首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genomic GC-content of bacteria varies dramatically, from less than 20% to more than 70%. This variation is generally ascribed to differences in the pattern of mutation between bacteria. Here we test this hypothesis by examining patterns of synonymous polymorphism using datasets from 149 bacterial species. We find a large excess of synonymous GC→AT mutations over AT→GC mutations segregating in all but the most AT-rich bacteria, across a broad range of phylogenetically diverse species. We show that the excess of GC→AT mutations is inconsistent with mutation bias, since it would imply that most GC-rich bacteria are declining in GC-content; such a pattern would be unsustainable. We also show that the patterns are probably not due to translational selection or biased gene conversion, because optimal codons tend to be AT-rich, and the excess of GC→AT SNPs is observed in datasets with no evidence of recombination. We therefore conclude that there is selection to increase synonymous GC-content in many species. Since synonymous GC-content is highly correlated to genomic GC-content, we further conclude that there is selection on genomic base composition in many bacteria.  相似文献   

2.
3.
4.
Mycoplasma genitalium is the smallest member of the class Mollicutes, with a genome size of 580 kb. It has the potential to express 480 gene products, and is therefore considered to be an excellent model to assess: (a) the minimum metabolism required by a free living cell; and (b) proteomic technologies and the information obtained by proteome analysis. Here, we report on the most complete proteome observed at 73% (expected proteome), and analysed at 33% (reported proteome). The use of four overlapping pH windows in conjunction with SDS/PAGE has allowed 427 distinct proteins to be resolved in association with the exponential growth of M. genitalium. Proof of expression for 201 proteins of sufficient abundance on silver stained two-dimensional gels was obtained using peptide mass fingerprinting (PMF) of which 158 were identified. The potential for gene product modification in even the simplest known self-replicating organism was quantified at a ratio of 1.22 : 1, more proteins than genes. A reduction in protein expression of 42% was observed for post-exponentially-grown cells. DnaK, GroEL, DNA gyrase, and a cytadherence accessory protein were significantly elevated, while some ribosomal proteins were reduced in relative abundance. The strengths and weaknesses of techniques employed were assessed with respect to the observed and predicted proteome derived from DNA sequence information. Proteomics was shown to provide a perspective into the biochemical and metabolic activities of this organism, beyond that obtainable by sequencing alone.  相似文献   

5.
6.
The application of mass spectrometry based proteomics to sperm biology has greatly accelerated progress in understanding the molecular composition and function of spermatozoa. To date, these approaches have been largely restricted to model organisms, all of which produce a single sperm morph capable of oocyte fertilisation. Here we apply high-throughput mass spectrometry proteomic analysis to characterise sperm composition in Manduca sexta, the tobacco hornworm moth, which produce heteromorphic sperm, including one fertilisation competent (eupyrene) and one incompetent (apyrene) sperm type. This resulted in the high confidence identification of 896 proteins from a co-mixed sample of both sperm types, of which 167 are encoded by genes with strict one-to-one orthology in Drosophila melanogaster. Importantly, over half (55.1%) of these orthologous proteins have previously been identified in the D. melanogaster sperm proteome and exhibit significant conservation in quantitative protein abundance in sperm between the two species. Despite the complex nature of gene expression across spermatogenic stages, a significant correlation was also observed between sperm protein abundance and testis gene expression. Lepidopteran-specific sperm proteins (e.g., proteins with no homology to proteins in non-Lepidopteran taxa) were present in significantly greater abundance on average than those with homology outside the Lepidoptera. Given the disproportionate production of apyrene sperm (96% of all mature sperm in Manduca) relative to eupyrene sperm, these evolutionarily novel and highly abundant proteins are candidates for possessing apyrene-specific functions. Lastly, comparative genomic analyses of testis-expressed, ovary-expressed and sperm genes identified a concentration of novel sperm proteins shared amongst Lepidoptera of potential relevance to the evolutionary origin of heteromorphic spermatogenesis. As the first published Lepidopteran sperm proteome, this whole-cell proteomic characterisation will facilitate future evolutionary genetic and developmental studies of heteromorphic sperm production and parasperm function. Furthermore, the analyses presented here provide useful annotation information regarding sex-biased gene expression, novel Lepidopteran genes and gene function in the male gamete to complement the newly sequenced and annotated Manduca genome.  相似文献   

7.
Induced pluripotent stem cells (iPSC) are an attractive progenitor source for the generation of in vitro blood products. However, before iPSC-derived erythroid cells can be considered for therapeutic use their similarity to adult erythroid cells must be confirmed. We have analysed the proteome of erythroid cells differentiated from the iPSC fibroblast derived line (C19) and showed they express hallmark RBC proteins, including all those of the ankyrin and 4.1R complex. We next compared the proteome of erythroid cells differentiated from three iPSC lines (C19, OCE1, OPM2) with that of adult and cord blood progenitors. Of the 1989 proteins quantified <3% differed in level by 2-fold or more between the different iPSC-derived erythroid cells. When compared to adult cells, 11% of proteins differed in level by 2-fold or more, falling to 1.9% if a 5-fold threshold was imposed to accommodate slight inter-cell line erythropoietic developmental variation. Notably, the level of >30 hallmark erythroid proteins was consistent between the iPSC lines and adult cells. In addition, a sub-population (10–15%) of iPSC erythroid cells in each of the iPSC lines completed enucleation. Aberrant expression of some cytoskeleton proteins may contribute to the failure of the majority of the cells to enucleate since we detected some alterations in cytoskeletal protein abundance. In conclusion, the proteome of erythroid cells differentiated from iPSC lines is very similar to that of normal adult erythroid cells, but further work to improve the induction of erythroid cells in existing iPSC lines or to generate novel erythroid cell lines is required before iPSC-derived red cells can be considered suitable for transfusion therapy.  相似文献   

8.

Background

In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts.

Results

Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme.

Conclusions

The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments as compared to steady-state cultures. Therefore we conclude that by using our approach we are able to analyze a synchronized fraction of newly formed heterocysts, which enabled a better detection of proteins involved in the heterocyst specific physiology.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1064) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
11.
Spermatozoa are central to fertilization and the evolutionary fitness of sexually reproducing organisms. As such, a deeper understanding of sperm proteomes (and associated reproductive tissues) has proven critical to the advancement of the fields of sexual selection and reproductive biology. Due to their extraordinary complexity, proteome depth-of-coverage is dependent on advancements in technology and related bioinformatics, both of which have made significant advancements in the decade since the last Drosophila sperm proteome was published. Here, we provide an updated version of the Drosophila melanogaster sperm proteome (DmSP3) using improved separation and detection methods and an updated genome annotation. Combined with previous versions of the sperm proteome, the DmSP3 contains a total of 3176 proteins, and we provide the first label-free quantitation of the sperm proteome for 2125 proteins. The top 20 most abundant proteins included the structural elements α- and β-tubulins and sperm leucyl-aminopeptidases. Both gene content and protein abundance were significantly reduced on the X chromosome, consistent with prior genomic studies of X chromosome evolution. We identified 9 of the 16 Y-linked proteins, including known testis-specific male fertility factors. We also identified almost one-half of known Drosophila ribosomal proteins in the DmSP3. The role of this subset of ribosomal proteins in sperm is unknown. Surprisingly, our expanded sperm proteome also identified 122 seminal fluid proteins (Sfps), proteins originally identified in the accessory glands. We show that a significant fraction of ‘sperm-associated Sfps’ are recalcitrant to concentrated salt and detergent treatments, suggesting this subclass of Sfps are expressed in testes and may have additional functions in sperm, per se. Overall, our results add to a growing landscape of both sperm and seminal fluid protein biology and in particular provides quantitative evidence at the protein level for prior findings supporting the meiotic sex-chromosome inactivation model for male-specific gene and X chromosome evolution.  相似文献   

12.
We developed “fractionation profiling,” a method for rapid proteomic analysis of membrane vesicles and protein particles. The approach combines quantitative proteomics with subcellular fractionation to generate signature protein abundance distribution profiles. Functionally associated groups of proteins are revealed through cluster analysis. To validate the method, we first profiled >3500 proteins from HeLa cells and identified known clathrin-coated vesicle proteins with >90% accuracy. We then profiled >2400 proteins from Drosophila S2 cells, and we report the first comprehensive insect clathrin-coated vesicle proteome. Of importance, the cluster analysis extends to all profiled proteins and thus identifies a diverse range of known and novel cytosolic and membrane-associated protein complexes. We show that it also allows the detailed compositional characterization of complexes, including the delineation of subcomplexes and subunit stoichiometry. Our predictions are presented in an interactive database. Fractionation profiling is a universal method for defining the clathrin-coated vesicle proteome and may be adapted for the analysis of other types of vesicles and particles. In addition, it provides a versatile tool for the rapid generation of large-scale protein interaction maps.  相似文献   

13.
There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.  相似文献   

14.
Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10–90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (k cat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism.  相似文献   

15.
A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18) from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001), confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05) of proliferating cell nuclear antigen (PCNA), NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05) of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05) involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05) of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism.  相似文献   

16.
17.
The advent and widespread application of next-generation sequencing (NGS) technologies to the study of microbial genomes has led to a substantial increase in the number of studies in which whole genome sequencing (WGS) is applied to the analysis of microbial genomic epidemiology. However, microorganisms such as Mycobacterium tuberculosis (MTB) present unique problems for sequencing and downstream analysis based on their unique physiology and the composition of their genomes. In this study, we compare the quality of sequence data generated using the Nextera and TruSeq isolate preparation kits for library construction prior to Illumina sequencing-by-synthesis. Our results confirm that MTB NGS data quality is highly dependent on the purity of the DNA sample submitted for sequencing and its guanine-cytosine content (or GC-content). Our data additionally demonstrate that the choice of library preparation method plays an important role in mitigating downstream sequencing quality issues. Importantly for MTB, the Illumina TruSeq library preparation kit produces more uniform data quality than the Nextera XT method, regardless of the quality of the input DNA. Furthermore, specific genomic sequence motifs are commonly missed by the Nextera XT method, as are regions of especially high GC-content relative to the rest of the MTB genome. As coverage bias is highly undesirable, this study illustrates the importance of appropriate protocol selection when performing NGS studies in order to ensure that sound inferences can be made regarding mycobacterial genomes.  相似文献   

18.
The molecular function of the cellular prion protein (PrPC) and the mechanism by which it may contribute to neurotoxicity in prion diseases and Alzheimer''s disease are only partially understood. Mouse neuroblastoma Neuro2a cells and, more recently, C2C12 myocytes and myotubes have emerged as popular models for investigating the cellular biology of PrP. Mouse epithelial NMuMG cells might become attractive models for studying the possible involvement of PrP in a morphogenetic program underlying epithelial-to-mesenchymal transitions. Here we describe the generation of PrP knockout clones from these cell lines using CRISPR-Cas9 knockout technology. More specifically, knockout clones were generated with two separate guide RNAs targeting recognition sites on opposite strands within the first hundred nucleotides of the Prnp coding sequence. Several PrP knockout clones were isolated and genomic insertions and deletions near the CRISPR-target sites were characterized. Subsequently, deep quantitative global proteome analyses that recorded the relative abundance of>3000 proteins (data deposited to ProteomeXchange Consortium) were undertaken to begin to characterize the molecular consequences of PrP deficiency. The levels of ∼120 proteins were shown to reproducibly correlate with the presence or absence of PrP, with most of these proteins belonging to extracellular components, cell junctions or the cytoskeleton.  相似文献   

19.
The availability of complete genome sequences of H. pylori 26695 has provided a wealth of information enabling us to carry out in silico studies to identify new molecular targets for pharmaceutical treatment. In order to construe the structural and functional information of complete proteome, use of computational methods are more relevant since these methods are reliable and provide a solution to the time consuming and expensive experimental methods. Out of 1590 predicted protein coding genes in H. pylori, experimentally determined structures are available for only 145 proteins in the PDB. In the absence of experimental structures, computational studies on the three dimensional (3D) structural organization would help in deciphering the protein fold, structure and active site. Functional annotation of each protein was carried out based on structural fold and binding site based ligand association. Most of these proteins are uncharacterized in this proteome and through our annotation pipeline we were able to annotate most of them. We could assign structural folds to 464 uncharacterized proteins from an initial list of 557 sequences. Of the 1195 known structural folds present in the SCOP database, 411 (34% of all known folds) are observed in the whole H. pylori 26695 proteome, with greater inclination for domains belonging to α/β class (36.63%). Top folds include P-loop containing nucleoside triphosphate hydrolases (22.6%), TIM barrel (16.7%), transmembrane helix hairpin (16.05%), alpha-alpha superhelix (11.1%) and S-adenosyl-L-methionine-dependent methyltransferases (10.7%).  相似文献   

20.
Zhong F  Yang D  Hao Y  Lin C  Jiang Y  Ying W  Wu S  Zhu Y  Liu S  Yang P  Qian X  He F 《PloS one》2012,7(3):e32423
A proteome of the bio-entity, including cell, tissue, organ, and organism, consists of proteins of diverse abundance. The principle that determines the abundance of different proteins in a proteome is of fundamental significance for an understanding of the building blocks of the bio-entity. Here, we report three regular patterns in the proteome-wide distribution of protein abundance across species such as human, mouse, fly, worm, yeast, and bacteria: in most cases, protein abundance is positively correlated with the protein's origination time or sequence conservation during evolution; it is negatively correlated with the protein's domain number and positively correlated with domain coverage in protein structure, and the correlations became stronger during the course of evolution; protein abundance can be further stratified by the function of the protein, whereby proteins that act on material conversion and transportation (mass category) are more abundant than those that act on information modulation (information category). Thus, protein abundance is intrinsically related to the protein's inherent characters of evolution, structure, and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号