首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional (3-D) helical reconstructions computed from electron micrographs of negatively stained dispersed F-actin filaments invariably revealed two uninterrupted columns of mass forming the "backbone" of the double-helical filament. The contact between neighboring subunits along the thus defined two long-pitch helical strands was spatially conserved and of high mass density, while the intersubunit contact between them was of lower mass density and varied among reconstructions. In contrast, phalloidinstabilized F-actin filaments displayed higher and spatially more conserved mass density between the two long-pitch helical strands, suggesting that this bicyclic hepta-peptide toxin strengthens the intersubunit contact between the two strands. Consistent with this distinct intersubunit bonding pattern, the two long-pitch helical strands of unstabilized filaments were sometimes observed separated from each other over a distance of two to six subunits, suggesting that the intrastrand intersubunit contact is also physically stronger than the interstrand contact. The resolution of the filament reconstructions, extending to 2.5 nm axially and radially, enabled us to reproducibly "cut out" the F-actin subunit which measured 5.5 nm axially by 6.0 nm tangentially by 3.2 nm radially. The subunit is distinctly polar with a massive "base" pointing towards the "barbed" end of the filament, and a slender "tip" defining its "pointed" end (i.e., relative to the "arrowhead" pattern revealed after stoichiometric decoration of the filaments with myosin subfragment 1). Concavities running approximately parallel to the filament axis both on the inner and outer face of the subunit define a distinct cleft separating the subunit into two domains of similar size: an inner domain confined to radii less than or equal to 2.5-nm forms the uninterrupted backbone of the two long-pitch helical strands, and an outer domain placed at radii of 2-5-nm protrudes radially and thus predominantly contributes to the outer part of the massive base. Quantitative evaluation of successive crossover spacings along individual F-actin filaments revealed the deviations from the mean repeat to be compensatory, i.e., short crossovers frequently followed long ones and vice versa. The variable crossover spacings and diameter of the F-actin filament together with the local unraveling of the two long-pitch helical strands are explained in terms of varying amounts of compensatory "lateral slipping" of the two strands past each other roughly perpendicular to the filament axis. This intrinsic disorder of the actin filament may enable the actin moiety to play a more active role in actin-myosin-based force generation than merely act as a rigid passive cable as has hitherto been assumed.  相似文献   

2.
An extensive structural analysis of microtubules assembled in vitro has been carried out using electron microscopy in conjunction with computer analysis based on Fourier transforms and helical diffraction theory. Microtubules assembled in vitro displayed a range of numbers of protofilaments from 12 to 16, with 14 the most abundant (84% in one large sampling). In almost all structures observed protofilaments are staggered to form a characteristic 3-start shallow helix. The presence of the 3-start helix was confirmed by fiber tilting experiments to correct the effects of microtubule flattening. Since α and β tubulin subunits alternate along the protofilaments, continuous helical lattices can be constructed with interactions between adjacent protofilaments involving unlike subunits (type A lattice) or like subunits (type B lattice). However, the 14-protofilament, 3-start microtubules are incompatible with either the A or B-type continuous helical lattice. Evidence is presented which indicates that lattice discontinuities are present which generate features of both the A and B-types, with the latter predominating.  相似文献   

3.
After dialysis against 10 mM-Tris-acetate (pH 8.5), vimentin that has been purified in the presence of urea is present in the form of tetrameric 2 to 3 nm X 48 nm rods known as protofilaments. These building blocks in turn polymerize into intermediate filaments (10 to 12 nm diameter) when they are dialyzed against a solution of physiological ionic strength and pH. By varying the ionic conditions under which polymerization takes place, we have identified two classes of assembly intermediates whose structures provide clues as to how an intermediate filament may be constructed. The structure of the first class, seen when assembly takes place at 10 to 20 mM-salt at pH 8.5, strongly suggests that one of the initial steps of filament assembly is the association of protofilaments into pairs with a half-unit axial stagger. Increasing the ionic strength of the assembly buffer leads to the emergence of short, full-width intermediate filaments at approximately 50 mM-salt at pH 8.5. In the presence of additional protofilaments, these short filaments elongate to many micrometers when the ionic strength and pH are further adjusted to physiological levels. The electron microscope images of the assembly intermediates suggest that vimentin-containing intermediate filaments are made up of eight protofilaments, assembled such that there is an approximately 22 nm axial stagger between neighboring protofilaments. We propose that this half-unit staggering of protofilaments is a fundamental feature of intermediate filament structure and assembly, and that it could account for the 20 to 22 nm axial repeat seen in all intermediate filaments examined so far.  相似文献   

4.
Nebulin is a giant protein that spans most of the muscle thin filament. Mutations in nebulin result in myopathies and dystrophies. Nebulin contains approximately 200 copies of approximately 35 residue modules, each believed to contain an actin binding site, organized into seven-module superrepeats. The strong correlation between the number of nebulin modules and the length of skeletal muscle thin filaments in different species suggests that nebulin determines thin filament length. Little information exists about the interactions between intact nebulin and F-actin. More insight has come from working with fragments of nebulin, containing from one to hundreds of actin binding modules. However, the observed stoichiometry of binding between these fragments and actin has ranged from 0.4 to 13 modules per actin subunit. We have used electron microscopy and a novel method of helical image analysis to characterize complexes of F-actin with a nebulin fragment. The fragment binds as an extended structure spanning three actin subunits and binding to different sites on each actin. Muscle regulation involves tropomyosin movement on the surface of actin, with binding in three states. Our results suggest the intriguing possibility that intact nebulin may also be able to occupy three different sites on F-actin.  相似文献   

5.
Fluorescence energy transfer was measured between Tyr-69 residues in an F-actin filament using 5-dimethylaminonaphthalene-1-sulfonyl chloride (DNS-Cl) as a fluorescence energy donor and 4-dimethylaminoazobenzene-4-sulfonyl chloride (DABSYL-Cl) as the acceptor. Both labels are covalently attached to Tyr-69 residues in an F-actin filament. Taking the helical structure of the F-actin filament into consideration, the radial coordinate of Tyr-69 was calculated to be in the range from 2.0 nm to 4.0 nm.  相似文献   

6.
The fibrillar substructure of keratin filaments unraveled   总被引:29,自引:19,他引:10       下载免费PDF全文
We show that intermediate-sized filaments reconstituted from human epidermal keratins appear unraveled in the presence of phosphate ions. In such unraveling filaments, up to four "4.5-nm protofibrils" can be distinguished, which are helically twisted around each other in a right-handed sense. Lowering the pH of phosphate-containing preparations causes the unraveling filaments to further dissociate into "2-nm protofilaments." In addition, we find that reconstitution of keratin extracts in the presence of small amounts of trypsin yields paracrystalline arrays of 4.5-nm protofibrils with a prominent 5.4-nm axial repeat. Limited proteolysis of intact filaments immobilized on an electron microscope grid also unveils the presence of 4.5-nm protofibrils within the filament with the same 5.4-nm axial repeat. These results, together with other published data, are consistent with a 10-nm filament model based on three distinct levels of helical organization: (a) the 2-nm protofilament, consisting of multi-chain extended alpha-helical segments coiled around each other; (b) the 4.5-nm protofibril, being a multi-stranded helix of protofilaments; and (c) the 10-nm filament, being a four-stranded helix of protofibrils.  相似文献   

7.
We have studied the assembly and GTPase of purified FtsZ from the hyperthermophilic archaeon Methanococcus jannaschii, a structural homolog of eukaryotic tubulin, employing wild-type FtsZ, FtsZ-His6 (histidine-tagged FtsZ), and the new mutants FtsZ-W319Y and FtsZ-W319Y-His6, with light scattering, nucleotide analyses, electron microscopy, and image processing methods. This has revealed novel properties of FtsZ. The GTPase of archaeal FtsZ polymers is suppressed in Na+-containing buffer, generating stabilized structures that require GDP addition for disassembly. FtsZ assembly is polymorphic. Archaeal FtsZ(wt) assembles into associated and isolated filaments made of two parallel protofilaments with a 43 A longitudinal spacing between monomers, and this structure is also observed in bacterial FtsZ from Escherichia coli. The His6 extension facilitates the artificial formation of helical tubes and sheets. FtsZ-W319Y-His6 is an inactivated GTPase whose assembly remains regulated by GTP and Mg2+. It forms two-dimensional crystals made of symmetrical pairs of tubulin-like protofilaments, which associate in an antiparallel array (similarly to the known Ca2+-induced sheets of FtsZ-His6). In contrast to the lateral interactions of microtubule protofilaments, we propose that the primary assembly product of FtsZ is the double-stranded filament, one or several of which might form the dynamic Z ring during prokaryotic cell division.  相似文献   

8.
Synchrotron x-ray studies on amyloid fibrils have suggested that the stacked pleated beta-sheets are twisted so that a repeating unit of 24 beta-strands forms a helical turn around the fibril axis (. J. Mol. Biol. 273:729-739). Based on this morphological study, we have constructed an atomic model for the twisted pleated beta-sheet of human Abeta amyloid protofilament. In the model, 48 monomers of Abeta 12-42 stack (four per layer) to form a helical turn of beta-sheet. Each monomer is in an antiparallel beta-sheet conformation with a turn located at residues 25-28. Residues 17-21 and 31-36 form a hydrophobic core along the fibril axis. The hydrophobic core should play a critical role in initializing Abeta aggregation and in stabilizing the aggregates. The model was tested using molecular dynamics simulations in explicit aqueous solution, with the particle mesh Ewald (PME) method employed to accommodate long-range electrostatic forces. Based on the molecular dynamics simulations, we hypothesize that an isolated protofilament, if it exists, may not be twisted, as it appears to be when in the fibril environment. The twisted nature of the protofilaments in amyloid fibrils is likely the result of stabilizing packing interactions of the protofilaments. The model also provides a binding mode for Congo red on Abeta amyloid fibrils. The model may be useful for the design of Abeta aggregation inhibitors.  相似文献   

9.
Fluorescence energy transfer was measured between Cys-10 residues in an F-actin filament using 5-[2-((iodoacetyl)amino)-ethyl]aminonaphthalene-1-sulphonic acid (1,5-IAEDANS) as a fluorescence energy donor and 4-dimethylaminophenylazophenyl-4'-maleimide (DABMI) as the acceptor. Both labels were covalently attached to Cys-10 residues in an F-actin filament. Taking the helical structure of the F-actin filament into consideration, the radial coordinate of Cys-10 was calculated to be 23 A. This corresponds to a distance between adjacent sites along the long pitch helix of 56.1 A and along the genetic helix of 53.3 A.  相似文献   

10.
In prion diseases, the mammalian prion protein PrP is converted from a monomeric, mainly alpha-helical state into beta-rich amyloid fibrils. To examine the structure of the misfolded state, amyloid fibrils were grown from a beta form of recombinant mouse PrP (residues 91-231). The beta-PrP precursors assembled slowly into amyloid fibrils with an overall helical twist. The fibrils exhibit immunological reactivity similar to that of ex vivo PrP Sc. Using electron microscopy and image processing, we obtained three-dimensional density maps of two forms of PrP fibrils with slightly different twists. They reveal two intertwined protofilaments with a subunit repeat of approximately 60 A. The repeating unit along each protofilament can be accounted for by elongated oligomers of PrP, suggesting a hierarchical assembly mechanism for the fibrils. The structure reveals flexible crossbridges between the two protofilaments, and subunit contacts along the protofilaments that are likely to reflect specific features of the PrP sequence, in addition to the generic, cross-beta amyloid fold.  相似文献   

11.
Fluorescence energy transfer between nucleotide binding sites in an F-actin filament was measured using 1-N6-ethenoadenosine diphosphate (epsilon-ADP) as a fluorescent donor and 2'(or 3')-O-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) as an acceptor, both of which were bound to F-actin. Taking into consideration the helical structure of the F-actin filament, the radial coordinate of the nucleotide binding site was calculated to be 25 A, which corresponds to a distance between these sites along the long-pitch helix of 56.3 A and along the genetic helix of 56.7 A.  相似文献   

12.
The arrangement of the high molecular weight proteins associated with the walls of reconstituted mammalian brain microtubules has been investigated by electron microscopy of negatively stained preparations. The images are found to be consistent with an arrangement whereby the high molecular weight molecules are spaced 12 tubulin dimers apart, i.e., 960 A, along each protofilament of the microtubule, in agreement with the relative stoichiometry of tubulin and high molecular weight protein. Molecules on neighbouring protofilaments seem to be staggered so that they give rise to a helical superlattice, which can be superimposed on the underlying tubulin lattice. In micrographs of disintegrating tubules there is some indication of lateral interactions between neighbouring high molecular weight molecules. When the microtubules are depolymerized into a mixture of short spirals and rings, the high molecular weight proteins appear to remain attached to their respective protofilaments.  相似文献   

13.
Neurofilaments purified from invertebrate giant axons have been analyzed with the electron microscope. The neurofilaments have a helical substructure which is most easily observed when the neurofilaments are partially denatured with 0.5 M KCl or 2 M urea. When the ropelike structure comprising the neurofilaments untwists, two strands 4--5.5nm in diameter can be resolved. Upon further denaturation these strands break up into rod-shaped segments and subsequently these segments roll up into amorphous globular structures. Stained, filled densities can be resolved within the strand segments, and these resemble similar structures observed within the intact neurofilaments. The strands appear to consist of protofilaments 2--2.5 nm in diameter. These observations suggest that the neurofilament is a ropelike, helical structure composed of two strands twisted tightly around each other, and they su-port the filamentous rather than the golbular model of intermediate filament structure.  相似文献   

14.
Bacterial flagellar filaments are assembled by tens of thousands flagellin subunits, forming 11 helically arranged protofilaments. Each protofilament can take either of the two bistable forms L‐type or R‐type, having slightly different conformations and inter‐protofilaments interactions. By mixing different ratios of L‐type and R‐type protofilaments, flagella adopt multiple filament polymorphs and promote bacterial motility. In this study, we investigated the hydrogen bonding networks at the flagellin crystal packing interface in Salmonella enterica serovar typhimurium (S. typhimurium) by site‐directed mutagenesis of each hydrogen bonded residue. We identified three flagellin mutants D108A, N133A and D152A that were non‐motile despite their fully assembled flagella. Mutants D108A and D152A trapped their flagellar filament into inflexible right‐handed polymorphs, which resemble the previously predicted 3L/8R and 4L/7R helical forms in Calladine’s model but have never been reported in vivo. Mutant N133A produces floppy flagella that transform flagellar polymorphs in a disordered manner, preventing the formation of flagellar bundles. Further, we found that the hydrogen bonding interactions around these residues are conserved and coupled to flagellin L/R transition. Therefore, we demonstrate that the hydrogen bonding networks formed around flagellin residues D108, N133 and D152 greatly contribute to flagellar bending, flexibility, polymorphisms and bacterial motility.  相似文献   

15.
A particle-based hybrid method of elastic network model and smooth-particle hydrodynamics has been employed to describe the propulsion of bacterial flagella in a viscous hydrodynamic environment. The method explicitly models the two aspects of bacterial propulsion that involve flagellar flexibility and long-range hydrodynamic interaction of low-Reynolds-number flow. The model further incorporates the molecular organization of the flagellar filament at a coarse-grained level in terms of the 11 protofilaments. Each of these protofilaments is represented by a collection of material points that represent the flagellin proteins. A computational model of a single flexible helical segment representing the filament of a bacterial flagellum is presented. The propulsive dynamics and the flow fields generated by the motion of the model filament are examined. The nature of flagellar deformation and the influence of hydrodynamics in determining the shape of deformations are examined based on the helical filament.  相似文献   

16.
The bacterial flagellar filament is a helical propeller for bacterial locomotion. It is a well-ordered helical assembly of a single protein, flagellin, and its tubular structure is formed by 11 protofilaments, each in either of the two distinct conformations, L- and R-type, for supercoiling. We have been studying the three-dimensional structures of the flagellar filaments by electron cryomicroscopy and recently obtained a density map of the R-type filament up to 4 angstroms resolution from an image data set containing only about 41,000 molecular images. The density map showed the features of the alpha-helical backbone and some large side chains, which allowed us to build the complete atomic model as one of the first atomic models of macromolecules obtained solely by electron microscopy image analysis (Yonekura et al., 2003a). We briefly review the structure and the structure analysis, and point out essential techniques that have made this analysis possible.  相似文献   

17.
Nebulin, a helical actin binding protein.   总被引:5,自引:0,他引:5       下载免费PDF全文
M Pfuhl  S J Winder    A Pastore 《The EMBO journal》1994,13(8):1782-1789
Nebulin, a giant protein (molecular mass 800 kDa) specific for the skeletal muscle of vertebrates, has been suggested to be involved in the length regulation of the thin filament as a 'molecular ruler'. Despite its size, nebulin appears to be composed mainly of small repeats of approximately 35 amino acids. We have characterized in this study the conformational and functional properties of single repeats. Complete repeats were found to bind to F-actin while a truncated one did not. One repeat is therefore the smallest unit for nebulin--actin interaction. Circular dichroism and nuclear magnetic resonance spectra measured for the peptides in water indicated a transient helical conformation. The folded region is located for them all around the conserved sequence SDxxYK. The helical conformation is strongly stabilized by anionic detergents and trifluoroethanol while uncharged or positively charged detergents have no effect. Since the surface of the actin filament is known to contain clusters of negative charges, anionic detergents may mimic the effect of an actin environment. 3D structures were calculated for three representative peptides in SDS. In vivo, the nebulin helices should form a complex with the actin filament. Based on the assumed importance of charge interactions between nebulin and actin, we propose a model for the structure of the F-actin-nebulin complex in vivo. According to that, two nebulin molecules occupy symmetrical positions along the central cleft of the actin filament bridging the two strands of the actin two-start helix. The consistency of this model with experimental data is discussed.  相似文献   

18.
Unidirectional and rotary shadowing techniques have been applied in studying the surface structure of two types of intermediate filaments. Keratin filaments and neurofilaments demonstrate a approximately 21-nm axial periodicity which probably indicates the helical pitch of the outer shell of the filament. Analysis of unidirectionally shadowed keratin showed that the helix is left-handed. The observation of a left-handed helix of 21-nm pitch supports the three-stranded protofilament model of Fraser, Macrae, and Suzuki (1976, J. Mol. Biol. 108:435-452), and indicates that keratin filaments probably consist of 10 three-stranded protofilaments surrounding a core of three such protofilaments, as predicted by models based on x-ray diffraction of hard keratin filaments. Neurofilaments do not demonstrate an easily identifiable hand, so their consistency with the model is, as yet, uncertain.  相似文献   

19.
The flagellar filament enables bacteria to swim by functioning as a helical propeller. The filament is a supercoiled assembly of a single protein, flagellin, and is formed by 11 protofilaments arranged in a circle. Bacterial swimming and tumbling correlate with changes of the various helical structures, called polymorphic transformation, that are determined by the ratios of two distinct forms of protofilaments, the L and R types. The polymorphic transformation is caused by transition of the protofilament between L and R types. Elucidation of this transition mechanism has been addressed by comparing the atomic structures of L- and R-type straight filaments or using massive molecular dynamic simulation. Here, we found amino acid residues required for the transition of the protofilament using fliC-intragenic suppressor analysis. We isolated a number of revertants producing supercoiled filaments from mutants with straight filaments and identified the second-site mutations in all of the revertants. The results suggest that Asp107, Gly426, and Ser448 and Ser106, Ala416, Ala427, and Arg431 are the key residues involved in inducing supercoiled filaments from the R- and the L-type straight filaments, respectively. Considering the structures of the R- and L-type protofilaments and the relationship between the rotation of the flagellar motor and the polymorphic transformation, we propose that Gly426, Ala427, and Arg431 contribute to the first stage of the transition and that Ser106, Asp107, and Ala416 play a role in propagating the transitions along the flagellar filament.  相似文献   

20.
Various mutants of the protein fragment, barnase module-1 (1-24) were investigated in order to reveal the structural principle of amyloid-like fibrils. By means of circular dichroism spectroscopy, X-ray diffraction, electron microscopy, and thioflavin T binding assay, we found that the molecules containing two beta-strands and an intervening turn structure are assembled to form a cross-beta structure. Stabilization by both the hydrophobic interactions and hydrogen bonding between the respective paired side-chains on the coupled beta-strands was essential for fibril formation. These two types of interaction can also arrange the corresponding residues in lines on both sheet surfaces of protofilaments with a cross-beta structure. This leads to the most probable fibril structure constructed with the line-matching interactions between protofilaments. Consideration of the geometrical symmetry resulted in our finding that a limited number of essential models for molecular packing in fibril structure are stable, which would rationally explain the occurrence of two or three morphologies from an identical molecular species. The ribbon-like fibrils exhibited striped texture along the axis, which was assigned to a stacked two-sheet repeat as a structural unit. The comprehensively proposed structural model, that is, the sheet-sheet interaction between left-handed cross-beta structures, results in a slightly right-handed twist of beta-sheet stacking, which reasonably elucidates the intrinsic sizes of the fibril width and its helical period along the fibril axis, as the bias in the orientation of the hydrogen-bonded beta-strand pair at the lateral edge is larger than that at the central protofilament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号