subunit joining in vitro. We show that rapid depletion of eIF5B in Saccharomyces cerevisiae results in the accumulation of eIF1A and mRNA on 40S subunits in vivo, consistent with a defect in subunit joining. Substituting Ala for the last five residues in eIF1A (eIF1A-5A) impairs eIF5B binding to eIF1A in cell extracts and to 40S complexes in vivo. Consistently, overexpression of eIF5B suppresses the growth and translation initiation defects in yeast expressing eIF1A-5A, indicating that eIF1A helps recruit eIF5B to the 40S subunit prior to subunit joining. The GTPase-deficient eIF5B-T439A mutant accumulated on 80S complexes in vivo and was retained along with eIF1A on 80S complexes formed in vitro. Likewise, eIF5B and eIF1A remained associated with 80S complexes formed in the presence of nonhydrolyzable GDPNP, whereas these factors were released from the 80S complexes in assays containing GTP. We propose that eIF1A facilitates the binding of eIF5B to the 40S subunit to promote subunit joining. Following 80S complex formation, GTP hydrolysis by eIF5B enables the release of both eIF5B and eIF1A, and the ribosome enters the elongation phase of protein synthesis.  相似文献   

7.
Eukaryotic initiation factor 5B (eIF5B) is a GTPase that facilitates joining of the 60 S ribosomal subunit to the 40 S ribosomal subunit during translation initiation. Formation of the resulting 80 S initiation complex triggers eIF5B to hydrolyze its bound GTP, reducing the affinity of the factor for the complex and allowing it to dissociate. Here we present a kinetic analysis of GTP hydrolysis by eIF5B in the context of the translation initiation pathway. Our data indicate that stimulation of GTP hydrolysis by eIF5B requires the completion of early steps in translation initiation, including the eIF1- and eIF1A-dependent delivery of initiator methionyl-tRNA to the 40 S ribosomal subunit and subsequent GTP hydrolysis by eIF2. Full activation of GTP hydrolysis by eIF5B requires the extreme C terminus of eIF1A, which has previously been shown to interact with the C terminus of eIF5B. Disruption of either isoleucine residue in the eIF1A C-terminal sequence DIDDI reduces the rate constant for GTP hydrolysis by approximately 20-fold, whereas changing the aspartic acid residues has no effect. Changing the isoleucines in the C terminus of eIF1A also disrupts the ability of eIF5B to facilitate subunit joining. These data indicate that the interaction of the C terminus of eIF1A with eIF5B promotes ribosomal subunit joining and possibly provides a checkpoint for correct complex formation, allowing full activation of GTP hydrolysis only upon formation of a properly organized 80 S initiation complex.  相似文献   

8.
Roll-Mecak A  Cao C  Dever TE  Burley SK 《Cell》2000,103(5):781-792
X-ray structures of the universal translation initiation factor IF2/eIF5B have been determined in three states: free enzyme, inactive IF2/eIF5B.GDP, and active IF2/eIF5B.GTP. The "chalice-shaped" enzyme is a GTPase that facilitates ribosomal subunit joining and Met-tRNA(i) binding to ribosomes in all three kingdoms of life. The conserved core of IF2/eIF5B consists of an N-terminal G domain (I) plus an EF-Tu-type beta barrel (II), followed by a novel alpha/beta/alpha-sandwich (III) connected via an alpha helix to a second EF-Tu-type beta barrel (IV). Structural comparisons reveal a molecular lever, which amplifies a modest conformational change in the Switch 2 region of the G domain induced by Mg(2+)/GTP binding over a distance of 90 A from the G domain active center to domain IV. Mechanisms of GTPase function and ribosome binding are discussed.  相似文献   

9.
Small GTPases require an active GTPase activity to function correctly in their cellular environment. Mutation of key residues involved in this activity renders the GTPase defective and the small G-protein constitutively active (GTP-locked). The GTPase activity is also a target for GTPase-activating proteins (GAPs) which act to attenuate GTPase signalling by accelerating the conversion of bound GTP to bound GDP. The measurement of GTP hydrolysis in vitro can therefore provide information on the intrinsic activity of the small GTPase (e.g., mutated GTPase activity) as well as help define GAP specificity. Current methods to measure GTP hydrolysis in vitro utilise either radioactivity-based filter-binding assays or measurements of GDP:GTP:P(i) ratios by high-performance liquid chromatography (HPLC). Both provide timed snapshots of the current GTP-bound state, can be prone to experimental errors, and do not provide a real-time observation of GTP hydrolysis. The method we describe here utilises a fluorescently labelled, phosphate-binding protein (PBP), which scavenges for free inorganic phosphate (P(i)). On binding of a single P(i), a change of protein conformation is coupled to a 7-fold increase in fluorescence of the fluorophore. This method therefore permits real-time monitoring of GTPase activity, through measurement of P(i) production. This review describes the process of preparing and labelling the PBP with the MDCC fluorophore, as well as an example of its use in measuring the GTPase activity of small GTPases. We also discuss the pros and cons, and implications of the technique in comparison to the radioactive and HPLC method of measuring the GTPase activity.  相似文献   

10.
Maiti T  Das S  Maitra U 《Gene》2000,244(1-2):109-118
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S ribosomal initiation complex (40S.eIF3.AUG.Met-tRNA(f).eIF2.GTP) to promote the hydrolysis of bound GTP. In Saccharomyces cerevisiae, eIF5, a protein of 45346Da, is encoded by a single-copy essential gene, TIF5. In this paper, we have isolated a temperature-sensitive S. cerevisiae strain, TMY5-1, by replacing the wild-type chromosomal copy of TIF5 with one mutagenized in vitro. The mutant yeast cells rapidly cease protein synthesis when grown under non-permissive conditions, lose polyribosomes and accumulate free 80S ribosomes. Further characterization of mutant eIF5 showed that the mutant protein, expressed in Escherichia coli, is defective both in its interaction with eIF2 as well as in mediating the hydrolysis of GTP bound to the 40S initiation complex and consequently in the formation of the 80S initiation complex. Additionally, the availability of a yeast strain containing temperature-sensitive mutation in the eIF5 gene allowed us to construct a cell-free translation system that was dependent on exogenously added eIF5 for translation of mRNAs in vitro.  相似文献   

11.
Termination of translation in eukaryotes is governed by two polypeptide chain release factors, eRF1 and eRF3 on the ribosome. eRF1 promotes stop-codon-dependent hydrolysis of peptidyl-tRNA, and eRF3 interacts with eRF1 and stimulates eRF1 activity in the presence of GTP. Here, we have demonstrated that eRF3 is a GTP-binding protein endowed with a negligible, if any, intrinsic GTPase activity that is profoundly stimulated by the joint action of eRF1 and the ribosome. Separately, neither eRF1 nor the ribosome display this effect. Thus, eRF3 functions as a GTPase in the quaternary complex with ribosome, eRF1, and GTP. From the in vitro uncoupling of the peptidyl-tRNA and GTP hydrolyses achieved in this work, we conclude that in ribosomes both hydrolytic reactions are mediated by the formation of the ternary eRF1-eRF3-GTP complex. eRF1 and the ribosome form a composite GTPase-activating protein (GAP) as described for other G proteins. A dual role for the revealed GTPase complex is proposed: in " GTP state," it controls the positioning of eRF1 toward stop codon and peptidyl-tRNA, whereas in "GDP state," it promotes release of eRFs from the ribosome. The initiation, elongation, and termination steps of protein synthesis seem to be similar with respect to GTPase cycles.  相似文献   

12.
In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. In eukaryotes, the role of eIF5B in ribosomal subunit joining is established and structural data showing eIF5B bound to the full ribosome were obtained. To achieve its function, eIF5B collaborates with eIF1A. However, structural data illustrating how these two factors interact on the small ribosomal subunit have long been awaited. The role of the archaeal counterparts, aIF5B and aIF1A, remains to be extensively addressed. Here, we study the late steps of Pyrococcus abyssi translation initiation. Using in vitro reconstituted initiation complexes and light scattering, we show that aIF5B bound to GTP accelerates subunit joining without the need for GTP hydrolysis. We report the crystallographic structures of aIF5B bound to GDP and GTP and analyze domain movements associated to these two nucleotide states. Finally, we present the cryo-EM structure of an initiation complex containing 30S bound to mRNA, Met-tRNAiMet, aIF5B and aIF1A at 2.7 Å resolution. Structural data shows how archaeal 5B and 1A factors cooperate to induce a conformation of the initiator tRNA favorable to subunit joining. Archaeal and eukaryotic features of late steps of translation initiation are discussed.  相似文献   

13.
Protein biosynthesis is a complex biochemical process involving a number of stages at which different translation factors specifically interact with ribosome. Some of these factors belong to GTP-binding proteins, or G-proteins. Due to their functioning, GTP is hydrolyzed to yield GDP and the inorganic phosphate ion Pi. Interaction with ribosome enhances GTPase activity of translation factors; i.e., ribosome plays a role of GTPase-activating protein (GAP). GTPases involved in translation interact with ribosome at every stage of protein biosynthesis. Initiation factor 2 (IF2) catalyzes initiator tRNA binding to the ribosome P site and subsequent binding of the 50S subunit to the initiation complex of the 30S subunit. Elongation factor Tu (EF-Tu) controls aminoacyl-tRNA delivery to the ribosome A site, while elongation factor G (EF-G) catalyzes translocation of the mRNA-tRNA complex by one codon on the ribosome. Release factor 3 (RF3) catalyzes the release of termination factors 1 or 2 (RF1 or RF2) from the ribosomal complex after completion of protein synthesis and peptidyl-tRNA hydrolysis. The functional properties of translational GTPases as related to other G-proteins, the putative mechanism of GTP hydrolysis, structural features, and the functional cycles of translational GTPases are considered.  相似文献   

14.
ADP-ribosylation factor (ARF) proteins are key players in numerous vesicular trafficking events ranging from the formation and fusion of vesicles in the Golgi apparatus to exocytosis and endocytosis. To complete their GTPase cycle, ARFs require a guanine nucleotide-exchange protein to catalyze replacement of GDP by GTP and a GTPase-activating protein (GAP) to accelerate hydrolysis of bound GTP. Recently numerous guanine nucleotide-exchange proteins and GAP proteins have been identified and partially characterized. Every ARF GAP protein identified to date contains a characteristic zinc finger motif. GIT1 and GIT2, two members of a new family of G protein-coupled receptor kinase-interacting proteins, also contain a putative zinc finger motif and display ARF GAP activity. Truncation of the amino-terminal region containing the zinc finger motif prevented GAP activity of GIT1. One zinc molecule was found associated per molecule of purified recombinant ARF-GAP1, GIT1, and GIT2 proteins, suggesting the zinc finger motifs of ARF GAPs are functional and should play an important role in their GAP activity. Unlike ARF-GAP1, GIT1 and GIT2 stimulate hydrolysis of GTP bound to ARF6. Accordingly we found that the phospholipid dependence of the GAP activity of ARF-GAP1 and GIT proteins was quite different, as the GIT proteins are stimulated by phosphatidylinositol 3,4, 5-trisphosphate whereas ARF-GAP1 is stimulated by phosphatidylinositol 4,5-bisphosphate and diacylglycerol. These results suggest that although the mechanism of GTP hydrolysis is probably very similar in these two families of ARF GAPs, GIT proteins might specifically regulate the activity of ARF6 in cells in coordination with phosphatidylinositol 3-kinase signaling pathways.  相似文献   

15.
The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.  相似文献   

16.
GTP hydrolysis by elongation factor G (EF-G) is essential for the translocation step in protein elongation. The low intrinsic GTPase activity of EF-G is strongly stimulated by the ribosome. Here we show that a conserved arginine, R29, of Escherichia coli EF-G is crucial for GTP hydrolysis on the ribosome, but not for GTP binding or ribosome interaction, suggesting that it may be directly involved in catalysis. Another conserved arginine, R59, which is homologous to the catalytic arginine of G(alpha) proteins, is not essential for GTP hydrolysis, but influences ribosome binding and translocation. These results indicate that EF-G is similar to other GTPases in that an arginine residue is required for GTP hydrolysis, although the structural changes leading to GTPase activation are different.  相似文献   

17.
Structural studies of GTP-binding proteins identified the Switch I and Switch II elements as contacting the gamma-phosphate of GTP and undergoing marked conformational changes upon GTP versus GDP binding. Movement of a universally conserved Gly at the N terminus of Switch II is thought to trigger the structural rearrangement of this element. Consistently, we found that mutation of this Gly in the Switch II element of the eukaryotic translation initiation factor 5B (eIF5B) from Saccharomyces cerevisiae impaired cell growth and the guanine nucleotide-binding, GTPase, and ribosomal subunit joining activities of eIF5B. In a screen for mutations that bypassed the critical requirement for this Switch II Gly in eIF5B, intragenic suppressors were identified in the Switch I element and at a residue in domain II of eIF5B that interacts with Switch II. The intragenic suppressors restored yeast cell growth and eIF5B nucleotide-binding, GTP hydrolysis, and subunit joining activities. We propose that the Switch II mutation distorts the geometry of the GTP-binding active site, impairing nucleotide binding and the eIF5B domain movements associated with GTP binding. Accordingly, the Switch I and domain II suppressor mutations induce Switch II to adopt a conformation favorable for nucleotide binding and hydrolysis and thereby reestablish coupling between GTP binding and eIF5B domain movements.  相似文献   

18.
The interaction of the coatomer coat complex with the Golgi membrane is initiated by the active, GTP-bound state of the small GTPase ADP-ribosylation factor 1 (ARF1), whereas GTP hydrolysis triggers coatomer dissociation. The hydrolysis of GTP on ARF1 depends on the action of members of a family of ARF1-directed GTPase-activating proteins (GAPs). Previous studies in well defined systems indicated that the activity of a mammalian Golgi membrane-localized ARF GAP (GAP1) might be subjected to regulation by membrane lipids as well as by the coatomer complex. Coatomer was found to strongly stimulate GAP-dependent GTP hydrolysis on a membrane-independent mutant of ARF1, whereas we reported that GTP hydrolysis on wild type, myristoylated ARF1 loaded with GTP in the presence of phospholipid vesicles was coatomer-independent. To investigate the regulation of ARF1 GAPs under more physiological conditions, we studied GTP hydrolysis on Golgi membrane-associated ARF1. The activities at the Golgi of recombinant GAP1 as well as coatomer-depleted fractions from rat brain cytosol resembled those observed in the presence of liposomes; however, unlike in liposomes, GAP activities on Golgi membranes were approximately doubled upon addition of coatomer. By contrast, endogenous GAP activity in Golgi membrane preparations was unaffected by coatomer. Cytosolic GAP activity was partially reduced following immunodepletion of GAP1, indicating that GAP1 plays a significant although not exclusive role in the regulation of GTP hydrolysis at the Golgi. Unlike the activities of the mammalian proteins, the Saccharomyces cerevisiae Glo3 ARF GAP displayed activity at the Golgi that was highly dependent on coatomer. We conclude that ARF GAPs in themselves can efficiently stimulate GTP hydrolysis on ARF1 at the Golgi, and that coatomer may play an auxiliary role in this reaction, which would lead to an increased cycling rate of ARF1 in COPI-coated regions of the Golgi membrane.  相似文献   

19.
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S•eIF3•AUG•Met-tRNAf•eIF2•GTP) and, acting as a GTPase activating protein, promotes the hydrolysis of bound GTP. We isolated a protein kinase from rabbit reticulocyte lysates on the basis of its ability to phosphorylate purified bacterially expressed recombinant rat eIF5. Physical, biochemical and antigenic properties of this kinase identify it as casein kinase II (CK II). Mass spectrometric analysis of maximally in vitro phosphorylated eIF5 localized the major phosphorylation sites at Ser-387 and Ser-388 near the C-terminus of eIF5. These serine residues are embedded within a cluster of acidic amino acid residues and account for nearly 90% of the total in vitro eIF5 phosphorylation. A minor phosphorylation site at Ser-174 was also observed. Alanine substitution mutagenesis at Ser-387 and Ser-388 of eIF5 abolishes phosphorylation by the purified kinase as well as by crude reticulocyte lysates. The same mutations also abolish phosphorylation of eIF5 when transfected into mammalian cells suggesting that CK II phosphorylates eIF5 at these two serine residues in vivo as well.  相似文献   

20.
eIF5 is the GTPase activating protein (GAP) for the eIF2·GTP·Met-tRNAiMet ternary complex with a critical role in initiation codon selection. Previous work suggested that the eIF5 mutation G31R/SUI5 elevates initiation at UUG codons by increasing GAP function. Subsequent work implicated eIF5 in rearrangement of the preinitiation complex (PIC) from an open, scanning conformation to a closed state at AUG codons, from which Pi is released from eIF2·GDP·Pi. To identify eIF5 functions crucial for accurate initiation, we investigated the consequences of G31R on GTP hydrolysis and Pi release, and the effects of intragenic G31R suppressors on these reactions, and on the partitioning of PICs between open and closed states. eIF5-G31R altered regulation of Pi release, accelerating it at UUG while decreasing it at AUG codons, consistent with its ability to stabilize the closed complex at UUG. Suppressor G62S mitigates both defects of G31R, accounting for its efficient suppression of UUG initiation in G31R,G62S cells; however suppressor M18V impairs GTP hydrolysis with little effect on PIC conformation. The strong defect in GTP hydrolysis conferred by M18V likely explains its broad suppression of Sui mutations in numerous factors. We conclude that both of eIF5''s functions, regulating Pi release and stabilizing the closed PIC conformation, contribute to stringent AUG selection in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号