首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin (IL)-12 is a critical cytokine in the T helper (Th)1 response and host defense against intracellular microorganisms, while its role in host resistance to extracellular bacteria remains elusive. In the present study, we elucidated the role of IL-12 in the early-phase host defense against acute pulmonary infection with Streptococcus pneumoniae, a typical extracellular bacterium, using IL-12p40 gene-disrupted (IL-12p40KO) mice. IL-12p40KO mice were highly susceptible to S. pneumoniae infection, as indicated by the shortened survival time, which was completely restored by the replacement therapy with recombinant (r) IL-12, and increased bacterial counts in the lung. In these mice, recruitment of neutrophils in the lung was significantly attenuated when compared to that in wild-type (WT) mice, which correlated well with the reduced production of macrophage inflammatory protein (MIP-2) and tumor necrosis factor (TNF)-alpha in the infected tissues at the early phase of infection. In vitro synthesis of both cytokines by S. pneumoniae-stimulated lung leukocytes was significantly lower in IL-12p40KO mice than in WT mice, and addition of rIL-12 or interferon (IFN)-gamma restored the reduced production of MIP-2 and TNF-alpha in IL-12p40KO mice. Neutralizing anti-IFN-gamma monoclonal antibody (mAb) significantly decreased the effect of rIL-12. Anti-IFN-gamma mAb shortened the survival time of infected mice and reduced the recruitment of neutrophils and production of MIP-2 and TNF-alpha in the lungs. Our results indicated that IL-12p40 plays a critical role in the early-phase host defense against S. pneumoniae infection by promoting the recruitment of neutrophils to the infected tissues.  相似文献   

2.
The present study was designed to elucidate the role of Toll-like receptor (TLR) 2 and TLR4 in the host response to Cryptococcus neoformans. Both TLR2 knockout (KO) and TLR4KO mice produced interleukin-1beta (IL-1beta), IL-6, IL-12p40 and tumor necrosis factor-alpha (TNF-alpha) in sera and cleared this fungal pathogen from infected lungs at a comparable level to control littermate (LM) mice. Synthesis of these cytokines was not significantly different in the lungs of these KO mice and LM mice, although IL-1beta, IL-6 and IL-12p40 tended to be lower in TLR2KO, but not TLR4KO, mice than in controls. In addition, there was no significant reduction detected in the synthesis of IL-12 and TNF-alpha by bone marrow-derived dendritic cells from TLR2KO and TLR4KO mice upon stimulation with live yeast cells. Finally, HEK293 cells expressing either TLR2/dectin-1 or TLR4/MD2/CD14 did not respond to C. neoformans in the activation of nuclear factor kappa B (NFkappaB) detected by a luciferase assay. Our results suggest that TLR2 and TLR4 do not or only marginally contribute to the host and cellular response to this pathogen.  相似文献   

3.
Expression of CD5 regulates responsiveness to IL-1   总被引:1,自引:0,他引:1  
The role of the CD5 surface molecule in T cell responsiveness to IL-1 was examined. A CD5-mutant Jurkat cell line was generated from a CD5+ parent cell line. This CD5- mutant subclone was infected with a defective retrovirus containing the CD5 cDNA and/or the neo gene encoding G418 resistance. The CD5+ wild type Jurkat produced IL-2 in response to anti-CD3 mAb, OKT3, cross-linked to a solid surface. IL-2 production was enhanced by co-culture with IL-1 or anti-CD5 Mab. Neither the CD5- mutant nor the CD5- G418-resistant infectant responded to anti-CD5 mAb or to IL-1. Responsiveness to IL-1 was restored by cell surface expression of CD5 in the CD5+ infectant. Both the CD5+ wild type Jurkat and the CD5+ infectant responded equivalently to purified IL-1, IL-1 alpha and rIL-1 beta. Optimal concentrations of IL-1 and anti-CD5 mAb had an additive effect on the enhancement of IL-2 production stimulated with cross-linked anti-CD3 mAb suggesting that IL-1 and CD5 act through distinct, complementary pathways to augment T cell activation. The correlation of CD5 expression and specific binding of rIL-1 beta was examined in these cell lines. Both the specific binding (at 4 degrees C) and subsequent internalization (at 37 degrees C) of 125I labeled rIL-1 beta was equivalent in the CD5+ infectant and the CD5+ wild type Jurkat cell, whereas specific binding of 125I-labeled rIL-1 beta was markedly decreased in the CD5-G418-resistant infectant. These observations strongly suggest that cell surface expression of CD5 regulates binding of and responsiveness to IL-1.  相似文献   

4.
In murine schistosomiasis, granuloma T cells express VPAC2 mRNA, whereas there is none in splenocytes. This suggests that T cell VPAC2 mRNA is inducible. To address this issue, splenocytes from schistosome-infected mice were incubated with anti-CD3 to induce VPAC2 mRNA, which only appeared when cell cultures also contained anti-IL-4 mAb. Granuloma cells expressed VPAC2 mRNA. This natural expression decreased substantially when cells were cultured 3 days in vitro. However, granuloma cells cultured with anti-IL-4 mAb strongly expressed VPAC2 mRNA. IL-4 KO mice were examined to further address the importance of IL-4 in VPAC2 regulation. Splenocytes and dispersed granuloma cells from IL-4 KO animals had substantially more VPAC2 mRNA than those in wild-type controls. VPAC2 mRNA content decreased when cells were cultured with rIL-4. VPAC2 mRNA localized to CD4+ T cells. Th1 cell lines expressed VPAC2 mRNA much stronger than Th2 cells. Anti-IL-4 mAb increased VPAC2 mRNA expression in Th2 cells cultured in vitro. However, rIL-4 could not suppress VPAC2 mRNA expression in Th1 cells. Thus, VPAC2 is an inducible CD4+ T cell receptor, and IL-4 down-modulates VPAC2 mRNA expression in Th2 cells.  相似文献   

5.
CD30 ligand (CD30L, CD153) is a type II membrane-associated glycoprotein belonging to the tumor necrosis factor family. It is shown here that CD30L knock out (KO) mice are highly susceptible to primary infection with Listeria monocytogenes as assessed by the survival rate. There were significantly more bacteria on day 3 after infection in the peritoneal cavity, spleen and liver of CD30LKO mice than in wild type (WT) mice. The innate function of memory phenotype (MP) CD44+ CD4+ T cells for interferon-gamma production was significantly lower in CD30LKO mice than in WT mice in response to interleukin (IL)-12 and IL-15 in vitro. Depletion of CD4+ T cells by in vivo administration of anti-CD4 mAb at an early stage after infection hampered protection against Listeria. Furthermore, in vivo administration of agonistic anti-CD30 mAb restored protection against Listeria in CD30LKO mice, whereas treatment with soluble mCD30-Ig hampered protection in WT mice. Taken together, it appears that CD30L/CD30 signaling plays an important role in innate MPCD4+ T cell-mediated protection against infection with L. monocytogenes.  相似文献   

6.
During the proliferative burst after Ag recognition, T cells express cell-surface, high-affinity IL-2R. The importance of IL-2R+ T cells in supporting/mediating tissue injury has been documented by the ability of mAb anti-IL2R therapies to prevent allograft rejection and autoimmunity. The delayed-type hypersensitivity (DTH) response, an experimental model of T-dependent immunity, offers the possibility of studying responses mounted against defined Ag. We previously reported that the chimeric IL-2 toxin (DAB486-IL-2) prevents DTH responses and selectively eliminates activated IL-2R bearing CD4 and CD8 T cells from lymph nodes draining the site of inflammation. We have examined the duration of immunosuppression and relative specificity of action of DAB486-IL-2 and anti-CD3 mAb for Ag-activated clones in a murine model of DTH using two different noncross-reacting haptens. Treatment with DAB486-IL-2 generates a state of selective unresponsiveness to subsequent challenge with the hapten introduced during the therapeutic period. Immediately after cessation of DAB486-IL-2 therapy, immunization with an unrelated hapten induces a normal vigorous immune response. By comparison, anti-CD3 mAb treatment causes a broad immunosuppression because unrelated haptens introduced after anti-CD3 therapy do not evoke a vigorous immune response. After cessation of DAB486-IL-2 toxin treatment response to the hapten is eventually restored probably by cells trafficking from the thymus, because thymectomized hosts remain unresponsive to the hapten. Taken together these data reinforce the role of the IL-2R as an important target for immunosuppression in T cell-mediated immune reactions. DAB-486-IL-2 treatment confers highly selective immunosuppression.  相似文献   

7.
Using interleukin (IL)-18 deficient (IL-18(-/-)) mice, we examined the role of IL-18 in the host resistance and Th1 response against infection with Cryptococcus neoformans. Fungal clearance in the lung was reduced in IL-18(-/-) mice, although there was no significant change in the level of dissemination to the brain. The DTH response, as determined by footpad swelling, was also diminished in IL-18(-/-) mice compared to control wild-type (WT) mice. The levels of IL-12 and interferon (IFN)-gamma in the sera were significantly lower in IL-18(-/-) mice than in WT mice. Spleen cells from infected WT mice produced a high level of IFN-gamma upon stimulation with the microbe, while only a low level of IFN-gamma production was detected in spleen cells from infected IL-18(-/-) mice. Administration of IL-18 almost completely restored the reduced response in IL-18(-/-) mice, while IL-12 showed a marginal effect. These results demonstrated the important role of IL-18 in the resistance and Th1 response of mice to C. neoformans by potentiating the production of IFN-gamma.  相似文献   

8.
We examined the role of interleukin (IL)-4 in host resistance against infection with Cryptococcus neoformans. First, we examined the effects of a neutralizing anti-IL-4 monoclonal antibody (mAb) on survival of mice infected intratracheally with this fungal pathogen. We also compared the number of live C. neoformans in lungs and brains of treated and untreated mice. Treatment with anti-IL-4 mAb significantly prolonged survival of infected mice and reduced the lung and brain burdens of C. neoformans, which was associated with increased production of IFN-gamma in lungs. In the next experiments, infected mice were treated with two IFN-gamma-inducing cytokines, IL-12 and IL-18, known to enhance protection against infection. We then evaluated the effect of such treatment on the number of live microorganisms and concentration of IL-4 in lungs. These two parameters showed a statistically significant relationship, suggesting a negative regulation of host protection by IL-4. Finally, we examined the effects of IL-4 treatment and administration of neutralizing anti-IL-4 mAbs on host protection against C. neoformans and local production of IFN-gamma in lungs induced by treatment with IL-12/IL-18. The former treatment suppressed host protection and reduced IFN-gamma production, while the latter produced the opposite effects. Our results indicated that IL-4 suppressed the host defense mechanisms against infection with C. neoformans potentiated by IFN-gamma-inducing cytokines probably through the suppression of local production of IFN-gamma.  相似文献   

9.
Chronic infection by the gastrointestinal nematode Trichuris muris in susceptible AKR mice, which mount a Th1 response, is associated with IL-27p28 expression in the cecum. In contrast to wild-type mice, mice that lack the WSX-1/IL-27R gene fail to harbor a chronic infection, having significantly lower Th1 responses. The lower level of Ag-specific IFN-gamma-positive cells in WSX-1 knockout (KO) mice was found to be CD4(+) T cell specific, and the KO mice also had increased levels of IL-4-positive CD4(+) T cells. Polyclonal activation of mesenteric lymph node cells from naive WSX-1 KO or wild-type mice demonstrated that there was no inherent defect in the production of IFN-gamma by CD4(+) T cells, suggesting the decrease in these cells seen in infected WSX-1 KO mice is an in vivo Ag-driven effect. IL-12 treatment of WSX-1 KO mice failed to rescue the type 1 response, resulting in unaltered type-2-driven resistance. Infection of WSX-1 KO mice was also associated with a reduction of IL-27/WSX-1 downstream signaling gene expression within the cecum. These studies demonstrate an important role for WSX-1 signaling in the promotion of type 1 responses and chronic gastrointestinal nematode infection.  相似文献   

10.
The signals that trigger IL-4-independent IL-4 synthesis by conventional CD4(+) T cells are not yet defined. In this study, we show that coactivation with anti-CD4 mAb can stimulate single naive CD4(+) T cells to form IL-4-producing clones in the absence of APC and exogenous IL-4, independently of effects on proliferation. When single CD4(+) lymph node cells from C57BL/6 mice were cultured with immobilized anti-CD3epsilon mAb and IL-2, 65-85% formed clones over 12-14 days. Coimmobilization of mAb to CD4, CD11a, and/or CD28 increased the size of these clones but each exerted different effects on their cytokine profiles. Most clones produced IFN-gamma and/or IL-3 regardless of the coactivating mAb. However, whereas 0-6% of clones obtained with mAb to CD11a or CD28 produced IL-4, 10-40% of those coactivated with anti-CD4 mAb were IL-4 producers. A similar response was observed among CD4(+) cells from BALB/c mice. Most IL-4-producing clones were derived from CD4(+) cells of naive (CD44(low) or CD62L(high)) phenotype and the great majority coproduced IFN-gamma and IL-3. The effect of anti-CD4 mAb on IL-4 synthesis could be dissociated from effects on clone size since anti-CD4 and anti-CD11a mAb stimulated formation of clones of similar size which differed markedly in IL-4 production. Engagement of CD3 and CD4 in the presence of IL-2 is therefore sufficient to induce a substantial proportion of naive CD4(+) T cells to form IL-4-producing clones in the absence of other exogenous signals, including IL-4 itself.  相似文献   

11.
Role of CD47 in the induction of human naive T cell anergy   总被引:6,自引:0,他引:6  
We recently reported that CD47 ligation inhibited IL-2 release by umbilical cord blood mononuclear cells activated in the presence of IL-12, but not IL-4, preventing the induction of IL-12Rbeta(2) expression and the acquisition of Th1, but not the Th2 phenotype. Here we show that in the absence of exogenous cytokine at priming, CD47 ligation of umbilical cord blood mononuclear cells promotes the development of hyporesponsive T cells. Naive cells were treated with CD47 mAb for 3 days, expanded in IL-2 for 9-12 days, and restimulated by CD3 and CD28 coengagement. Effector T cells generated under these conditions were considered to be anergic because they produced a reduced amount of IL-2 at the single-cell level and displayed an impaired capacity 1) to proliferate, 2) to secrete Th1/Th2 cytokines, and 3) to respond to IL-2, IL-4, or IL-12. Moreover, CD47 mAb strongly suppressed IL-2 production and IL-2Ralpha expression in primary cultures and IL-2 response of activated naive T cells. Induction of anergy by CD47 mAb was IL-10 independent, whereas inclusion of IL-2 and IL-4, but not IL-7, at priming fully restored T cell activation. Furthermore, CD28 costimulation prevented induction of anergy. Thus, CD47 may represent a potential target to induce anergy and prevent undesired Th0/Th1 responses such as graft vs host diseases, allograft rejection, or autoimmune diseases.  相似文献   

12.
CD4-mediated signals induce T cell dysfunction in vivo.   总被引:1,自引:0,他引:1  
Triggering of CD4 coreceptors on both human and murine T cells can suppress TCR/CD3-induced secretion of IL-2. We show here that pretreatment of murine CD4+ T cells with the CD4-specific mAb YTS177 inhibits the CD3-mediated activation of the IL-2 promoter factors NF-AT and AP-1. Ligation of CD4 molecules on T cells leads to a transient stimulation of extracellular signal-regulated kinase (Erk) 2, but not c-Jun N-terminal kinase (JNK) activity. Pretreatment with anti-CD4 mAb impaired anti-CD3-induced Erk2 activation. Costimulation with anti-CD28 overcame the inhibitory effect of anti-CD4 Abs, by induction of JNK activation. The in vivo relevance of these studies was demonstrated by the observation that CD4+ T cells from BALB/c mice injected with nondepleting anti-CD4 mAb were inhibited in their ability to respond to OVA Ag-induced proliferation and IL-2 secretion. Interestingly, in vivo stimulation with anti-CD28 mAb restored IL-2 secretion. Furthermore, animals pretreated with anti-CD4 elicited enhanced IL-4 secretion induced by OVA and CD28. These observations suggest that CD4-specific Abs can inhibit T cell activation by interfering with signal 1 transduced through the TCR, but potentiate those delivered through the costimulatory molecule CD28. These studies have relevance to understanding the mechanism of tolerance induced by nondepleting anti-CD4 mAb used in animal models for allograft studies, autoimmune pathologies, and for immunosuppressive therapies in humans.  相似文献   

13.
The TAM family of receptors (Tyro3, Axl, and Mertk) plays an important role in the negative regulation of response of dendritic cells (DCs) and macrophages to pathogenic stimuli, and mice lacking this receptor family develop spontaneous lupus-like systemic autoimmunity against a variety of tissues, including retina. To study the molecular mechanism underlying the TAM regulation of APC functions and subsequent effects on the induction of an autoimmune response against the eye, we examined CD4 T cell differentiation following retinal self-antigen immunization. CD4 T cells prepared from naive or interphotoreceptor retinoid-binding protein (IRBP)1-20-immunized Axl and Mertk double-knockout (dko) mice reacted to activation using anti-CD3 and anti-CD28 Abs or to bolster by self-antigen in vitro with a predominantly Th1 effector response, as characterized by increased IFN-γ production and higher frequency of IFN-γ-positive CD4 T cells. The Th17 effector response to IRBP immunization was similar in dko mice to that in wild-type controls, as shown by ELISA measurement of IL-17A in the culture medium and flow cytometric analysis of IL-17A-secreting CD4 T cells. Interestingly, APCs or DCs isolated from IRBP-immunized dko mice exhibited a greater ability to drive the Th1 response. The production of two driving cytokines for Th1 differentiation, IL-12 and IL-18, was dramatically increased in dko DCs and macrophages, and LPS stimulation bolstered their production. The preferential development into the Th1 subset in dko mice suggests that the cytokine milieu produced by the mutant mice in vivo or by mutant APCs in vitro selectively creates a differentiation environment favoring the Th1 effector response.  相似文献   

14.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

15.
CD180 is homologous to TLR4 and regulates TLR4 signaling, yet its function is unclear. We report that injection of anti-CD180 mAb into mice induced rapid Ig production of all classes and subclasses, with the exception of IgA and IgG2b, with up to 50-fold increases in serum IgG1 and IgG3. IgG production after anti-CD180 injection was not due to reactivation of memory B cells and was retained in T cell-deficient (TCR knockout [KO]), CD40 KO, IL-4 KO, and MyD88 KO mice. Anti-CD180 rapidly increased both transitional and mature B cells, with especially robust increases in transitional B cell number, marginal zone B cell proliferation, and CD86, but not CD80, expression. In contrast, anti-CD40 induced primarily follicular B cell and myeloid expansion, with increases in expression of CD80 and CD95 but not CD86. The expansion of splenic B cells was due, in part, to proliferation and occurred in wild-type and TCR KO mice, whereas T cell expansion occurred in wild-type, but not in B cell-deficient, mice, indicating a direct role for B cells in CD180 stimulation in vivo. Combination of anti-CD180 with various MyD88-dependent TLR ligands biased B cell fate because coinjection diminished Ig production, but purified B cells exhibited synergistic proliferation. Anti-CD180 had no effect on cytokine production from B cells, but it increased IL-6, IL-10, and TNF-α production in combination with LPS or CpG. Thus, CD180 stimulation induces intrinsic B cell proliferation and differentiation, causing rapid increases in IgG, and integrates MyD88-dependent TLR signals to regulate proliferation, cytokine production, and differentiation.  相似文献   

16.
Pulmonary Cryptococcus neoformans infection of C57BL/6 mice is an established model of an allergic bronchopulmonary mycosis that has also been used to test a number of immunomodulatory agents. Our objective was to determine the role of IL-4 and IL-10 in the development/manifestation of the T2 response to C. neoformans in the lungs and lung-associated lymph nodes. In contrast to wild-type (WT) mice, which develop a chronic infection, pulmonary clearance was significantly greater in IL-4 knockout (KO) and IL-10 KO mice but was not due to an up-regulation of a non-T cell effector mechanism. Pulmonary eosinophilia was absent in both IL-4 KO and IL-10 KO mice compared with WT mice. The production of IL-4, IL-5, and IL-13 by lung leukocytes from IL-4 KO and IL-10 KO mice was lower but IFN-gamma levels remained the same. TNF-alpha and IL-12 production by lung leukocytes was up-regulated in IL-10 KO but not IL-4 KO mice. Overall, IL-4 KO mice did not develop the systemic (lung-associated lymph nodes and serum) or local (lungs) T2 responses characteristic of the allergic bronchopulmonary C. neoformans infection. In contrast, the systemic T2 elements of the response remained unaltered in IL-10 KO mice whereas the T2 response in the lungs failed to develop indicating that the action of IL-10 in T cell regulation was distinct from that of IL-4. Thus, although IL-10 has been reported to down-regulate pulmonary T2 responses to isolated fungal Ags, IL-10 can augment pulmonary T2 responses if they occur in the context of fungal infection.  相似文献   

17.
T cell-mediated immunity has been shown to play an important role in the host defense to Cryptococcus neoformans. Infections due to C. neoformans are increased in patients with AIDS who are deficient in the CD4+ subset of T lymphocytes. Thus, the effect of CD4+ (L3T4+) lymphocyte depletion on murine host defenses to C. neoformans was studied. The mAb GK 1.5 was administered to mice, and CD4+ T lymphocyte depletion was confirmed by the analysis of T cell subsets in blood, spleen, lymph node, and lung. Evidence of a functional defect was confirmed by demonstrating that the splenocytes of treated mice were unable to proliferate in response to class II incompatible spleen cells. Furthermore, delayed type hypersensitivity to C. neoformans was abrogated by CD4+ lymphocyte depletion. Mice depleted of CD4+ lymphocytes were inoculated with a virulent strain of C. neoformans by the i.v. or the intratracheal route. After i.v. inoculation of C. neoformans, the survival of mice depleted of CD4+ lymphocytes was reduced (27.8 +/- 1.8 vs 36.0 +/- 3.1 days, p less than 0.04). After intratracheal inoculation, C. neoformans disseminated from the lung to extrapulmonary organs. Dissemination occurred earlier in mice depleted of CD4+ lymphocytes compared to mice that received control antibody, and the burden of C. neoformans in extrapulmonary organs was greater in mice depleted of CD4+ lymphocytes than control mice. Surprisingly, there was no increase in the burden of C. neoformans in the lungs of CD4+ lymphocyte-depleted mice. Survival of mice inoculated with C. neoformans and depleted of CD4+ lymphocytes was reduced compared to control mice and was related to the increased rate of accumulation of organisms in the brains of treated mice. The mean survival of GK 1.5-treated mice was 34.1 +/- 0.9 days compared to control mice with a mean survival of 40.6 +/- 9 days (p less than 0.001). These data suggest that CD4+ lymphocytes play a prominent role in the host defense of infections due to C. neoformans, that CD4+ lymphocytes are required in extrapulmonary organs for optimal clearance of C. neoformans and that CD4+ lymphocytes are critical for survival of mice infected with C. neoformans.  相似文献   

18.
The aly is a unique spontaneous autosomal recessive mutation in mice that causes a systemic defect of lymph nodes and Peyer's patches and disorganized splenic and thymic structures with immunodeficiency. Our previous study demonstrated that resistance to Listeria monocytogenes infection and interferon-gamma (IFN-gamma) production are attenuated in the mutant mice. In this study, we investigated the mechanism of decrease in antilisterial resistance and IFN-gamma production in aly mice. Interleukin (IL)-12 production in response to heat-killed L. monocytogenes (HK-LM) was decreased but IL-10 production was increased in aly/aly macrophage cultures, compared with those in aly/+ macrophages. Nonadherent cells and macrophages obtained from the spleens of naive aly/+ mice and aly/aly mice were reconstituted and stimulated with HK-LM. IFN-gamma production was markedly decreased when macrophages derived from aly/aly mice were used. IFN-gamma production in aly/aly spleen cell cultures was recovered in the presence of anti-IL-10 monoclonal antibody (mAb) or recombinant IL-12. When aly/+ mice and aly/aly mice were injected with mAb against IL-10 or IL-12 p40, antilisterial resistance was inhibited by injection of anti-IL-12 p40 mAb, while anti-IL-10 mAb treatment augmented the resistance. Administration of anti-IFN-gamma mAb attenuated antilisterial resistance in aly/+ mice but not in aly/aly mice. The present results suggest that downregulation of IL-12 and upregulation of IL-10 in macrophages might be involved in the decrease in antilisterial resistance and IFN-gamma production in aly/aly mice in addition to the structural defect in lymphoid organs. Moreover, the results predict that an IL-12-dependent and IFN-gamma-independent mechanism may be also involved in the decrease in antilisterial resistance in aly/aly mice.  相似文献   

19.
The brain represents a significant barrier for protective immune responses in both infectious disease and cancer. We have recently demonstrated that immunotherapy with anti-CD40 and IL-2 can protect mice against disseminated Cryptococcus infection. We now applied this immunotherapy using a direct cerebral cryptococcosis model to study direct effects in the brain. Administration of anti-CD40 and IL-2 significantly prolonged the survival time of mice infected intracerebrally with Cryptococcus neoformans. The protection was correlated with activation of microglial cells indicated by the up-regulation of MHC II expression on brain CD45(low)CD11b(+) cells. CD4(+) T cells were not required for either the microglial cell activation or anticryptococcal efficacy induced by this immunotherapy. Experiments with IFN-gamma knockout mice and IFN-gammaR knockout mice demonstrated that IFN-gamma was critical for both microglial cell activation and the anticryptococcal efficacy induced by anti-CD40/IL-2. Interestingly, while peripheral IFN-gamma production and microglial cell activation were observed early after treatment, negligible IFN-gamma was detected locally in the brain. These studies indicate that immunotherapy using anti-CD40 and IL-2 can augment host immunity directly in the brain against C. neoformans infection and that IFN-gamma is essential for this effect.  相似文献   

20.
The aim of this study was to examine the contribution of IL-18 in host defense against infection caused by Cryptococcus neoformans in mice with defective IL-12 production. Experiments were conducted in mice with a targeted disruption of the gene for IL-12p40 subunit (IL-12p40-/- mice). In these mice, host resistance was impaired, as shown by increased number of organisms in both lungs and brains, compared with control mice. Serum IFN-gamma was still detected in these mice at a considerable level (20-30% of that in control mice). The host resistance was moderately impaired in IL-12p40-/- mice compared with IFN-gamma-/- mice. Neutralizing anti-IFN-gamma mAb further increased the lung burdens of organisms. In addition, treatment with neutralizing anti-IL-18 Ab almost completely abrogated the production of IFN-gamma and also impaired the host resistance. Host resistance in IL-12p40-/- IL-18-/- mice was more profoundly impaired than in IL-12p40-/- mice. Administration of IL-12 as well as IL-18 increased the serum levels of IFN-gamma and significantly restored the reduced host resistance. Spleen cells obtained from infected IL-12p40-/- mice did not produce any IFN-gamma upon restimulation with the same organisms, while those from infected and IL-12-treated mice produced IFN-gamma. In contrast, IL-18 did not show such effect. Finally, depletion of NK cells by anti-asialo GM1 Ab mostly abrogated the residual production of IFN-gamma in IL-12p40-/- mice. Our results indicate that IL-18 contributes to host resistance to cryptococcal infection through the induction of IFN-gamma production by NK cells, but not through the development of Th1 cells, under the condition in which IL-12 synthesis is deficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号