首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ADP-glucose pyrophosphorylase (AGPase) catalyses the synthesis of ADP-glucose, and is a highly regulated enzyme in the pathway of starch synthesis. In Arabidopsis thaliana, the enzyme is a heterotetramer, containing two small subunits encoded by the APS1 gene and two large subunits encoded by the APL1-4 genes. TILLING (Targeting Induced Local Lesions IN Genomes) of a chemically mutagenised population of A. thaliana plants identified 33 novel mutations in the APS1 gene, including 21 missense mutations in the protein coding region. High throughput measurements using a robotised cycling assay showed that maximal AGPase activity in the aps1 mutants varied from <15 to 117% of wild type (WT), and that the kinetic properties of the enzyme were altered in several lines, indicating a role for the substituted amino acid residues in catalysis or substrate binding. These results validate the concept of using such a platform for efficient high-throughput screening of very large populations of mutants, natural accessions or introgression lines. AGPase was estimated to have a flux control coefficient of 0.20, indicating that the enzyme exerted only modest control over the rate of starch synthesis in plants grown under short day conditions (8 h light/16 h dark) with an irradiance of 150 μmol quanta m−2 s−1. Redox activation of the enzyme, via reduction of the intermolecular disulphide bridge between the two small subunits, was increased in several lines. This was sometimes, but not always, associated with a decrease in the abundance of the APS1 protein. In conclusion, the TILLING technique was used to generate an allelic series of aps1 mutants in A. thaliana that revealed new insights into the multi-layered regulation of AGPase. These mutants offer some advantages over the available loss-of-function mutants, e.g. adg1, for investigating the effects of subtle changes in the enzyme's activity on the rate of starch synthesis.  相似文献   

2.
3.
The development of root hairs serves as an excellent model to study cell growth using both cytological and genetic approaches. In the past, we have characterized LRX1, an extracellular protein of Arabidopsis consisting of an LRR-domain and a structural extensin domain. LRX1 is specifically expressed in root hairs and lrx1 mutants show severe deficiencies in root hair development. In this work, we describe the characterization of enl (enhancer of lrx1) mutants that were isolated in a visual screen of an ethylmethanesulfonate -mutagenized lrx1 line for plants exhibiting an enhanced lrx1 phenotype. Four recessive enl mutants were analyzed, three of which define new genetic loci involved in root hair development. The mutations at the enl loci and lrx1 result in additive phenotypes in enl/lrx1 double mutants. One enl mutant is affected in the ACTIN2 gene and encodes a protein with a 22 amino acid deletion at the C-terminus. The comparison of molecular and phenotypic data of different actin2 alleles suggests that the truncated ACTIN2 protein is still partially functional.  相似文献   

4.
When cultured on media containing the plant growth regulator auxin, hypocotyl explants of Arabidopsis thaliana generate adventitious roots. As a first step to investigate the genetic basis of adventitious organogenesis in plants, we isolated nine temperature-sensitive mutants defective in various stages in the formation of adventitious roots: five root initiation defective (rid1 to rid5) mutants failed to initiate the formation of root primordia; in one root primordium defective (rpd1) mutant, the development of root primordia was arrested; three root growth defective (rgd1, rgd2, and rgd3) mutants were defective in root growth after the establishment of the root apical meristem. The temperature sensitivity of callus formation and lateral root formation revealed further distinctions between the isolated mutants. The rid1 mutant was specifically defective in the reinitiation of cell proliferation from hypocotyl explants, while the rid2 mutant was also defective in the reinitiation of cell proliferation from root explants. These two mutants also exhibited abnormalities in the formation of the root apical meristem when lateral roots were induced at the restrictive temperature. The rgd1 and rgd2 mutants were deficient in root and callus growth, whereas the rgd3 mutation specifically affected root growth. The rid5 mutant required higher auxin concentrations for rooting at the restrictive temperature, implying a deficiency in auxin signaling. The rid5 phenotype was found to result from a mutation in the MOR1/GEM1 gene encoding a microtubule-associated protein. These findings about the rid5 mutant suggest a possible function of the microtubule system in auxin response.  相似文献   

5.
6.

Key message

Three new tmm mutants were isolated and showed differential phenotypes from tmm - 1 , and TMM overexpression led to abnormal leaf trichomes.

Abstract

TOO MANY MOUTH (TMM) plays a significant role in the stomatal signal transduction pathway, which involves in the regulation of stomatal distribution and patterning. Three mutants with clustered stomata were isolated and identified as new alleles of tmm. tmm-4 mutation included a base transversion from adenine to thymidine in position 1,033 of the TMM coding region and resulted in premature termination of translation at position 345 of TMM. tmm-5 had a base transition from cytosine to thymidine in 244 of TMM and translated 82 amino acids before premature termination. tmm-6 mutation took a base transition from guanine to adenine in 463 of TMM and changed a glycine (Gly) to an arginine (Arg) in position 155 of the protein. tmm-6 had an evident reduction of stomatal clusters and fewer stomata in cluster compared with other tmm alleles, possibly due to decreased level of entry divisions in cells next to two stomata or their precursors. tmm-5 and tmm-6 were hypersensitive to abscisic acid (ABA) in seedling growth and seed germination, while tmm-4 was defective in response to ABA during seed dormancy, suggesting that TMM was involved in ABA signaling transduction. Interestingly, overexpression of TMM resulted in the reduction of leaf trichomes and their branches, and this might reveal a new function of TMM in trichome development.  相似文献   

7.
8.
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.  相似文献   

9.
Journal of Plant Research - Whole-mount fluorescent in situ hybridization (WM-FISH) is an effective tool to observe chromosome behavior in tissues or organs. However, it is difficult to obtain a...  相似文献   

10.
The short stem and midrib (ssm) mutants of Arabidopsis thaliana show both semi-dwarf and wavy leaf phenotypes due to defects in the elongation of the stem internodes and leaves. Moreover, these abnormalities cannot be recovered by exogenous phytohormones. ssm was originally identified as a single recessive mutant of the ecotype Columbia (Col-0), but genetic crossing experiments have revealed that this mutant phenotype is restored by another gene that is functional in the ecotype Landsberg erecta (Ler) and not in Col-0. Map-based cloning of the gene that is defective in ssm mutants has uncovered a small deletion in the sixth intron of a gene encoding a syntaxin, VAM3/SYP22, which has been implicated in vesicle transport to the vacuole. This mutation appears to cause a peptide insertion in the deduced VAM3/SYP22 polypeptide sequence due to defective splicing of the shortened sixth intron. Significantly, when compared with the wild-type Ler genome, the wild-type Col-0 genome has a single base pair deletion causing a frameshift mutation in SYP23, a gene with the highest known homology to VAM3/SYP22. These findings suggest that VAM3/SYP22 and SYP23 have overlapping functions and that the vesicle transport mediated by these syntaxins is important for shoot morphogenesis.  相似文献   

11.
12.
Coumarin is a highly active allelopathic compound which plays a key role in plant–plant interactions and communications. It affects root growth and development of many species, but its mode of action has not been clarified yet. It has been hypothesized that auxin could mediate coumarin-induced effects on root system. Through morphological and pharmacological approaches together with the use of Arabidopsis auxin mutants, a possible interaction between coumarin and auxin in driving root system development has been investigated in Arabidopsis thaliana (Col-0). Coumarin strongly affected primary root elongation and lateral root development of Arabidopsis seedlings. In particular, 10?4 M coumarin significantly inhibited primary root elongation increasing lateral root number and root hairs length. Further, coumarin addition was able to restore the negative effects of TIBA and NPA, two auxin transport inhibitors, which caused a complete inhibition of lateral root formation. Arabidopsis auxin mutants differently responded to coumarin compared to wild type (Col-0). In particular, lax3 mutant showed the lowest (42 %) inhibition of primary root length, whereas, eir1-4 mutant had higher inhibition (53 %) compared to Col-0; conversely, aux1-22 mutant did not show any effect in response to coumarin. An increase of lateral root number was observed in pin1 mutant only. Finally, coumarin increased the root hairs length in eir1-4, lax3, pin1 and pin3-5 mutants, but not in aux1-22. These results suggested a functional interaction between coumarin and auxin polar transport in driving root development in A. thaliana.  相似文献   

13.
Auxin and the developing root of Arabidopsis thaliana   总被引:3,自引:0,他引:3  
The plant hormone auxin has long been known to play a crucial role in plant growth and development, but how it affects so many different processes has remained a mystery. Recent evidence from genetic and molecular studies has begun to reveal a possible mechanism for auxin action. In this article we will present an overview with specific emphasis on auxin's role in roots of Arabidopsis thaliana , focusing on cell division, elongation and differentiation.  相似文献   

14.
An allelic series for the chalcone synthase locus in Arabidopsis   总被引:11,自引:0,他引:11  
Saslowsky DE  Dana CD  Winkel-Shirley B 《Gene》2000,255(2):127-138
Five new alleles of the Arabidopsis chalcone synthase (CHS) locus, tt4, have been characterized at the gene, protein, and end product levels as a genetic approach to understanding structure-function relationships in a key enzyme of plant secondary metabolism. Together with two previously described mutants, these tt4 lines represent one of the first allelic series for a central enzyme of the flavonoid pathway and include both null alleles and alleles with leaky, apparently temperature-sensitive, phenotypes. A variety of effects on accumulation of CHS protein and flavonoid glycosides were observed among these lines, including alterations in the apparent stability and activity of the enzyme. Assembly of the CHS homodimer also appeared to be impacted in several cases. A three-dimensional model of the Arabidopsis CHS protein, based on the recently determined structure for alfalfa CHS, predicts significant effects on protein structure or folding for several of the mutations. This allelic series should provide a useful genetic resource for ongoing studies of flavonoid enzyme structure, function, and subcellular organization.  相似文献   

15.
Owing to a weak availability in soil, plants have developed numerous morphological, physiological and biochemical adaptations to acquire phosphate (Pi). Identification and characterisation of key genes involved in the initial steps of Pi-signalling might provide clues about the regulation of the complex Pi deficiency adaptation mechanism. A two-dimensional gel electrophoresis approach was performed to investigate proteome responses to Pi starvation in Arabidopsis. Two ecotypes were selected according to contrasting responses of their root system architecture to low availability of Pi. Thirty protein spots were shown to be affected by Pi deficiency. Fourteen proteins appeared to be up-regulated and ten down-regulated with ecotype Be-0, wheras only thirteen proteins were observed as down-regulated for ecotype Ll-0. Furthermore, systematic and opposite responses to Pi deficiency were observed between the two ecotypes. The sequences of these 30 differentially expressed protein spots were identified using mass spectrometry, and most of the proteins were involved in oxidative stress, carbohydrate and proteins metabolism. The results suggested that the modulation of alcohol dehydrogenase, malic enzyme and aconitate hydratase may contribute to the contrasted adaptation strategy to Pi deficiency of Be-0 and Ll-0 ecotypes. A focus on aconitate hydratase highlighted a complex reverse response of the pattern of corresponding spots between the two ecotypes. This protein, also potentially involved in iron homeostasis, was speculated to contribute, at least indirectly, to the root architecture response of these ecotypes.  相似文献   

16.
This paper describes, for the first time, de novo adventitious root formation from thin cell layers (TCLs) of Arabidopsis thaliana. The objective of the study was to determine the optimal hormonal and light conditions and the optimal exogenous Ca2+ concentration for obtaining adventitious rooting (AR) from A. thaliana TCLs and to identify the tissue(s) involved in the process. The results show that maximum AR was obtained with a single-phase method in the presence of 10 M indole-3-butyric acid and 0.1 M kinetin under continuous darkness for 30 days and with 0.6 mM exogenous CaCl2. The endodermis was the only tissue involved in root meristemoid formation. The role of Ca2+ in AR and the importance of using Arabidopsis TCLs in studies on the genetic/biochemical control of AR are discussed.Abbreviations AR Adventitious rooting - CIM Callus-inducing medium - Col-0 Columbia ecotype - 2,4-D 2,4-Dichlorophenoxyacetic acid - HFM Hormone-free medium - HM Medium with 10 M IBA and 0.1 M Kin - IBA Indole-3-butyric acid - Kin Kinetin - LS Longitudinal section - NAA -Naphthaleneacetic acid - RIM Root-inducing medium - TCL Thin cell layer - WS Wassilewskija ecotype  相似文献   

17.
Circumnutation and gravitropism cause root waving in Arabidopsis thaliana   总被引:3,自引:0,他引:3  
Arabidopsis thaliana roots grow in a wavy pattern on inclinedagar plates. This waving behaviour has been interpreted as representinga gravitropism-dependent thigmotropic response. We argue insteadthat this root waving represents primarily a flattened spiralgrowth pattern resulting from circumnutation and gravitropism. Key words: Arabidopsis, circumnutation, gravitropism, roots, thigmotropism  相似文献   

18.
Arabidopsis accessions differ largely in their seed dormancy behavior. To understand the genetic basis of this intraspecific variation we analyzed two accessions: the laboratory strain Landsberg erecta (Ler) with low dormancy and the strong-dormancy accession Cape Verde Islands (Cvi). We used a quantitative trait loci (QTL) mapping approach to identify loci affecting the after-ripening requirement measured as the number of days of seed dry storage required to reach 50% germination. Thus, seven QTL were identified and named delay of germination (DOG) 1-7. To confirm and characterize these loci, we developed 12 near-isogenic lines carrying single and double Cvi introgression fragments in a Ler genetic background. The analysis of these lines for germination in water confirmed four QTL (DOG1, DOG2, DOG3, and DOG6) as showing large additive effects in Ler background. In addition, it was found that DOG1 and DOG3 genetically interact, the strong dormancy determined by DOG1-Cvi alleles depending on DOG3-Ler alleles. These genotypes were further characterized for seed dormancy/germination behavior in five other test conditions, including seed coat removal, gibberellins, and an abscisic acid biosynthesis inhibitor. The role of the Ler/Cvi allelic variation in affecting dormancy is discussed in the context of current knowledge of Arabidopsis germination.  相似文献   

19.
Edwards KD  Lynn JR  Gyula P  Nagy F  Millar AJ 《Genetics》2005,170(1):387-400
Temperature compensation is a defining feature of circadian oscillators, yet no components contributing to the phenomenon have been identified in plants. We tested 27 accessions of Arabidopsis thaliana for circadian leaf movement at a range of constant temperatures. The accessions showed varying patterns of temperature compensation, but no clear associations to the geographic origin of the accessions could be made. Quantitative trait loci (QTL) were mapped for period and amplitude of leaf movement in the Columbia by Landsberg erecta (CoL) and Cape Verde Islands by Landsberg erecta (CvL) recombinant inbred lines (RILs) at 12 degrees , 22 degrees , and 27 degrees . Six CvL and three CoL QTL were located for circadian period. All of the period QTL were temperature specific, suggesting that they may be involved in temperature compensation. The flowering-time gene GIGANTEA and F-box protein ZEITLUPE were identified as strong candidates for two of the QTL on the basis of mapping in near isogenic lines (NILs) and sequence comparison. The identity of these and other candidates suggests that temperature compensation is not wholly determined by the intrinsic properties of the central clock proteins in Arabidopsis, but rather by other genes that act in trans to alter the regulation of these core proteins.  相似文献   

20.
Distinct tissues and organs of plants exhibit dissimilar responses to light exposure – cotyledon growth is promoted by light, whereas hypocotyl growth is inhibited by light. Light can have different impacts on root development, including impacting root elongation, morphology, lateral root proliferation and root tropisms. In many cases, light inhibits root elongation. There has been much attention given to whether roots themselves are the sites of photoperception for light that impacts light-dependent growth and development of roots. A number of approaches including photoreceptor localization in planta, localized irradiation and exposure of dissected roots to light have been used to explore the site(s) of light perception for the photoregulation of root development. Such approaches have led to the observation that photoreceptors are localized to roots in many plant species, and that roots are capable of light absorption that can alter morphology and/or gene expression. Our recent results show that localized depletion of phytochrome photoreceptors in Arabidopsis thaliana disrupts root development and root responsiveness to the plant hormone jasmonic acid. Thus, root-localized light perception appears central to organ-specific, photoregulation of growth and development in roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号