首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rhinoviral infection is an important trigger of acute inflammatory exacerbations in patients with underlying airway disease. We have previously established that interleukin-1β (IL-1β) is central in the communication between epithelial cells and monocytes during the initiation of inflammation. In this study we explored the roles of IL-1β and its signaling pathways in the responses of airway cells to rhinovirus-1B (RV-1B) and further determined how responses to RV-1B were modified in a model of bacterial coinfection. Our results revealed that IL-1β dramatically potentiated RV-1B-induced proinflammatory responses, and while monocytes did not directly amplify responses to RV-1B alone, they played an important role in the responses observed with our coinfection model. MyD88 is the essential signaling adapter for IL-1β and most Toll-like receptors. To examine the role of MyD88 in more detail, we created stable MyD88 knockdown epithelial cells using short hairpin RNA (shRNA) targeted to MyD88. We determined that IL-1β/MyD88 plays a role in regulating RV-1B replication and the inflammatory response to viral infection of airway cells. These results identify central roles for IL-1β and its signaling pathways in the production of CXCL8, a potent neutrophil chemoattractant, in viral infection. Thus, IL-1β is a viable target for controlling the neutrophilia that is often found in inflammatory airway disease and is exacerbated by viral infection of the airways.  相似文献   

2.
3.
4.
Previously, we elucidated the intracellular mechanisms by which neutrophil elastase (NE) up-regulates inflammatory gene expression in bronchial epithelial cells. In this study, we examine the effects of both IL-1 and NE on inflammatory gene expression in 16HBE14o- bronchial epithelial cells and investigate approaches to abrogate these inflammatory responses. IL-1 induced IL-8 protein production in time- and dose-dependent fashions, an important observation given that IL-8 is a potent neutrophil chemoattractant and a key inflammatory mediator. IL-1 and NE were shown to activate the p38 MAPK pathway in 16HBE14o- cells. Western blot analysis demonstrated IL-1R-associated kinase 1 (IRAK-1) degradation in response to stimulation with both IL-1 and NE. In addition, the expression of dominant negative IRAK-1 (IRAK-1delta), IRAK-2delta, or IRAK-4delta inhibited IL-1- and NE-induced NF-kappaB-linked reporter gene expression. Dominant negative versions of the intracellular adaptor proteins MyD88 (MyD88delta) and MyD88 adaptor-like (Mal P/H) abrogated NE-induced NF-kappaB reporter gene expression. In contrast, only MyD88delta was found to inhibit IL-1-induced NF-kappaB reporter activity. We also investigated the vaccinia virus proteins, A46R and A52R, which have been shown to antagonize IL-1 signaling. Transfection with A46R or A52R cDNA inhibited IL-1- and NE-induced NF-kappaB and IL-8R gene expression and IL-8 protein production in primary and transformed bronchial epithelial cells. Furthermore, cytokine array studies demonstrated that IL-1 and NE can up-regulate the expression of IL-6, oncostatin M, epithelial cell-derived neutrophil activating peptide-78, growth-related oncogene family members, vascular endothelial growth factor, and GM-CSF, with induction of these proteins inhibited by the viral proteins. These findings identify vaccinia virus proteins as possible therapeutic agents for the manifestations of several inflammatory lung diseases.  相似文献   

5.
Endotoxin tolerance reprograms Toll-like receptor (TLR) 4-mediated macrophage responses by attenuating induction of proinflammatory cytokines while retaining expression of anti-inflammatory and antimicrobial mediators. We previously demonstrated deficient TLR4-induced activation of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, and TANK-binding kinase (TBK) 1 as critical hallmarks of endotoxin tolerance, but mechanisms remain unclear. In this study, we examined the role of the E3 ubiquitin ligase Pellino-1 in endotoxin tolerance and TLR signaling. LPS stimulation increased Pellino-1 mRNA and protein expression in macrophages from mice injected with saline and in medium-pretreated human monocytes, THP-1, and MonoMac-6 cells, whereas endotoxin tolerization abrogated LPS inducibility of Pellino-1. Overexpression of Pellino-1 in 293/TLR2 and 293/TLR4/MD2 cells enhanced TLR2- and TLR4-induced nuclear factor κB (NF-κB) and expression of IL-8 mRNA, whereas Pellino-1 knockdown reduced these responses. Pellino-1 ablation in THP-1 cells impaired induction of myeloid differentiation primary response protein (MyD88), and Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF)-dependent cytokine genes in response to TLR4 and TLR2 agonists and heat-killed Escherichia coli and Staphylococcus aureus, whereas only weakly affecting phagocytosis of heat-killed bacteria. Co-expressed Pellino-1 potentiated NF-κB activation driven by transfected MyD88, TRIF, IRAK1, TBK1, TGF-β-activated kinase (TAK) 1, and TNFR-associated factor 6, whereas not affecting p65-induced responses. Mechanistically, Pellino-1 increased LPS-driven K63-linked polyubiquitination of IRAK1, TBK1, TAK1, and phosphorylation of TBK1 and IFN regulatory factor 3. These results reveal a novel mechanism by which endotoxin tolerance re-programs TLR4 signaling via suppression of Pellino-1, a positive regulator of MyD88- and TRIF-dependent signaling that promotes K63-linked polyubiquitination of IRAK1, TBK1, and TAK1.  相似文献   

6.
7.
Identification and characterization of murine IRAK-2   总被引:2,自引:0,他引:2  
Interleukin-1 receptor-associated kinases (IRAKs) are pivotal signaling elements of the Toll/IL-1 receptor (TIL) family, which play a role in innate immune responses by coordinating host defence mechanisms. Presently four different forms of human IRAK molecules are cloned (hu-IRAK-1, hu-IRAK-2, hu-IRAK-M, and hu-IRAK-4). In the murine system, only three genes have been identified so far, mouse Pelle-Like Kinase (mPLK), which corresponds to human IRAK-1, mu-IRAK-M, and mu-IRAK-4. Here we report the molecular cloning and characterization of murine IRAK-2 (mu-IRAK-2), a mouse homolog to human IRAK-2 (hu-IRAK-2). Murine and human IRAK-2 molecules show 67% sequence identity, they are ubiquitiously expressed, and both practically lack autophoshorylation kinase activity. The murine molecule reveals two remarkable differences to its human counterpart: it shows a C-terminal extension and it has no stimulatory effect on IL-1 induced NF-kappa B activation when compared to hu-IRAK-2, suggesting subtle functional differences in signaling by IRAK-2 in human and mouse cells.  相似文献   

8.
Transforming growth factor-β1 (TGF-β1) performs diverse cellular functions, including anti-inflammatory activity. The inhibitory Smad (I-Smad) Smad6 was previously shown to play an important role in TGF-β1-induced negative regulation of Interleukin-1/Toll-like receptor (IL-1R/TLR) signaling through binding to Pellino-1, an adaptor protein of interleukin-1 receptor associated kinase 1(IRAK1). However, it is unknown whether Smad7, the other inhibitory Smad, also has a role in regulating IL-1R/TLR signaling. Here, we demonstrate that endogeneous Smad7 and Smad6 simultaneously bind to discrete regions of Pellino-1 upon TGF-β1 treatment, via distinct regions of the Smad MH2 domains. In addition, the Smad7-Pellino-1 interaction abrogated NF-κB activity by blocking formation of the IRAK1-mediated IL-1R/TLR signaling complex, subsequently causing reduced expression of pro-inflammatory genes. Double knock-down of endogenous Smad6 and Smad7 genes by RNA interference further reduced the anti-inflammatory activity of TGF-β1 than when compared with single knock-down of Smad7. These results provide evidence that the I-Smads, Smad6 and Smad7, act as critical mediators for effective TGF-β1-mediated suppression of IL-1R/TLR signaling, by simultaneous binding to discrete regions of Pellino-1.  相似文献   

9.
10.
Tolerance to bacterial cell wall components including bacterial lipoprotein (BLP) represents an essential regulatory mechanism during bacterial infection. Reduced Toll-like receptor 2 (TLR2) and IL-1 receptor-associated kinase 1 (IRAK-1) expression is a characteristic of the downregulated TLR signaling pathway observed in BLP-tolerised cells. In this study, we attempted to clarify whether TLR2 and/or IRAK-1 are the key molecules responsible for BLP-induced tolerance. Transfection of HEK293 cells and THP-1 cells with the plasmid encoding TLR2 affected neither BLP tolerisation-induced NF-κB deactivation nor BLP tolerisation-attenuated pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) production, indicating that BLP tolerance develops despite overexpression of TLR2 in these cells. In contrast, overexpression of IRAK-1 reversed BLP-induced tolerance, as transfection of IRAK-1 expressing vector resulted in a dose-dependent NF-κB activation and TNF-α release in BLP-tolerised cells. Furthermore, BLP-tolerised cells exhibited markedly repressed NF-κB p65 phosphorylation and impaired binding of p65 to several pro-inflammatory cytokine gene promoters including TNF-α and interleukin-6 (IL-6). Overexpression of IRAK-1 restored the nuclear transactivation of p65 at both TNF-α and IL-6 promoters. These results indicate a crucial role for IRAK-1 in BLP-induced tolerance, and suggest IRAK-1 as a potential target for manipulation of the TLR-mediated inflammatory response during microbial sepsis.  相似文献   

11.
Airways function as an innate immune organ against airborne bacteria that are inhaled and deposited in airways. One of the mechanisms of host defense is to recruit neutrophils into airways to clear the invaders. Airway epithelial cells produce neutrophil chemoattractant interleukin (IL)-8 in response to invading bacteria. In this study we show a signaling pathway on the plasma surface of human airway epithelial NCI-H292 cells that regulate IL-8 production in response to a model inflammatory stimulus, phorbol 12-myristate 13-acetate, and a pathophysiological stimulus, gram-negative bacterial lipopolysaccharide. First, we show that EGF receptor (EGFR) and MAP kinase ERK1/2 are involved in IL-8 expression by these stimuli. Second, we show that EGFR ligand transforming growth factor (TGF)-alpha mediates IL-8 production. Third, we show that tumor necrosis factor-alpha-converting enzyme (TACE) is required for IL-8 production by cleaving EGFR proligand proTGF-alpha into soluble TGF-alpha, activating EGFR. Last, we show that dual oxidase 1 (Duox1), a homolog of NADPH oxidase in airways, mediates TACE activation and IL-8 expression via generation of reactive oxygen species. In summary, we describe a signaling pathway, Duox1-TACE-TGF-alpha-EGFR, on the surface of airway epithelial (NCI-H292) cells that mediates airway epithelial defense against bacterial infection by producing IL-8. This pathway, which also regulates mucin production in human airways, provides mechanisms for killing foreign organisms and for their clearance.  相似文献   

12.
13.
The interleukin-1 receptor-associated kinase 1 (IRAK-1) is an important adapter in the signaling complex of the Toll/interleukin-1 (IL-1) receptor family. Formation of the signaling IL-1 receptor complex results in the activation and hyperphosphorylation of IRAK-1, which leads to a pronounced shift of its apparent molecular mass in gel electrophoresis. Presently, the individual residues phosphorylated in IRAK-1 and the consequences for IRAK-1 function are unknown. We define sequential phosphorylation steps in IRAK-1, which are, in vitro, autophosphorylation. First, IRAK-1 is phosphorylated at Thr209. By fluorescence energy transfer experiments, we demonstrate that Thr209 phosphorylation results in a conformational change of the kinase domain, permitting further phosphorylations to take place. Substitution of Thr209 by alanine results in a kinase-inactive IRAK-1. Second, Thr387 in the activation loop is phosphorylated, leading to full enzymatic activity. Third, IRAK-1 autophosphorylates several times in the proline-, serine-, and threonine-rich ProST region between the N-terminal death domain and kinase domain. Hyperphosphorylation of this region leads to dissociation of IRAK-1 from the upstream adapters MyD88 and Tollip but leaves its interaction with the downstream adapter TRAF6 unaffected. This identifies IRAK-1 as a novel type of adapter protein, which employs its own kinase activity to introduce negative charges adjacent to the protein interaction domain, which anchors IRAK-1 at the active receptor complex. Thus, IRAK-1 regulates its own availability as an adapter molecule by sequential autophosphorylation.  相似文献   

14.
IRAK-M is a negative regulator of Toll-like receptor signaling   总被引:62,自引:0,他引:62  
Toll-like receptors (TLRs) detect microorganisms and protect multicellular organisms from infection. TLRs transduce their signals through MyD88 and the serine/threonine kinase IRAK. The IRAK family consists of two active kinases, IRAK and IRAK-4, and two inactive kinases, IRAK-2 and IRAK-M. IRAK-M expression is restricted to monocytes/macrophages, whereas other IRAKs are ubiquitous. We show here that IRAK-M is induced upon TLR stimulation and negatively regulates TLR signaling. IRAK-M prevented dissociation of IRAK and IRAK-4 from MyD88 and formation of IRAK-TRAF6 complexes. IRAK-M(-/-) cells exhibited increased cytokine production upon TLR/IL-1 stimulation and bacterial challenge, and IRAK-M(-/-) mice showed increased inflammatory responses to bacterial infection. Endotoxin tolerance, a protection mechanism against endotoxin shock, was significantly reduced in IRAK-M(-/-) cells. Thus, IRAK-M regulates TLR signaling and innate immune homeostasis.  相似文献   

15.
16.
The vascular endothelium is a key target of circulating bacterial lipopolysaccharide (LPS). LPS elicits a wide array of endothelial responses, including the up-regulation of cytokines, adhesion molecules, and tissue factor, many of which are dependent on NF-kappa B activation. In addition, LPS has been demonstrated to induce endothelial apoptosis both in vitro and in vivo. Although the mechanism by which LPS activates NF-kappa B has been well elucidated, the signaling pathway(s) involved in LPS-induced apoptosis remains unknown. Using a variety of dominant negative constructs, we have identified a role for MyD88 and interleukin-1 receptor-associated kinase-1 (IRAK-1) in mediating LPS pro-apoptotic signaling in human endothelial cells. We also demonstrate that LPS-induced endothelial NF-kappa B activation and apoptosis occur independent of one another. Together, these data suggest that the proximal signaling molecules involved in LPS-induced NF-kappa B activation have a requisite involvement in LPS-induced apoptosis and that the pathways leading to NF-kappa B activation and apoptosis diverge downstream of IRAK-1.  相似文献   

17.
Interleukin 1 receptor (IL-1R)-associated kinase-4 (IRAK-4) is required for various responses induced by IL-1R and Toll-like receptor signals. However, the molecular mechanism of IRAK-4 signaling and the role of its kinase activity have remained elusive. In this report, we demonstrate that IRAK-4 is recruited to the IL-1R complex upon IL-1 stimulation and is required for the recruitment of IRAK-1 and its subsequent activation/degradation. By reconstituting IRAK-4-deficient cells with wild type or kinase-inactive IRAK-4, we show that the kinase activity of IRAK-4 is required for the optimal transduction of IL-1-induced signals, including the activation of IRAK-1, NF-kappaB, and JNK, and the maximal induction of inflammatory cytokines. Interestingly, we also discover that the IRAK-4 kinase-inactive mutant is still capable of mediating some signals. These results suggest that IRAK-4 is an integral part of the IL-1R signaling cascade and is capable of transmitting signals both dependent on and independent of its kinase activity.  相似文献   

18.
Bacterial infections following rhinovirus (RV), a common cold virus, are well documented, but pathogenic mechanisms are poorly understood. We developed animal and cell culture models to examine the effects of RV on subsequent infection with non-typeable Hemophilus influenzae (NTHi). We focused on NTHI-induced neutrophil chemoattractants expression that is essential for bacterial clearance. Mice infected with RV1B were superinfected with NTHi and lung bacterial density, chemokines and neutrophil counts determined. Human bronchial epithelial cells (BEAS-2B) or mouse alveolar macrophages (MH-S) were infected with RV and challenged with NHTi, TLR2 or TLR5 agonists. Chemokine levels were measured by ELISA and expression of IRAK-1, a component of MyD88-dependent TLR signaling, assessed by immunoblotting. While sham-infected mice cleared all NTHi from the lungs, RV-infected mice showed bacteria up to 72 h post-infection. However, animals in RV/NTHi cleared bacteria by day 7. Delayed bacterial clearance in RV/NTHi animals was associated with suppressed chemokine levels and neutrophil recruitment. RV-infected BEAS-2B and MH-S cells showed attenuated chemokine production after challenge with either NTHi or TLR agonists. Attenuated chemokine responses were associated with IRAK-1 protein degradation. Inhibition of RV-induced IRAK-1 degradation restored NTHi-stimulated IL-8 expression. Knockdown of TLR2, but not other MyD88-dependent TLRs, also restored IRAK-1, suggesting that TLR2 is required for RV-induced IRAK-1 degradation.In conclusion, we demonstrate for the first time that RV infection delays bacterial clearance in vivo and suppresses NTHi-stimulated chemokine responses via degradation of IRAK-1. Based on these observations, we speculate that modulation of TLR-dependent innate immune responses by RV may predispose the host to secondary bacterial infection, particularly in patients with underlying chronic respiratory disorders.  相似文献   

19.
IL-18 is an important cytokine for both innate and adaptive immunity. NK T cells and Th1 cells depend on IL-18 for their divergent functions. The IL-18R, IL-1R, and mammalian Toll-like receptors (TLRs) share homologous intracellular domains known as the TLR/IL-1R/plant R domain. Previously, we reported that IL-1R-associated kinase (IRAK)-4 plays a critical role in IL-1R and TLR signaling cascades and is essential for the innate immune response. Because TLR/IL-1R/plant R-containing receptors mediate signal transduction in a similar fashion, we investigated the role of IRAK-4 in IL-18R signaling. In this study, we show that IL-18-induced responses such as NK cell activity, Th1 IFN-gamma production, and Th1 cell proliferation are severely impaired in IRAK-4-deficient mice. IRAK-4(-/-) Th1 cells also do not exhibit NF-kappaB activation or IkappaB degradation in response to IL-18. Moreover, AP-1 activation which is triggered by c-Jun N-terminal kinase activation is also completely inhibited in IRAK-4(-/-) Th1 cells. These results suggest that IRAK-4 is an essential component of the IL-18 signaling cascade.  相似文献   

20.
Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号