首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A BlnI restriction map of the Salmonella typhimurium LT2 genome.   总被引:11,自引:3,他引:8       下载免费PDF全文
BlnI or AvrII (5'-CCTAGG) sites are very rare in the Salmonella typhimurium LT2 genome. BlnI was used to construct a physical map which was correlated with the genetic map by using three methods. First, Tn10 carries BlnI sites, and the extra restriction sites produced by 34 genetically mapped Tn10 insertions were physically mapped by using pulsed-field gel electrophoresis. Second, six genetically mapped Mud-P22 prophage insertions were used to assign BlnI fragments. Integration of Mud-P22 introduces 30 kb of DNA that can easily be detected by a "shift up" in all but the largest BlnI fragments. Finally, induced Mud-P22 insertions package more than 100 kb of genomic DNA adjacent to one side of the insertion. Some of the smaller BlnI fragments were localized by hybridization to a dot blot array of 52 lysates from induced Mud-P22 insertions. Of the 10 BlnI sites mapped, 6 probably occur in or near the 16S rRNA genes at about 55, 71, 83, 86, 88.5, and 89.5 min. There is one BlnI site in the 90-kb pSLT plasmid. Two additional BlnI fragments of about 7 and 4 kb have not been localized. The size of the genome was estimated as 4.78 Mb (+/- 0.1 Mb) excluding pSLT but including prophages Fels-1 and Fels-2. One BlnI fragment that maps between 55 and 59 min showed a 40-kb reduction in size in a strain cured of the approximately 40-kb Fels-2 prophage.  相似文献   

2.
XbaI digestion and pulsed-field gel electrophoresis of the genome of Salmonella typhimurium LT2 yields 24 fragments: 23 fragments (total size, 4,807 kb) are from the chromosome, and one fragment (90 kb) is from the virulence plasmid pSLT. Some of the 23 fragments from the chromosome were located on the linkage map by the use of cloned genes as probes and by analysis of strains which gain an XbaI site from the insertion of Tn10. Twenty-one of the fragments were arranged as a circular physical map by the use of linking probes from a set of 41 lysogens in which Mud-P22 was stably inserted at different sites of the chromosome; fragment W (6.6 kb) and fragment X (6.4 kb) were not located on the physical map. XbaI digestion of strains with Tn10 insertions allowed the physical locations of specific genes along the chromosome to be determined on the basis of analysis of new-fragment sizes. There is good agreement between the order of genes on the linkage map, which is based primarily on P22 joint transduction and F-mediated conjugation, and the physical map, but there are frequently differences in the length of the interval from the two methods. These analyses allowed the measurement of the amount of DNA packaged in phage P22 heads by Mud-P22 lysogens following induction; this varies from ca. 100 kb (2 min) to 240 kb (5 min) in different parts of the chromosome.  相似文献   

3.
A contig of 36 overlapping yeast artificial chromosome (YAC) clones has been constructed for the complete Duchenne muscular dystrophy (DMD) gene in Xp21. The YACs were isolated from a human 48,XXXX YAC library using the DMD cDNA and brain promoter fragments as hybridization probes. The YAC clones were characterized for exon content using HindIII or EcoRI digests, hybridization of individual DMD cDNA probes, and polymerase chain reaction (PCR) amplification of specific exons near the 5' end of the gene. For comparison to the known long-range restriction map of the DMD gene, YAC clones were digested with SfiI and hybridized with DMD cDNA probes. The combined analysis of the exon content and the SfiI map allowed an approximately 3.2-Mb YAC contig to be constructed. The complete 2.4-Mb DMD gene could be represented in a minimum set of 7 overlapping YAC clones.  相似文献   

4.
Five independent collections, comprising a total of 34 clones encoding cellulases, hemicellulases and cell surface proteins of Clostridium thermocellum, were searched for overlapping or contiguous DNA fragments. The clones were hybridized to large genomic restriction fragments separated by pulse-field electrophoresis. Clones hybridizing to the same fragment were further compared by hybridization to smaller fragments, by cross-hybridization and by restriction mapping. The probes hybridized to loci which were usually not clustered and were scattered over at least one third of the chromosome. Besides previously identified clusters, only two clones were found to be adjacent. Two pairs of clones appeared to contain the same genes cloned in duplicate, and one of the genes was shown to be cloned in triplicate.  相似文献   

5.
I Ashikawa  N Kurata  S Saji  Y Umehara  T Sasaki 《Génome》1999,42(2):330-337
To refine the current physical map of rice, we have established a restriction fragment fingerprinting method for identifying overlap between pairs of rice yeast artificial chromosome (YAC) clones and defining the physical arrangement of YACs within contiguous fragments (contigs). In this method, Southern blots of rice YAC DNAs digested with a restriction endonuclease are probed with a rice microsatellite probe, (GGC)5. The probe produces a unique fingerprint profile characteristic of each YAC clone. The profile is then digitized, processed in a computer, and a statistic that represents the degree of overlap between two YACs is calculated. The statistics have been used to detect overlaps among YAC clones, thereby filling a gap between two neighbouring contigs and organizing overlapping rice YAC clones into contiguous fragments. We applied this method to rearranging YACs that had previously been assigned to rice chromosome 6 by anchoring with RFLP markers.  相似文献   

6.
A physical map of the human Y-chromosome short arm   总被引:2,自引:0,他引:2  
U Müller  M Lalande 《Genomics》1990,7(4):517-523
A physical map of the Y-chromosome short arm was constructed using DNA probes p19B, Y-286/la5, pZFY, Y-280, and Y-227. These probes hybridize with four NotI fragments of 400 kb (p19B and Y-286/la5), 350 kb, 1.9 Mb, and 3.0 Mb, respectively. The restriction fragments were shown to be adjacent to each other by analysis of NotI partial digests, overlapping restriction fragments, and/or the detection of rearranged restriction fragments in a 46,XX male. The present map covers approximately 5.6 Mb of contiguous DNA of Yp. Previously, the size of the pseudoautosomal region was estimated to be 2.3 Mb, and a 5.3-Mb NotI fragment containing Y-specific repeated DNA was assigned to proximal Yp. These and the present data account for approximately 13 Mb and thus for most of the DNA content of the Y short arm.  相似文献   

7.
Physical map of the genome of Rhodobacter capsulatus SB 1003.   总被引:4,自引:0,他引:4       下载免费PDF全文
A map of the chromosome of Rhodobacter capsulatus was constructed by overlapping the large restriction fragments generated by endonucleases AseI and XbaI. The analyses were done by hybridization of single fragments with the restriction fragments blotted from pulsed-field gels and by grouping cosmids of a genomic library of R. capsulatus into contigs, corresponding to the restriction fragments, and further overlapping of the contigs. A technical difficulty due to a repeated sequence made it necessary to use hybridization with cloned genes and prior knowledge of the genetic map in order to close the physical circle in a unique way. In all, 41 restriction sites were mapped on the 3.6-Mb circular genome and 22 genes were positioned at 26 loci of the map. Cosmid clones were grouped in about 80 subcontigs, forming two groups, one corresponding to the chromosome of R. capsulatus and the other corresponding to a 134-kb plasmid. cos site end labeling and partial digestion of cosmids were used to construct a high-resolution EcoRV map of the 134-kb plasmid. The same method can be extended to the entire chromosome. The cosmid clones derived in this work can be used as a hybridization panel for the physical mapping of new genes as soon as they are cloned.  相似文献   

8.
Genetic and physical maps and a clone bank of mitochondrial DNA from rice   总被引:1,自引:0,他引:1  
Summary Mitochondrial DNA (mtDNA) was isolated from young green leaves of rice plants. DNA fragments were cloned into lambda DNA, and clones that hybridized to mitochondrial genes from other plants were selected. Distal restriction fragments of these clones were used as probes for the selection of overlapping clones. A genetic map was finally created from the library by walking along the genome. The mitochondrial genome consists of five basic circles, with each circle sharing homologous sequences with one or two other circles. A master circle was constructed from the results of recombination across repeated sequences, and its size was estimated to be 492 kb. A physical map and a bank of overlapping clones were also constructed.  相似文献   

9.
A physical map of the D. melanogaster genome is being constructed, in the form of overlapping cosmid clones that are assigned to specific polytene chromosome sites. A master library of ca. 20,000 cosmids is screened with probes that correspond to numbered chromosomal divisions (ca. 1% of the genome); these probes are prepared by microdissection and PCR-amplification of individual chromosomes. The 120 to 250 cosmids selected by each probe are fingerprinted by Hinfl digestion and gel electrophoresis, and overlaps are detected by computer analysis of the fingerprints, permitting us to assemble sets of contiguous clones (contigs). Selected cosmids, both from contigs and unattached, are then localized by in situ hybridization to polytene chromosomes. Crosshybridization analysis using end probes links some contigs, and hybridization to previously cloned genes relates the physical to the genetic map. This approach has been used to construct a physical map of the 3.8 megabase DNA in the three distal divisions of the x chromosome. The map is represented by 181 canonical cosmids, of which 108 clones in contigs and 32 unattached clones have been mapped individually by in situ hybridization to chromosomes. Our current database of in situ hybridization results also includes the beginning of a physical map for the rest of the genome: 162 cosmids have been assigned by in situ hybridization to 129 chromosomal subdivisions elsewhere in the genome, representing 5 to 6 megabases of additional mapped DNA.  相似文献   

10.
A restriction map of the entire Schizosaccharomyces pombe genome was constructed using two restriction enzymes (BamHI and PstI) that recognize 6 bp. The restriction map contains 420 minimally overlapping clones (miniset) and has 22 gaps. We located 126 genes, marker fragments of DNA (NotI and SfiI linking clones), and 36 transposable elements by hybridization to unique restriction fragments. Received: 21 November 1996; in revised form: 3 March 1997 / Accepted: 27 March 1997  相似文献   

11.
Definition of the limits of the Wilms tumor locus on human chromosome 11p13   总被引:3,自引:0,他引:3  
In a previous report, we described a contiguous restriction map of chromosome band 11p13 that localized the Wilms tumor locus to a small group of NotI fragments. In an effort to identify and isolate the 11p13-associated sporadic Wilms tumor locus, we developed a panel of NotI fragment-specific DNA probes. These probes were selected from genomic libraries constructed using the Chinese hamster ovary-human somatic cell hybrid carrying only human 11p. The libraries were prepared from NotI-digested DNA after size selection by pulsed-field gel electrophoresis. The selected NotI fragments had been previously targeted on the basis of deletion mapping as having a high probability of containing the Wilms tumor locus. We used these newly identified 11p13-specific probes to improve the resolution of the restriction map spanning the Wilms tumor locus. The locus has been defined by a homozygous deletion in a sporadic Wilms tumor. Using these probes, the region of homozygous deletion in this tumor and presumably all or part of the Wilms tumor gene have been confined to two small SfiI fragments spanning less than 350 kb.  相似文献   

12.
A method for linking genomic sequences cloned in yeast artificial chromosomes (YACs) has been tested using Caenorhabditis elegans as a model system. Yeast clones carrying YACs with repeated sequences were selected from a C. elegans genomic library, total DNA was digested with restriction enzymes, transferred to nylon membranes and probed with a variety of repetitive DNA probes. YAC clones that overlap share common bands with one or more repetitive DNA probes. In 159 YAC clones tested with one restriction enzyme and six probes 28 overlapping clones were detected. The advantages and limitations of this method for construction of YAC physical maps is discussed.  相似文献   

13.
Hybrid genetic elements, Mud-P and Mud-Q (collectively, Mud-P22s), have been constructed that carry two-thirds of the temperate Salmonella phage P22 genome sandwiched between the ends of transposon Mu. Insertions of these elements in the Salmonella chromosome generate locked-in P22 prophages that cannot excise. Upon induction (as a consequence of the inactivation of P22 c2 repressor), a locked-in prophage replicates its DNA in situ, resulting in the amplification of neighboring regions of the chromosome and the processive packaging of three contiguous headsful of adjacent DNA in one direction from the P22 packaging site, pac. Phage particles in an induced lysate of a Mud-P22 lysogen contain DNA molecules corresponding to several minutes of chromosomal DNA adjacent to the site of prophage insertion and transduce nearby genetic markers with high efficiencies. Mud-P22 prophages have been introduced into an F' episome by transposition; resident Mud insertions on the Salmonella chromosome may be converted to Mud-P22 insertions by homologous recombination in P22-mediated transductional crosses.  相似文献   

14.
A library of B. thuringiensis DNA has been prepared by using the plasmid pBR322 as a cloning vehicle and E. coli as a host cell. By screening this collection with specific probes, 17 clones were identified whose hybrid plasmids contain rRNA genes of B. thuringiensis. Several of these plasmids have been mapped with restriction endonucleases and by DNA-RNA hybridization. By using maps of overlapping fragments, we have been able to establish an overall map of the ribosomal gene cluster.  相似文献   

15.
We present the complete maps of five Mycoplasma hominis genomes, including a detailed restriction map and the locations of a number of genetic loci. The restriction fragments were resolved by field inversion gel electrophoresis or by the contour-clamped homogeneous-electric-field system of pulsed-field gel electrophoresis. All the ApaI, SmaI, BamHI, XhoI, and SalI restriction sites (total of 21 to 33 sites in each strain) were placed on the physical map, yielding an average resolution of 26 kb. The maps were constructed using three different approaches: (i) size determination of DNA fragments partially or completely cleaved with one or two restriction enzymes, (ii) hybridization analysis with purified restriction fragments and specific probes, and (iii) use of linking clones. A genetic map was constructed by hybridization with gene-specific probes for rpoA, rpoC, rrn, tuf, gyrB, hup, ftsY, the unc operon, the genes for two M. hominis-specific antigenic membrane proteins, and one gene encoding a protein with some homology to Escherichia coli alanyl-tRNA synthetase. The positions of mapped loci were partially conserved in the five strains except in one strain in which a 300-kb fragment was inverted. The numbers and order of mapped restriction sites were only partly conserved, and this conservation was restricted to certain regions. The gene order was compared with the gene order established for other bacteria and was found to be identical to that of the phylogenetically related Clostridium perfringens. The genome size of the M. hominis strains varied from 704 to 825 kb.  相似文献   

16.
Fine physical mapping of the rice stripe resistance gene locus, Stvb-i   总被引:8,自引:0,他引:8  
The Stvb-i gene confers stripe disease resistance to rice. For positional cloning, we constructed a physical map spanning 1.8-cM distance between flanking markers, consisting of 18 bacterial artificial chromosome (BAC) clones, around the Stvb-i locus on rice chromosome 11. The 18 clones were isolated by screening a BAC library derived from a japonica cultivar, Shimokita, with three Stvb-i-linked RFLP markers and DraI-digested DNAs of a yeast artificial chromosome (YAC) clone. The results of Southern hybridization and restriction enzyme analyses indicated that these BAC clones are contiguous and cover about a 700-kb region containing the Stvb-i allele. Utilizing end and internal fragments of the BAC insert DNAs, 33 molecular markers were generated within a small chromosomal region including the Stvb-i locus. Genotyping analysis with these markers for a resistant cultivar and four nearby recombinants selected from 120 F2 individuals indicated that Stvb-i is contained within an approximately 286-kb region covered with two overlapping BAC clones. Received: 25 August 1999 / Accepted: 16 November 1999  相似文献   

17.
A combined approach was used to derive a detailed physical map of Nicotiana tabacum chloroplast DNA for the restriction enzymes SalI, SmaI, KpnI, and BamHI. Complete maps for the restriction enzymes SalI, SmaI, and KpnI were derived by using two-dimensional agarose gel analysis of fragments obtained by reciprocal double digestion of chloroplast DNA. We have characterized a complete cloned library of N. tabacum chloroplast DNA which contains overlapping restriction fragments resulting from partial digestion by BamHI. With these clones and existing data, we used a novel computer-aided analysis to derive a detailed map for the enzyme BamHI. A comparison and compilation of all published N. tabacum chloroplast DNA restriction maps is presented. Differences between ours and a previously published SmaI and BamHI restriction map are discussed.  相似文献   

18.
A NotI linking library constructed from flow-sorted human chromosome 17 material was screened to aid in construction of a long-range restriction map of the Miller-Dieker chromosome region (MDCR) in 17p13.3. A total of 66 clones were mapped to one of eight regions of chromosome 17 using a somatic cell hybrid panel, and 44/66 (67%) of these clones cross-hybridized to rodent DNA on Southern blots. Of these, 24 clones were tested and all mapped to mouse chromosome 11, the homolog of human chromosome 17. Four linking clones mapped to 17p13.3 and were used for pulsed-field gel electrophoresis studies along with six other anonymous probes previously mapped to this region. Clone L132 was found to be deleted in all Miller-Dieker patients tested (n = 15) and therefore lies within the critical region for this disorder. It detects two NotI fragments (180 and 320 kb), one of which (320 kb) was shared by YNZ22 and YNH37, two probes previously shown to be co-deleted in all patients with the Miller-Dieker syndrome (MDS). These results indicate that all MDS patients share a minimum deletion region of greater than 370 kb. Two other NotI clones, L53 and L125, mapped telomeric to the MDS critical region and share a 600-kb MluI fragment with each other and with YNZ22/YNH37. This provides a 930-kb MluI map that encompasses the distal boundary of the MDS critical region but does not include the proximal boundary. A total of over 2 Mbp is represented in the MluI fragments by probes in subband p13.3, a cytogenetic region estimated to be 3-4 Mbp.  相似文献   

19.
20.
We have previously demonstrated the capability of the Fosmid vector based on Escherichia coli F-factor replicon to stably propagate cosmid-sized human genomic DNA fragments. Using the Fosmid vector, we have constructed and arrayed a 10 × human chromosome 22-specific library, partly by picking human positive clones from a total Fosmid library constructed using DNA from human-hamster hybrid cell line containing human chromosome 22, and partly by using flow-sorted chromosomal DNA. The clones and physical contig maps of the clones in the library will serve as a valuable resource for detailed analysis of the chromosome by providing reliable materials for high resolution mapping and sequencing. In order to efficiently built physical maps for the chromosomal regions of interest spanning several hundred kilobases to a megabase, it is necessary to rapidly identify subsets of the Fosmid clones from the library that cover such regions. In this report, we describe a method of using random amplification products derived from YAC clones to rapidly identify a subset of Fosmid clones that cover a specific genomic subregion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号