首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy and is characterized by asymmetric left ventricular hypertrophy and diastolic dysfunction, and a frequent cause of sudden cardiac death at young age. Pharmacological treatment to prevent or reverse HCM is lacking. This may be partly explained by the variety of underlying disease causes. Over 1500 mutations have been associated with HCM, of which the majority reside in genes encoding sarcomere proteins, the cardiac contractile building blocks. Several mutation-mediated disease mechanisms have been identified, with proof for gene- and mutation-specific cellular perturbations. In line with mutation-specific changes in cellular pathology, the response to treatment may depend on the underlying sarcomere gene mutation. In this review, we will discuss evidence for mutation-specific pathology and treatment responses in HCM patients, mouse models and engineered heart tissue. The pros and cons of these experimental models for studying mutation-specific HCM pathology and therapies will be outlined.  相似文献   

2.
Hypertrophic cardiomyopathy:from gene defect to clinical disease   总被引:9,自引:0,他引:9  
Major advances have been made over the last decade in our understanding of the molecular basis of several cardiac conditions.Hypertrophic cardiomyopathy(HCM)was the first cardiac disorder in which a genetic basis was identified and as such,has acted as a paradigm for the study of an inherited cardiac disorder.HCM can result in clinical symptoms ranging from no symptoms to severe heart failure and premature sudden death.HCM is the commonest cause of sudden death in those aged less than 35 years, including competitive athletes.At least ten genes have now been identified,defects in which cause HCM.All of these genes encode proteins which comprise the basic contractile unit of the heart,i.e.the sarcomere.While much is now known about which genes cause disease and the various clinical presentations,very little is known about how these gene defects cause disease,and what factors modify the expression of the mutant genes.Studies in both cell culture and animal models of HCM are now beginning to shed light on the signalling pathways involved in HCM,and the role of both environmental and genetic modifying factors.Understanding these mechanisms will ultimately improve our knowledge of the basic biology of heart muscle function,and will therefore provide new avenues for treating cardiovascular disease in man.  相似文献   

3.
Major advances have been made over the last decade in our understanding of the molecular basis of several cardiac conditions. Hypertrophic cardiomyopathy (HCM) was the first cardiac disorder in which a genetic basis was identified and as such, has acted as a paradigm for the study of an inherited cardiac disorder. HCM can result in clinical symptoms ranging from no symptoms to severe heart failure and premature sudden death. HCM is the commonest cause of sudden death in those aged less than 35 years, including competitive athletes. At least ten genes have now been identified, defects in which cause HCM. All of these genes encode proteins which comprise the basic contractile unit of the heart, i.e. the sarcomere. While much is now known about which genes cause disease and the various clinical presentations, very little is known about how these gene defects cause disease, and what factors modify the expression of the mutant genes. Studies in both cell culture and animal models of HCM are now beginning to  相似文献   

4.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease, associated with a high risk of sudden cardiac death. ARVC has been termed a ‘disease of the desmosome’ based on the fact that in many cases, it is caused by mutations in genes encoding desmosomal proteins at the specialised intercellular junctions between cardiomyocytes, the intercalated discs. Desmosomes maintain the structural integrity of the ventricular myocardium and are also implicated in signal transduction pathways. Mutated desmosomal proteins are thought to cause detachment of cardiac myocytes by the loss of cellular adhesions and also affect signalling pathways, leading to cell death and substitution by fibrofatty adipocytic tissue. However, mutations in desmosomal proteins are not the sole cause for ARVC as mutations in non-desmosomal genes were also implicated in its pathogenesis. This review will consider the pathology, genetic basis and mechanisms of pathogenesis for ARVC.  相似文献   

5.
Hypertrophic cardiomyopathy (HCM) is characterized by ventricular hypertrophy accompanied by myofibrillar disarrays. Molecular genetic analyses have revealed that mutations in 8 different genes cause HCM. Mutations in these disease genes, however, could be found in about half of HCM patients, suggesting that there are other unknown disease gene(s). Because the known disease genes encode sarcomeric proteins expressed in the cardiac muscle, we searched for a disease-associated mutation in the titin gene in 82 HCM patients who had no mutation in the known disease genes. A G to T transversion in codon 740, from CGC to CTC, replacing Arginine with Leucine was found in a patient. This mutation was not found in more than 500 normal chromosomes and increased the binding affinity of titin to alpha-actitin in the yeast two-hybrid assay. These observations suggest that the titin mutation may cause HCM in this patient via altered affinity to alpha-actinin.  相似文献   

6.
The Minute syndrome in Drosophila melanogaster is characterized by delayed development, poor fertility, and short slender bristles. Many Minute loci correspond to disruptions of genes for cytoplasmic ribosomal proteins, and therefore the phenotype has been attributed to alterations in translational processes. Although protein translation is crucial for all cells in an organism, it is unclear why Minute mutations cause effects in specific tissues. To determine whether the heart is sensitive to haplo-insufficiency of genes encoding ribosomal proteins, we measured heart function of Minute mutants using optical coherence tomography. We found that cardiomyopathy is associated with the Minute syndrome caused by haplo-insufficiency of genes encoding cytoplasmic ribosomal proteins. While mutations of genes encoding non-Minute cytoplasmic ribosomal proteins are homozygous lethal, heterozygous deficiencies spanning these non-Minute genes did not cause a change in cardiac function. Deficiencies of genes for non-Minute mitochondrial ribosomal proteins also did not show abnormal cardiac function, with the exception of a heterozygous disruption of mRpS33. We demonstrate that cardiomyopathy is a common trait of the Minute syndrome caused by haplo-insufficiency of genes encoding cytoplasmic ribosomal proteins. In contrast, most cases of heterozygous deficiencies of genes encoding non-Minute ribosomal proteins have normal heart function in adult Drosophila.  相似文献   

7.
Role of troponin T in disease   总被引:5,自引:0,他引:5  
Several striated muscle myopathies have been directly linked to mutations in contractile and associated proteins. Troponin T (TnT) is one of the three subunits that form troponin (Tn) which together with tropomyosin is responsible for the regulation of striated muscle contraction. All three subunits of cardiac Tn as well as tropomyosin have been associated with hypertrophic cardiomyopathy (HCM). However, TnT accounts for most of the mutations that cause HCM in these regulatory proteins. To date 30 mutations have been identified in the cardiac TnT (CTnT) gene that results in familial HCM (FHC). The CTnT gene has also been associated with familial dilated cardiomyopathy (DCM). CTnT deficiency is lethal due to impaired cardiac development. A recessive nonsense mutation in the gene encoding slow skeletal TnT has been associated with an unusual, severe form of nemaline myopathy among the Old Order Amish. How each mutation leads to the diverse clinical symptoms associated with FHC, DCM or nemaline myopathy is unclear. However, the use of animal model systems, in particular transgenic mice, has significantly increased our knowledge of normal and myopathic muscle physiology. In this review, we focus on the role of TnT in muscle physiology and disease. (Mol Cell Biochem 263: 115–129, 2004)  相似文献   

8.
Hypertrophic cardiomyopathy (HCM) is a common, autosomal dominant disorder primarily characterized by left ventricular hypertrophy and is the leading cause of sudden cardiac death in youth. HCM is caused by mutations in several sarcomeric proteins, with mutations in MYH7, encoding β-MyHC, being the most common. While many mutations in the globular head region of the protein have been reported and studied, analysis of HCM-causing mutations in the β-MyHC rod domain has not yet been reported. To address this question, we performed an array of biochemical and biophysical assays to determine how the HCM-causing E1356K mutation affects the structure, stability, and function of the β-MyHC rod. Surprisingly, the E1356K mutation appears to thermodynamically destabilize the protein, rather than alter the charge profile know to be essential for muscle filament assembly. This thermodynamic instability appears to be responsible for the decreased ability of the protein to form filaments and may be responsible for the HCM phenotype seen in patients.  相似文献   

9.
Hypertrophic cardiomyopathy (HCM) is a dominant genetic disorder of the myocardium associated with dysfunctional contractile proteins. The major risk of HCM is sudden cardiac death, which may occur even in asymptomatic carriers. Causes are highly heterogeneous. Over 140 different mutations in nine sarcomeric genes have been described to date. The majority of cases (80% or more) may eventually be traced to one of these genes. Although genetic counselling is suggested even if mutations are not known, molecular diagnosis implies new options such as carrier identification or - theoretically - preclinical risk stratification. A scheme according to which cardiologists and clinical and molecular geneticists could cooperate in counselling patients and managing HCM clinically is proposed.  相似文献   

10.
Structural analysis of obscurin gene in hypertrophic cardiomyopathy   总被引:3,自引:0,他引:3  
Hypertrophic cardiomyopathy (HCM) is a cardiac disease characterized by left ventricular hypertrophy with diastolic dysfunction. Molecular genetic studies have revealed that HCM is caused by mutations in genes for sarcomere/Z-band components including titin/connectin and its associate proteins. However, disease-causing mutations can be found in about half of the patients, suggesting that other disease-causing genes remain to be identified. To explore a novel disease gene, we searched for obscurin gene (OBSCN) mutations in HCM patients, because obscurin interacts with titin/connectin. Two linked variants, Arg4344Gln and Ala4484Thr, were identified in a patient and functional analyses demonstrated that Arg4344Gln affected binding of obscurin to Z9-Z10 domains of titin/connectin, whereas Ala4484Thr did not. Myc-tagged obscurin showed that Arg4344Gln impaired obscurin localization to Z-band. These observations suggest that the obscurin abnormality may be involved in the pathogenesis of HCM.  相似文献   

11.
Hypertrophic cardiomyopathy (HCM) is a genetically transmitted cardiac disease characterized by unexplained myocardial hypertrophy and diverse clinical spectrum. Currently, more than 250 HCM-related mutations in 10 genes encoding contractile sarcomeric proteins have been identified. Phospholamban (PLN) is a modest modulator of intracellular Ca2+ homeostasis and may be a candidate gene responsible for cardiomyopathy. In this study 53 consecutive patients with HCM, coming from Northern Greece, were screened for mutations of PLN gene. The patients were evaluated by clinical history, physical examination, electrocardiogram and echocardiography. All PCR products were analyzed for mutation by both restriction analysis and sequencing. The systematic mutation screening did not reveal any mutation in exons 1 and 2 or in the promoter region of phospholamban gene. Additionally, no polymorphisms were detected in all patients. Therefore, PLN gene mutations were not found to be associated with HCM in a Northern Greece population.  相似文献   

12.
Hypertrophic cardiomyopathy (HCM), the most common inherited cardiac disorder, is characterized by increased ventricular wall thickness that cannot be explained by underlying conditions, cadiomyocyte hypertrophy and disarray, and increased myocardial fibrosis. In as many as 50% of HCM cases, the genetic cause remains unknown, suggesting that more genes may be involved. Nexilin, encoded by NEXN, is a cardiac Z-disc protein recently identified as a crucial protein that functions to protect cardiac Z-discs from forces generated within the sarcomere. We screened NEXN in 121 unrelated HCM patients who did not carry any mutation in eight genes commonly mutated in myofilament disease. Two missense mutations, c.391C>G (p.Q131E) and c.835C>T (p.R279C), were identified in exons 5 and 8 of NEXN, respectively, in two probands. Each of the two mutations segregated with the HCM phenotype in the family and was absent in 384 control chromosomes. In silico analysis revealed that both of the mutations affect highly conserved amino acid residues, which are predicted to be functionally deleterious. Cellular transfection studies showed that the two mutations resulted in local accumulations of nexilin and that the expressed fragment of actin-binding domain containing p.Q131E completely lost the ability to bind F-actin in C2C12 cells. Coimmunoprecipitation assay indicated that the p.Q131E mutation decreased the binding of full-length NEXN to α-actin and abolished the interaction between the fragment of actin-binding domain and α-actin. Therefore, the mutations in NEXN that we describe here may further expand the knowledge of Z-disc genes in the pathogenesis of HCM.  相似文献   

13.
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. Fourteen sarcomeric and sarcomere‐related genes have been implicated in HCM etiology, those encoding β‐myosin heavy chain (MYH7) and cardiac myosin binding protein C (MYBPC3) reported as the most frequently mutated: in fact, these account for around 50% of all cases related to sarcomeric gene mutations, which are collectively responsible for approximately 70% of all HCM cases. Here, we used denaturing high‐performance liquid chromatography followed by bidirectional sequencing to screen the coding regions of MYH7 and MYBPC3 in a cohort (n = 125) of Italian patients presenting with HCM. We found 6 MHY7 mutations in 9/125 patients and 18 MYBPC3 mutations in 19/125 patients. Of the three novel MYH7 mutations found, two were missense, and one was a silent mutation; of the eight novel MYBPC3 mutations, one was a substitution, three were stop codons, and four were missense mutations. Thus, our cohort of Italian HCM patients did not harbor the high frequency of mutations usually found in MYH7 and MYBPC3. This finding, coupled to the clinical diversity of our cohort, emphasizes the complexity of HCM and the need for more inclusive investigative approaches in order to fully understand the pathogenesis of this disease. J. Cell. Physiol. 226: 2894–2900, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most common hereditary cardiac conditions. Both are frequent causes of sudden death and are often associated with an adverse disease course. Alpha-cardiac actin is one of the disease genes where different missense mutations have been found to cause either HCM or DCM. We have tested the hypothesis that the protein-folding pathway plays a role in disease development for two actin variants associated with DCM and six associated with HCM. Based on a cell-free coupled translation assay the actin variants could be graded by their tendency to associate with the chaperonin TCP-1 ring complex/chaperonin containing TCP-1 (TRiC/CCT) as well as their propensity to acquire their native conformation. Some variant proteins are completely stalled in a complex with TRiC and fail to fold into mature globular actin and some appear to fold as efficiently as the wild-type protein. A fraction of the translated polypeptide became ubiquitinated and detergent insoluble. Variant actin proteins overexpressed in mammalian cell lines fail to incorporate into actin filaments in a manner correlating with the degree of misfolding observed in the cell-free assay; ranging from incorporation comparable to wild-type actin to little or no incorporation. We propose that effects of mutations on folding and fiber assembly may play a role in the molecular disease mechanism.  相似文献   

15.
Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with autosomal dominant inheritance caused by mutations in genes coding for sarcomeric and/or regulatory proteins expressed in cardiomyocytes. In a small cohort of HCM patients (n = 8), we searched for mutations in the two most common genes responsible for HCM and found four missense mutations in the MYH7 gene encoding cardiac β-myosin heavy chain (R204H, M493V, R719W, and R870H) and three mutations in the myosin-binding protein C3 gene (MYBPC3) including one missense (A848V) and two frameshift mutations (c.3713delTG and c.702ins26bp). The c.702ins26bp insertion resulted from the duplication of a 26-bp fragment in a 54-year-old female HCM patient presenting with clinical signs of heart failure due to diastolic dysfunction. Although such large duplications (> 10 bp) in the MYBPC3 gene are very rare and have been identified only in 4 families reported so far, the identical duplication mutation was found earlier in a Dutch patient, demonstrating that it may constitute a hitherto unknown founder mutation in central European populations. This observation underscores the significance of insertions into the coding sequence of the MYBPC3 gene for the development and pathogenesis of HCM.  相似文献   

16.

Introduction

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant heart disease mostly due to mutations in genes encoding sarcomeric proteins. HCM is characterised by asymmetric hypertrophy of the left ventricle (LV) in the absence of another cardiac or systemic disease. At present it lacks specific treatment to prevent or reverse cardiac dysfunction and hypertrophy in mutation carriers and HCM patients. Previous studies have indicated that sarcomere mutations increase energetic costs of cardiac contraction and cause myocardial dysfunction and hypertrophy. By using a translational approach, we aim to determine to what extent disturbances of myocardial energy metabolism underlie disease progression in HCM.

Methods

Hypertrophic obstructive cardiomyopathy (HOCM) patients and aortic valve stenosis (AVS) patients will undergo a positron emission tomography (PET) with acetate and cardiovascular magnetic resonance imaging (CMR) with tissue tagging before and 4 months after myectomy surgery or aortic valve replacement + septal biopsy. Myectomy tissue or septal biopsy will be used to determine efficiency of sarcomere contraction in-vitro, and results will be compared with in-vivo cardiac performance. Healthy subjects and non-hypertrophic HCM mutation carriers will serve as a control group.

Endpoints

Our study will reveal whether perturbations in cardiac energetics deteriorate during disease progression in HCM and whether these changes are attributed to cardiac remodelling or the presence of a sarcomere mutation per se. In-vitro studies in hypertrophied cardiac muscle from HOCM and AVS patients will establish whether sarcomere mutations increase ATP consumption of sarcomeres in human myocardium. Our follow-up imaging study in HOCM and AVS patients will reveal whether impaired cardiac energetics are restored by cardiac surgery.  相似文献   

17.
18.
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.  相似文献   

19.
Hypertrophic cardiomyopathy (HCM) is a disease characterised by unexplained left ventricular hypertrophy (LVH) (i.e. LVH in the absence of another cardiac or systemic disease that could produce a similar degree of hypertrophy), electrical instability and sudden death (SD). Germline mutations in genes encoding for sarcomere proteins are found in more than half of the cases of unexplained LVH. The autosomal dominant inherited forms of HCM are characterised by incomplete penetrance and variability in clinical and echocardiographic features, prognosis and therapeutic modalities. The identification of the genetic defect in one of the HCM genes allows accurate presymptomatic detection of mutation carriers in a family. Cardiac evaluation of at-risk relatives enables early diagnosis and identification of those patients at high risk for SD, which can be the first manifestation of the disease in asymptomatic persons. In this article we present our experience with genetic testing and cardiac screening in our HCM population and give an overview of the current literature available on this subject. (Neth Heart J 2007;15:184-9.)  相似文献   

20.
"Laminopathies": a wide spectrum of human diseases   总被引:9,自引:0,他引:9  
Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called "laminopathies." Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasia and Pelger-Huet anomaly. While mutations and clinical phenotypes of "laminopathies" have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new "laminopathies" and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号