共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecosystems - Increasing concentrations of atmospheric greenhouse gases (GHGs; CO2, CH4, N2O) cause climate change. Depending on the conditions, soils have the potential to store carbon or to be a... 相似文献
2.
Abmael da Silva Cardoso Liziane de Figueiredo Brito Estella Rosseto Janusckiewicz Eliane da Silva Morgado Rondineli Pavezzi Barbero Jefferson Fabiano Werner Koscheck Ricardo Andrade Reis Ana Cláudia Ruggieri 《Ecosystems》2017,20(4):845-859
Greenhouse gases (GHG) can be affected by grazing intensity, soil, and climate variables. This study aimed at assessing GHG emissions from a tropical pasture of Brazil to evaluate (i) how the grazing intensity affects the magnitude of GHG emissions; (ii) how season influences GHG production and consumption; and (iii) what are the key driving variables associated with GHG emissions. We measured under field conditions, during two years in a palisade-grass pasture managed with 3 grazing intensities: heavy (15 cm height), moderate (25 cm height), and light (35 cm height) N2O, CH4 and CO2 fluxes using static closed chambers and chromatographic quantification. The greater emissions occurred in the summer and the lower in the winter. N2O, CH4, and CO2 fluxes varied according to the season and were correlated with pasture grazing intensity, temperature, precipitation, % WFPS (water-filled pores space), and soil inorganic N. The explanatory variables differ according to the gas and season. Grazing intensity had a negative linear effect on annual cumulative N2O emissions and a positive linear effect on annual cumulative CO2 emissions. Grazing intensity, season, and year affected N2O, CH4, and CO2 emissions. Tropical grassland can be a large sink of N2O and CH4. GHG emissions were explained for different key driving variables according to the season. 相似文献
3.
Sarah M. Collier Matthew D. Ruark Lawrence G. Oates William E. Jokela Curtis J. Dell 《Journal of visualized experiments : JoVE》2014,(90)
Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies. 相似文献
4.
《Journal of Industrial Ecology》2003,7(3-4):147-162
The cumulative energy and global warming impacts associated with producing corn, soybeans, alfalfa, and switchgrass and transporting these crops to a central crop processing facility (called a biorefinery) are estimated. The agricultural inputs for each crop are collected from seven states in the United States: Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin. The cumulative energy requirement for producing and transporting these crops is 1.99 to 2.66 megajoules/kilo-gram (MJ/kg) for corn, 1.98 to 2.04 MJ/kg for soybeans, 1.24 MJ/kg for alfalfa, and 0.97 to 1.34 MJ/kg for switchgrass. The global warming impact associated with producing biomass is 246 to 286 grams (g) CO2 equivalent/kg for corn, 159 to 163gCO2 equivalent/kg for soybeans, 89 g CO2 equivalent/ kg for alfalfa, and 124 to 147 g CO2 equivalent/kg for switch-grass. The detailed agricultural data are used to assess previous controversies over the energy balance of bioethanol and, in light of the ongoing debates on this topic, provide a needed foundation for future life-cycle assessments. 相似文献
5.
Establishing a Regional Nitrogen Management Approach to Mitigate Greenhouse Gas Emission Intensity from Intensive Smallholder Maize Production 总被引:1,自引:0,他引:1
The overuse of Nitrogen (N) fertilizers on smallholder farms in rapidly developing countries has increased greenhouse gas (GHG) emissions and accelerated global N consumption over the past 20 years. In this study, a regional N management approach was developed based on the cost of the agricultural response to N application rates from 1,726 on-farm experiments to optimize N management across 12 agroecological subregions in the intensive Chinese smallholder maize belt. The grain yield and GHG emission intensity of this regional N management approach was investigated and compared to field-specific N management and farmers'' practices. The regional N rate ranged from 150 to 219 kg N ha−1 for the 12 agroecological subregions. Grain yields and GHG emission intensities were consistent with this regional N management approach compared to field-specific N management, which indicated that this regional N rate was close to the economically optimal N application. This regional N management approach, if widely adopted in China, could reduce N fertilizer use by more than 1.4 MT per year, increase maize production by 31.9 MT annually, and reduce annual GHG emissions by 18.6 MT. This regional N management approach can minimize net N losses and reduce GHG emission intensity from over- and underapplications, and therefore can also be used as a reference point for regional agricultural extension employees where soil and/or plant N monitoring is lacking. 相似文献
6.
This study estimates global warming impact (GWI) of E85 fuel needed to run a small passenger car for its average lifetime, i.e., 241,402 km (150,000 miles). The ethanol needed for the production of E85 fuel was derived from an intensively managed slash pine (Pinus elliottii) plantation in the southern USA. We assumed that only pulpwood and harvesting residues obtained at the time of harvesting were used for ethanol production. A suitable system boundary was defined and a detailed life-cycle assessment was undertaken to determine GWI of all the steps present within the system boundary. Results indicate that the overall GWI of the E85 fuel was about 76% less than an equivalent amount of gasoline needed to run a small passenger car for its average lifetime. Within the system boundary, the GWI of the ethanol production stage was highest followed by the stage of E85 fuel consumption in a small passenger car. A need exists to evaluate impacts of utilizing forest biomass for E85 fuel production on forest ecology and traditional forest biomass-based industries. 相似文献
7.
The effects of soil management systems on root-knot nematode (Meloidogyne incognita) eggs and gall incidence on tomato (Lycopersicon esculentum) and cucumber (Cucumis sativus) following tomato were evaluated. Soil was collected from a replicated field experiment in which six management systems were being assessed for vegetable production. Soil management systems were conventional production, organic production, bahiagrass (Paspalum notatum) pasture, bahiagrass: Stylosanthes (Stylosanthes guianensis) pasture, bare ground fallow, and weed fallow. Soil was collected from field plots and used in greenhouse experiments. Identification of egg-parasitic fungi and the incidence of root-knot nematode galling were assessed both on tomato and cucumber planted in the same pots following the removal of tomato plants. Organic, bare ground fallow and conventional production treatments reduced galling both on tomato and on cucumber following tomato. Although no treatment consistently enhanced egg-parasitic fungi, management system did affect egg viability and the types of fungi isolated from parasitized eggs. 相似文献
8.
Soil amendments can increase net primary productivity (NPP) and soil carbon (C) sequestration in grasslands, but the net greenhouse gas fluxes of amendments such as manure, compost, and inorganic fertilizers remain unclear. To evaluate opportunities for climate change mitigation through soil amendment applications, we designed a field-scale model that quantifies greenhouse gas emissions (CO2, CH4, and N2O) from the production, application, and ecosystem response of soil amendments. Using this model, we developed a set of case studies for grazed annual grasslands in California. Sensitivity tests were performed to explore the impacts of model variables and management options. We conducted Monte Carlo simulations to provide estimates of the potential error associated with variables where literature data were sparse or spanned wide ranges. In the base case scenario, application of manure slurries led to net emissions of 14 Mg CO2e ha?1 over a 3-year period. Inorganic N fertilizer resulted in lower greenhouse gas emissions than the manure (3 Mg CO2e ha?1), assuming equal rates of N addition and NPP response. In contrast, composted manure and plant waste led to large offsets that exceeded emissions, saving 23 Mg CO2e ha?1 over 3 years. The diversion of both feedstock materials from traditional high-emission waste management practices was the largest source of the offsets; secondary benefits were also achieved, including increased plant productivity, soil C sequestration, and reduced need for commercial feeds. The greenhouse gas saving rates suggest that compost amendments could result in significant offsets to greenhouse gas emissions, amounting to over 28 MMg CO2e when scaled to 5% of California rangelands. We found that the model was highly sensitive to manure and landfill management factors and less dependent on C sequestration, NPP, and soil greenhouse gas effluxes. The Monte Carlo analyses indicated that compost application to grasslands is likely to lead to net greenhouse gas offsets across a broad range of potential environmental and management conditions. We conclude that applications of composted organic matter to grasslands can contribute to climate change mitigation while sustaining productive lands and reducing waste loads. 相似文献
9.
Tsung-Yu Lee Jr-Chuan Huang Jun-Yi Lee Shih-Hao Jien Franz Zehetner Shuh-Ji Kao 《PloS one》2015,10(9)
Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970–1989) and a recent stage (1990–2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0–99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe. 相似文献
10.
Jenny Hill Lauren D'Mello-Guyett Jenna Hoyt Anna M. van Eijk Feiko O. ter Kuile Jayne Webster 《PLoS medicine》2014,11(8)
Background
WHO recommends prompt diagnosis and quinine plus clindamycin for treatment of uncomplicated malaria in the first trimester and artemisinin-based combination therapies in subsequent trimesters. We undertook a systematic review of women''s access to and healthcare provider adherence to WHO case management policy for malaria in pregnant women.Methods and Findings
We searched the Malaria in Pregnancy Library, the Global Health Database, and the International Network for the Rational Use of Drugs Bibliography from 1 January 2006 to 3 April 2014, without language restriction. Data were appraised for quality and content. Frequencies of women''s and healthcare providers'' practices were explored using narrative synthesis and random effect meta-analysis. Barriers to women''s access and providers'' adherence to policy were explored by content analysis using NVivo. Determinants of women''s access and providers'' case management practices were extracted and compared across studies. We did not perform a meta-ethnography. Thirty-seven studies were included, conducted in Africa (30), Asia (4), Yemen (1), and Brazil (2). One- to three-quarters of women reported malaria episodes during pregnancy, of whom treatment was sought by >85%. Barriers to access among women included poor knowledge of drug safety, prohibitive costs, and self-treatment practices, used by 5%–40% of women. Determinants of women''s treatment-seeking behaviour were education and previous experience of miscarriage and antenatal care. Healthcare provider reliance on clinical diagnosis and poor adherence to treatment policy, especially in first versus other trimesters (28%, 95% CI 14%–47%, versus 72%, 95% CI 39%–91%, p = 0.02), was consistently reported. Prescribing practices were driven by concerns over side effects and drug safety, patient preference, drug availability, and cost. Determinants of provider practices were access to training and facility type (public versus private). Findings were limited by the availability, quality, scope, and methodological inconsistencies of the included studies.Conclusions
A systematic assessment of the extent of substandard case management practices of malaria in pregnancy is required, as well as quality improvement interventions that reach all providers administering antimalarial drugs in the community. Pregnant women need access to information on which anti-malarial drugs are safe to use at different stages of pregnancy. Please see later in the article for the Editors'' Summary 相似文献11.
12.
Joe Marriott H. Scott Matthews Chris T. Hendrickson 《Journal of Industrial Ecology》2010,14(6):919-928
The mix of electricity consumed in any stage in the life cycle of a product, process, or industrial sector has a significant effect on the associated inventory of emissions and environmental impacts because of large differences in the power generation method used. Fossil‐fuel‐fired or nuclear‐centralized steam generators; large‐scale and small‐scale hydroelectric power; and renewable options, such as geothermal, wind, and solar power, each have a unique set of issues that can change the results of a life cycle assessment. This article shows greenhouse gas emissions estimates for electricity purchase for different scenarios using U.S. average electricity mix, state mixes, state mixes including imports, and a sector‐specific mix to show how different these results can be. We find that greenhouse gases for certain sectors and scenarios can change by more than 100%. Knowing this, practitioners should exercise caution or at least account for the uncertainty associated with mix choice. 相似文献
13.
Influence of Willow Biochar Amendment on Soil Nitrogen Availability and Greenhouse Gas Production in Two Fertilized Temperate Prairie Soils 总被引:1,自引:0,他引:1
The potential of biochar to improve numerous soil physical, chemical and biological properties is well known. However, previous research has concentrated on old and highly weathered tropical soils with poor fertility, while reports regarding the influence of biochar application on relatively young and fertile temperate prairie soils are limited. Furthermore, the mechanism(s) underlying biochar-induced effects on the plant availability of inorganic nitrogen (N) fertilizers and their relationship to greenhouse gas production is not well understood. The objective of this study was to determine the effect of a biochar soil amendment, produced by slow pyrolysis using shrub willow (Salix spp.) bioenergy feedstock, on CO2, N2O and CH4 fluxes by two contrasting marginal soils from Saskatchewan, Canada with and without added urea, over a 6-week incubation period. Biochar decreased soil N availability after 6 weeks only in the lower organic matter (Brown) soil, with no effect on the Black soil, regardless of fertilizer N addition, which was attributed to soil N immobilization by heterotrophs mineralizing the labile biochar-carbon. There appeared to be a synergistic effect when combining biochar and urea, evidenced by enhanced urease activity and higher initial nitrification rates compared to biochar or fertilization alone. The accelerated urea hydrolysis in the presence of biochar may increase NH3 volatilization losses associated with urea fertilization and, therefore, warrants further investigation. The decreased N2O emissions following biochar addition, with (both soils) or without (Black soil) fertilizer N, could be due to decreased ammonium and nitrate availability, along with changes in denitrification potential as related to improved aeration. Biochar significantly reduced the water-filled pore space, which concurrently increased CH4 consumption in both soils. The lack of biochar effect on CO2 emissions from either soil, with or without fertilizer N, suggests enhanced CO2 consumption by autotrophic nitrifiers. Biochar application appears to be an effective management approach for improving N2O and CH4 fluxes in temperate prairie soils. 相似文献
14.
Background and objective
Cigarette smoking may increase the risk of developing pancreatic cancer, although its impact on pancreatitis has only been discerned in recent years. However, the results of previous studies differ. We performed a meta-analysis to provide a quantitative pooled risk estimate of the association of cigarette smoking with pancreatitis.Method
A literature search of the MEDLINE and Embase databases was conducted, and studies were selected that investigated the association of cigarette smoking with pancreatitis. Summary relative risks (RRs) with 95% confidence intervals (CIs) were pooled using a random-effects model.Results
Twenty-two studies were included. The summary RRs (95% CI) associated with ever, current and former smokers for acute and chronic pancreatitis (AP/CP) were as follows: 1.51 (1.10, 2.07)/3.00 (1.46, 6.17), 1.42 (1.08, 1.87)/2.72 (1.74, 4.24), and 1.22 (0.99, 1.52)/1.27 (1.00, 1.62), respectively. Moreover, studies that analyzed both AP and CP were also summarized: 1.73 (1.18, 2.54) for ever smokers, 1.67 (1.03, 2.68) for current smokers and 1.56 (1.16, 2.11) for former smokers, respectively. There was no evidence of publication bias across the studies.Conclusion
The evidence suggests a positive association of cigarette smoking with the development of pancreatitis. It is possible that smoking cessation may be a useful strategy for the management of pancreatitis. 相似文献15.
16.
Background
Current global warming affects the composition and dynamics of mammalian communities and can increase extinction risk; however, long-term effects of warming on mammals are less understood. Dietary reconstructions inferred from stable isotopes of fossil herbivorous mammalian tooth enamel document environmental and climatic changes in ancient ecosystems, including C3/C4 transitions and relative seasonality.Methodology/Principal Findings
Here, we use stable carbon and oxygen isotopes preserved in fossil teeth to document the magnitude of mammalian dietary shifts and ancient floral change during geologically documented glacial and interglacial periods during the Pliocene (∼1.9 million years ago) and Pleistocene (∼1.3 million years ago) in Florida. Stable isotope data demonstrate increased aridity, increased C4 grass consumption, inter-faunal dietary partitioning, increased isotopic niche breadth of mixed feeders, niche partitioning of phylogenetically similar taxa, and differences in relative seasonality with warming.Conclusion/Significance
Our data show that global warming resulted in dramatic vegetation and dietary changes even at lower latitudes (∼28°N). Our results also question the use of models that predict the long term decline and extinction of species based on the assumption that niches are conserved over time. These findings have immediate relevance to clarifying possible biotic responses to current global warming in modern ecosystems. 相似文献17.
Junlong Song Xiang Zhang Qiang Liu Jianheng Peng Xinjie Liang Yuanyuan Shen Hongtao Liu Hongyuan Li 《PloS one》2014,9(5)
Objective
The objective of this study was to perform a meta-analysis of published studies for evaluating the impact of neoadjuvant chemotherapy (NAC) on immediate breast reconstruction.Methods
We searched medical databases to identify appropriate studies that assessed the impact of NAC on immediate breast reconstruction from the inception of this technique through April 2013. We then performed a meta-analysis of these studies.Results
Our searches identified 11 studies among 1,840 citations. In the meta-analysis, NAC did not increase the overall rate of complications after immediate breast reconstruction (odds ratio [OR] = 0.59; 95% confidence interval[CI] = 0.38–0.91). The complication rate was also unaffected by NAC when we considered infections (OR = 0.82; 95% CI = 0.46–1.45), hematomas (OR = 1.35; 95% CI = 0.57–3.21), and seromas (OR = 0.77; 95% CI = 0.23–2.55). Additionally, expander or implant loss did not significantly increase in patients after NAC (OR = 1.59; 95% CI = 0.91–2.79). Only 2 studies (202 procedures) had reported total autologous flap loss, and they were included in our analysis; both studies found no association between NAC and total flap loss.Conclusion
Our analysis suggests that NAC does not increase the complication rate after immediate breast reconstruction. For appropriately selected patients, immediate breast reconstruction following NAC is a safe procedure. The best way to study this issue in the future is to conduct a multicenter prospective study with a longer follow-up period and more clearly defined parameters. 相似文献18.
Caroline Isaksson 《EcoHealth》2010,7(3):342-350
Oxidative stress is the unifying feature underlying the toxicity of anthropogenic pollution (e.g., heavy metals, polycyclic aromatic hydrocarbons, and nitrogen-oxides) and the ultimate culprit in the development of many diseases. Yet, there has been no attempt to summarize the published data on wild terrestrial animals to reveal general trends regarding the effects of pollution on oxidative stress. The main findings of this meta-analysis reveal that, as predicted, there is an overall increase in oxidative stress when exposed to pollution. This is mainly due to a weak overall increase of oxidative damages, although there is some variation across taxa. The reduced form of glutathione (GSH) and its associated enzymes are the most reliable biomarkers. This result is important when choosing biomarkers and when using less-invasive sampling of endangered species, or for longitudinal approaches. To be able to predict future population outcomes, possible treatments, but also evolutionary responses to a changing environment, a greater integration of biotic factors such as temperature, bioavailability of toxic elements, and species-specific responses are needed. 相似文献
19.
Annabel Meyer Andreas Focks Viviane Radl Gerhard Welzl Ingo Schöning Michael Schloter 《Microbial ecology》2014,67(1):161-166
In the present study, the influence of the land use intensity on the diversity of ammonia oxidizing bacteria (AOB) and archaea (AOA) in soils from different grassland ecosystems has been investigated in spring and summer of the season (April and July). Diversity of AOA and AOB was studied by TRFLP fingerprinting of amoA amplicons. The diversity from AOB was low and dominated by a peak that could be assigned to Nitrosospira. The obtained profiles for AOB were very stable and neither influenced by the land use intensity nor by the time point of sampling. In contrast, the obtained patterns for AOA were more complex although one peak that could be assigned to Nitrosopumilus was dominating all profiles independent from the land use intensity and the sampling time point. Overall, the AOA profiles were much more dynamic than those of AOB and responded clearly to the land use intensity. An influence of the sampling time point was again not visible. Whereas AOB profiles were clearly linked to potential nitrification rates in soil, major TRFs from AOA were negatively correlated to DOC and ammonium availability and not related to potential nitrification rates. 相似文献
20.
A monitoring trial was carried out to investigate the effect of boreholes configuration on the stability and gas production rate. These boreholes were drilled from the retaining roadway at longwall mining panel 1111(1) of the Zhuji Coalmine, in China. A borehole camera exploration device and multiple gas parameter measuring device were adopted to monitor the stability and gas production rate. Research results show that boreholes 1~8 with low intensity and thin casing thickness were broken at the depth of 5~10 m along the casing and with a distance of 2~14 m behind the coal face, while boreholes 9~11 with a special thick-walled high-strength oil casing did not fracture during the whole extraction period. The gas extraction volume is closely related to the boreholes stability. After the stability of boreholes 9~11 being improved, the average gas flow rate increased dramatically 16-fold from 0.13 to 2.21 m3/min, and the maximum gas flow rate reached 4.9 m3/min. Strengthening boreholes configuration is demonstrated to be a good option to improve gas extraction effect. These findings can make a significant contribution to the reduction of greenhouse gas emissions from the coal mining industry. 相似文献