首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
Unravelling how biodiversity is maintained despite species competition for shared resources has been a central question in community ecology, and is gaining relevance amidst the current biodiversity crisis. Yet, we have still a poor understanding of the mechanisms that regulate species coexistence and shape the structure of assemblages in highly competitive environments such as carrion pulsed resources. Here, we study how large vertebrates coexist in scavenger assemblages by adapting their diel activity at large ungulate carcasses in NW Spain. We used camera traps to record vertebrate scavengers consuming 34 carcasses of livestock and hunted wild ungulates, which allowed us to assess also differences regarding carcass origin. To evaluate temporal resource partition among species, we estimated the overlap of diel activity patterns and the mean times of each scavenger at carcasses. We recorded 16 species of scavengers, 7 mammals and 9 birds, and found similar richness at both types of carcasses. Birds and mammals showed contrasting diel activity patterns, with birds using carcasses during daytime (mean= 11:38 h) and mammals mostly at night (23:09 h). The unimodal activity patterns of scavengers showed asynchronous peaks among species. Subordinate species modified their activity patterns at carcasses used by apex species to reduce temporal overlap. Also, diel activity patterns of vultures closely followed those of corvids, suggesting facilitation processes in which corvids would enhance carcass detection by vultures. Two mammal species (12.5%) increased nocturnality at carcasses of hunted ungulates, which could be a response to human disturbance. Our results suggest that both temporal segregation and coupling mediate the coexistence of large vertebrates at carcasses. These mechanisms might lead to richer scavenger assemblages and thereby more efficient ones in driving critical ecosystem functions related to carrion consumption, such as energy and nutrient recycling and biodiversity maintenance.  相似文献   

2.
Invasive Alien Species (IAS) alter ecosystems, disrupting ecological processes and driving the loss of ecosystem services. The common carp Cyprinus carpio is a hazardous and widespread IAS, becoming the most abundant species in many aquatic ecosystems. This species transforms ecosystems by accumulating biomass to the detriment of other species, thus altering food webs. However, some terrestrial species, such as vertebrate scavengers, may benefit from dead carps, by incorporating part of the carp biomass into the terrestrial environment. This study describes the terrestrial vertebrate scavenger assemblage that benefits from carp carcasses in a Mediterranean wetland. We also evaluate the seasonal differences in the scavenger assemblage composition and carrion consumption patterns. Eighty carp carcasses (20 per season) were placed in El Hondo Natural Park, a seminatural mesohaline wetland in south‐eastern Spain, and we monitored their consumption using camera traps. We recorded 14 scavenger species (10 birds and four mammals) consuming carp carcasses, including globally threatened species. Vertebrates consumed 73% of the carrion biomass and appeared consuming at 82% of the carcasses. Of these carcasses consumed, 75% were completely consumed and the mean consumption time of carcasses completely consumed by vertebrates was 44.4 h (SD = 42.1 h). We recorded differences in species richness, abundance, and assemblage composition among seasons, but we did not find seasonal differences in consumption patterns throughout the year. Our study recorded a rich and efficient terrestrial vertebrate scavenger assemblage benefitting from carp carcasses. We detected a seasonal replacement on the scavenger species, but a maintenance of the ecological function of carrion removal, as the most efficient carrion consumers were present throughout the year. The results highlight the importance of vertebrate scavengers in wetlands, removing possible infectious focus, and moving nutrients between aquatic and terrestrial environments.  相似文献   

3.
Abiotic and biotic factors modulate carcass consumption by scavengers, affecting ecosystem functioning. Habitat structure is arguably a key factor influencing scavenging, but its role remains poorly understood, particularly at small spatial scales. We examine how habitat characteristics at landscape (50–1000 m radius) and local (≤10 m radius) scales around carrion affect the structure of vertebrate scavenging communities. We used remote cameras to monitor the consumption of 151 ungulate carcasses in one temperate (55 carcasses) and two Mediterranean (56 and 40 carcasses) study areas in Spain in 2011–2013. Our results showed complex habitat–scavenger relationships that mainly relied upon the spatial scale, the type of carcass and the study area. While the response of scavenger richness to habitat characteristics was consistent across study areas, the effects of diversity varied regionally at the landscape scale. Large and medium-sized carcasses in open landscapes had lower scavenger richness, likely because open habitats promote vulture dominance. At the local scale, shrub cover lowered scavenger richness and diversity, hindering carrion location by avian scavengers. Our results suggest that the structure of vertebrate scavenging assemblages at carcasses is driven by carcass and habitat characteristics operating as ecological filters at different scales (i.e. local, landscape, and biogeographical), which affect a species’ ability to locate, access and dominate carrion. Understanding the factors underlying the complex habitat–community relationships shown here has implications for managing key ecosystem functions and services. We propose a multi-scale conceptual framework to disentangle scavenger–carcass relationships.  相似文献   

4.
Vultures provide an essential ecosystem service through removal of carrion, but globally, many populations are collapsing and several species are threatened with extinction. Widespread declines in vulture populations could increase the availability of carrion to other organisms, but the ways facultative scavengers might respond to this increase have not been thoroughly explored. We aimed to determine whether facultative scavengers increase carrion consumption in the absence of vulture competition and whether they are capable of functionally replacing vultures in the removal of carrion biomass from the landscape. We experimentally excluded 65 rabbit carcasses from vultures during daylight hours and placed an additional 65 carcasses that were accessible to vultures in forested habitat in South Carolina, USA during summer (June–August). We used motion‐activated cameras to compare carrion use by facultative scavenging species between the experimental and control carcasses. Scavenging by facultative scavengers did not increase in the absence of competition with vultures. We found no difference in scavenger presence between control carcasses and those from which vultures were excluded. Eighty percent of carcasses from which vultures were excluded were not scavenged by vertebrates, compared to 5% of carcasses that were accessible to vultures. At the end of the 7‐day trials, there was a 10.1‐fold increase in the number of experimental carcasses that were not fully scavenged compared to controls. Facultative scavengers did not functionally replace vultures during summer in our study. This finding may have been influenced by the time of the year in which the study took place, the duration of the trials, and the spacing of carcass sites. Our results suggest that under the warm and humid conditions of our study, facultative scavengers would not compensate for loss of vultures. Carcasses would persist longer in the environment and consumption of carrion would likely shift from vertebrates to decomposers. Such changes could have substantial implications for disease transmission, nutrient cycling, and ecosystem functioning.  相似文献   

5.
The particle size of the food resource strongly determines the structure and dynamics of food webs. However, the ecological implications of carcass size variation for scavenging networks structure and functioning have been largely overlooked. Here we investigate differences in scavenging patterns due to carcass size in a complex vertebrate scavenger community, Hluhluwe‐iMfolozi Park, South Africa, while taking into account seasonality. We monitored the consumption of three types of experimental carcasses: ‘small’ (< 10 kg), ‘medium’ (10–100 kg) and ‘large’ (> 100 kg). We employed general lineal models to explore the influence of carcass size on 1) scavenging network structure (scavenger species richness per carcass) and 2) functioning (carcass detection time, consumption time, consumption rate and percentage of carrion consumed). We also tested whether the structure of the scavenging network of each carcass size was nested, i.e. whether the scavenging assemblage in species‐poor carcasses was a subset of the assemblage consuming species‐rich carcasses. We found strong evidence indicating that carcass size is a major factor governing the associated scavenger assemblage. Scavenger species richness per carcass and carcass consumption time and rate increased with carcass size, while carcass detection time and percentage of carrion biomass consumed were negatively related to carcass size. Strikingly, most of the carrion biomass was consumed by facultative scavengers, represented by large mammalian carnivores, rather than by obligate scavengers (i.e. vultures). Scavenging network nestedness tended to be higher at larger carcasses, and nestedness was sensitive to the removal of the most connected species in the network (spotted hyena) rather than vultures. When comparing scavenging and predation assemblages, crucial size‐dependent differences emerge. Also, we identified a traditionally ignored mechanism by which hunting large prey could be relatively less profitable for predators, namely the costs associated with competition from scavengers and decomposers.  相似文献   

6.
We identified vertebrate scavengers of small mammal carcasses at the 780-km2 Savannah River Site during the winter of 2000–2001. Rodent carcasses, differing in size and visual conspicuousness, were placed in upland pine forests and bottomland hardwood forests during six 2-week periods. Sixty-two of the 96 carcasses (65%) were removed by vertebrates. With the aid of remote photography, we identified 11 species of scavengers removing carcasses. RaccoonsProcyon lotor, gray foxesUrocyon cinereoargenteus, and feral pigsSus scrofa scavenged most frequently. The mean elapsed time for carcass removal was 5.6 days. The number of carcasses removed by vertebrates did not differ significantly with respect to carcass size, visual conspicuousness, or habitat type; however, air temperature was strongly correlated (positively) with carcass removal. Our study demonstrates that many mammal species are capable of utilizing small carrion items as a food resource, and suggests that scavenging may account for a higher proportion of the diet of some facultative scavengers than is now widely assumed.  相似文献   

7.
The alteration of scavenging communities can reduce basic ecosystem services and increase risks to human and wildlife health. Recent work demonstrated that scavenging communities in agricultural landscapes are extremely efficient: superabundant mesopredators sequestered system energy by dominating scavenging activity. To explore how the disturbance of these communities affects the stability of carrion removal as an ecosystem function, we experimentally manipulated a scavenging community within an agricultural landscape by reducing the abundance of the dominant scavenger, raccoons Procyon lotor. We then monitored the fates of 676 mouse Mus musculus carcasses placed in 13 control and 13 removal woodlots from June 2007–May 2008. The diversity of vertebrate scavengers did not change between control and removal woodlots and scavenging by invertebrates was unaffected by our experiment. Although Virginia opossums Didelphis virginiana and other scavengers exhibited a functional response when raccoons were reduced in abundance, the increases did not change the proportional allocation of carcasses among scavengers. Finally, the reduced abundance of a major scavenger affected system efficiency. More carcasses remained un‐scavenged at the end of trials in removal woodlots than in control woodlots. This experiment demonstrates the vulnerability of a critical ecosystem service, carrion removal, to perturbations of the scavenging community and serves to highlight the method by which scavenger communities may respond to perturbations.  相似文献   

8.
Understanding the mechanisms that organize biodiversity is central in ecology and conservation. Beta diversity links local (alfa) and regional (gamma) diversity, giving insight into how communities organize spatially. Metacommunity ecology provides the framework to interpret regional and local processes interacting to shape communities. However, the lack of metacommunity studies for large vertebrates may limit the understanding and compromise the preservation of ecosystem functions and services. We aim to understand the mechanisms underlying differences in species composition among vertebrate scavenger communities ? which provide key ecosystem functions, e.g. carrion consumption ? within a metacommunity context. We obtained species richness and abundances at scavenger communities consuming ungulate carcasses monitored through motion‐triggered remote cameras in seven terrestrial ecosystems in Spain. We partitioned beta diversity to decompose incidence‐based (species presence/absence) and abundance‐based dissimilarities into their components (turnover/balanced variation and nestedness/abundance gradient, respectively). We identified the environmental factors explaining the observed patterns. The vertebrate scavenger metacommunity consisted of 3101 individuals from 30 species. Changes in composition among ecosystems were mostly (> 84%) due to species or individual replacement (i.e. turnover or balanced variation). Species or individual loss/gain (i.e. nestedness or abundance gradient) accounted for 13–16% of these changes. Mean carcass weight, elevation and habitat diversity were the main factors explaining species/individual replacement. Our findings suggest that local processes such as species‐sorting through habitat heterogeneity would dominate scavenger metacommunity dynamics together with stochastic forces (i.e. related to carrion unpredictability and scavenging being a widespread strategy among vertebrates). The presence of structured patterns (i.e. nestedness) in beta diversity could reflect a role of deterministic processes: mass‐effects through dispersal and defaunation. Vultures are long‐distance foragers and functionally dominant species, which would connect local assemblages within the metacommunity, supporting scavenger diversity and functions across space. These results highlight the importance of managing vertebrate scavenger assemblages within a metacommunity context.  相似文献   

9.
Recent research has demonstrated how scavenging, the act of consuming dead animals, plays a key role in ecosystem structure, functioning, and stability. A growing number of studies suggest that vertebrate scavengers also provide key ecosystem services, the benefits humans gain from the natural world, particularly in the removal of carcasses from the environment. An increasing proportion of the human population is now residing in cities and towns, many of which, despite being highly altered environments, contain significant wildlife populations, and so animal carcasses. Indeed, non‐predation fatalities may be higher within urban than natural environments. Despite this, the fate of carcasses in urban environments and the role vertebrate scavengers play in their removal have not been determined. In this study, we quantify the role of vertebrate scavengers in urban environments in three towns in the UK. Using experimentally deployed rat carcasses and rapid fire motion‐triggered cameras, we determined which species were scavenging and how removal of carcass biomass was partitioned between them. Of the 63 experimental carcasses deployed, vertebrate scavenger activity was detected at 67%. There was a significantly greater depletion in carcass biomass in the presence (mean loss of 194 g) than absence (mean loss of 14 g) of scavengers. Scavenger activity was restricted to three species, Carrion crows Corvus corone, Eurasian magpies Pica pica, and European red foxes Vulpes vulpes. From behavioral analysis, we estimated that a maximum of 73% of the carcass biomass was removed by vertebrate scavengers. Despite having low species richness, the urban scavenger community in our urban study system removed a similar proportion of carcasses to those reported in more pristine environments. Vertebrate scavengers are providing a key urban ecosystem service in terms of carcass removal. This service is, however, often overlooked, and the species that provide it are among some of the most disliked and persecuted.  相似文献   

10.

Aim

Despite the increasing scientific evidence on the importance of carrion in the ecology and evolution of many vertebrates, scavenging is still barely considered in diet studies. Here, we draw attention to how scientific literature has underestimated the role of vertebrates as scavengers, identifying the ecological traits that characterize those species whose role as scavengers could have gone especially unnoticed.

Location

Global.

Time Period

1938–2022.

Major Taxa Studied

Terrestrial vertebrate scavengers.

Methods

We analysed and compared (a) the largest database available on scavenging patterns by carrion-consuming vertebrates, (b) 908 diet studies about 156 scavenger species and (c) one of the most complete databases on bird and mammal diets (Elton Traits database). For each of these 156 species, we calculated their scavenging degree (i.e. proportion of carcases where the species is detected consuming carrion) as a proxy for carrion consumption, and related their ecological traits with the probability of being identified as scavengers in diet studies and in the Elton Traits database.

Results

More than half of the species identified as scavengers at monitored carcasses were not assigned carrion as food source in their diet studies nor in the Elton Traits database. Using a subset of study sites, we found a direct relationship between a species' scavenging degree and its rate of carrion biomass removal. In addition, scavenger species, which were classified as non-predators and mammals had a lower probability of being identified as scavengers in diet studies and in the Elton Traits database, respectively.

Main Conclusions

Our results clearly indicate an underestimation of the role of scavenging in vertebrate food webs. Given that detritus recycling is fundamental to ecosystem functioning, we encourage further recognition and investigation of the role of carrion as a food resource for vertebrates, especially for non-predator species and mammals with higher scavenging degree.  相似文献   

11.
Scavengers are subsidized by the remains of hunting worldwide. Although most studies focus on carcasses of large mammals, small mammals that have been shot likely provide a significant food subsidy as well, particularly in parts of the western United States. Millions of small mammals are estimated to be shot each year for damage control and recreation, many being left in the field. Despite this prevalence of carrion, and the potential for scavengers to ingest residual lead from bullet fragments, the fate of these carcasses is largely unknown. We deployed remote cameras to observe which scavengers consumed shot ground squirrels (Urocitellus spp.) and black-tailed prairie dogs (Cynomys ludovicianus) in 8 locations across Montana, USA. At least 5 species of mammals and 9 species of birds scavenged, including burrowing owls (Athene cunicularia). Scavengers fully consumed 66% of carcasses and partially consumed 9%. Carcasses lasted an average of 24.5 hours before the first scavenger arrived. Of carcasses that were scavenged, mammals ate 16% and birds ate 84%, with corvids and raptors consuming an equal number of carcasses. Common ravens (Corvus corax) and black-billed magpies (Pica hudsonia) visited the most carcasses and often arrived first. Scavengers consumed only 9% of the carcasses that were partially concealed by being inside a burrow. Overall, our results indicate that a diverse scavenger community consumes shot ground squirrels and black-tailed prairie dogs, and consequently, may be exposed to lead from bullet fragments. © 2019 The Wildlife Society.  相似文献   

12.
Scavenging is a common feeding behavior by many species that plays an important role in ecosystem stability and function while also providing ecosystem services. Despite its importance, facultative scavenging on large animal carcasses has generally been overlooked in Asian temperate forest ecosystems. The aim of this study was to determine the composition and feeding behavior of the facultative scavenger guild as it relates to sika deer (Cervus nippon) carcasses in Japanese forests. There are no obligate scavengers or large predators that kill adult ungulates, but humans fill the role of large predators by culling deer for population management. We documented nine vertebrate species scavenging on deer carcasses and found that mammals were more frequent scavengers than birds and also fed for longer durations. This result suggests that there is a facultative scavenger guild composed mainly of mammals in our forest ecosystem and that carcass utilization by birds was restricted to only forest species. Raccoon dogs (Nyctereutes procyonoides) and Asian black bears (Ursus thibetanus) were the most frequent scavenger species and also fed for longer durations than other scavengers. There were significant seasonal differences in scavenging by Asian black bear, Japanese marten (Martes melampus), and mountain hawk‐eagle (Nisaetus nipalensis), suggesting the availability of other food resources may alter facultative scavenging by each species. Our results support that scavenging is widespread in this system and likely has important functions including building links in the food web.  相似文献   

13.
ABSTRACT Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy afflicting the Cervidae family in North America, causing neurodegeneration and ultimately death. Although there are no reports of natural cross-species transmission of CWD to noncervids, infected deer carcasses pose a potential risk of CWD exposure for other animals. We placed 40 disease-free white-tailed deer (Odocoileus virginianus) carcasses and 10 gut piles in the CWD-affected area of Wisconsin (USA) from September to April in 2003 through 2005. We used photos from remotely operated cameras to characterize scavenger visitation and relative activity. To evaluate factors driving the rate of carcass removal (decomposition), we used Kaplan-Meier survival analysis and a generalized linear mixed model. We recorded 14 species of scavenging mammals (6 visiting species) and 14 species of scavenging birds (8 visiting species). Prominent scavengers included American crows (Corvus brachyrhynchos), raccoons (Procyon lotor), and Virginia opossums (Didelphis virginiana). We found no evidence that deer consumed conspecific remains, although they visited gut piles more often than carcasses relative to temporal availability in the environment. Domestic dogs, cats, and cows either scavenged or visited carcass sites, which could lead to human exposure to CWD. Deer carcasses persisted for 18 days to 101 days depending on the season and year, whereas gut piles lasted for 3 days. Habitat did not influence carcass decomposition, but mammalian and avian scavenger activity and higher temperatures were positively associated with faster removal. Infected deer carcasses or gut piles can serve as potential sources of CWD prions to a variety of scavengers. In areas where surveillance for CWD exposure is practical, management agencies should consider strategies for testing primary scavengers of deer carcass material.  相似文献   

14.
Carrion use by terrestrial vertebrates is much more prevalent than conventional theory implies, and, rather than a curiosity of animal behavior, is a key ecological process that must be accounted for. Human aversion to rotted substances and difficulties associated with identifying scavenged material in studies of food habits have contributed to the relative lack of information concerning scavenging behavior in vertebrates. Several lines of evidence, however, suggest that carrion resources are more extensively used by vertebrates than has been widely assumed: 1) a substantial number of animals die from causes other than predation and become available to scavengers, 2) a wide variety of vertebrate scavengers, rather than microbes or arthropods, consume most available carcasses, and 3) intense competition exists between vertebrate scavengers and decomposers, especially in warm climates. Although vultures are best adapted to use carrion, nearly all vertebrate predators are also scavengers to some extent. The costs and benefits associated with carrion use influences the evolution of scavenging behavior in vertebrates, resulting in a continuum of facultative scavengers that use carrion to varying degrees. The realized usage of carrion by a vertebrate species is influenced by the speed and efficiency with which it forages, its visual and olfactory abilities, and its capacity for detoxifying products of decomposition. A deeper understanding of carrion use by facultative scavengers will improve our knowledge of community and ecosystem processes, especially the flow of energy through food webs.  相似文献   

15.
In many temperate ecosystems animal carcasses resultant from wildlife harvest can provide a high-quality food source for myriad facultative scavengers. We investigated scavenger use of human-provisioned ungulate carrion from a fall moose (Alces alces) hunt during 2010 and 2011 on the Gustavus Forelands, Alaska, USA. Using data from remote cameras, we (1) identified the scavenger species that used these resources and (2) evaluated their spatial and temporal responses to this seasonal resource event by indexing their activity patterns and relative order of arrival at carrion sites. We also quantified the length of time carrion persisted and estimated the amount of moose biomass provisioned to vertebrate scavengers by human hunters. Our results indicated that 11 vertebrate species (five birds and six mammals) scavenged moose carrion. We found that the common raven was the only species documented at all carrion sites and the most abundant species at moose carrion sites. As a species group, corvids [black-billed magpie (Pica hudsonia), common raven (Corvus corax); 0.1 ± 2.3 days] were the first to arrive at human-provisioned moose carrion sites, whereas ursids [brown bear (Ursus arctos), black bear (U. americanus); 1.3 ± 1.0 days] arrived after corvids but sooner than expected and canids [gray wolf (Canis lupus), coyote (C. latrans); 3.9 ± 3.0] arrived later than expected compared to our null model. On average, carrion persisted >20 days and hunters provided scavengers with a minimum of 2720 kg (82.7 kg/km2) and 1815 kg (64.8 kg/km2) of moose carrion during 2010 and 2011, respectively. Understanding how scavengers, particularly large carnivores, interact with human-provisioned moose carrion at the rural–wildland interface is essential for mitigating potential human–wildlife conflicts associated with humans subsidizing predators with a high-quality food resource.  相似文献   

16.
Scavenging is a widespread phenomenon in vertebrate communities which has rarely been accounted for, in spite of playing an essential role in food webs by enhancing nutrient recycling and community stability. Most studies on scavenger assemblages have often presented an oversimplified view of carrion foraging. Here, we applied for the first time the concept of nestedness to the study of a species-rich scavenger community in a forest ecosystem (Białowieża Primeval Forest, Poland) following a network approach. By analysing one of the most complete datasets existing up to now in a pristine environment, we have shown that the community of facultative scavengers is not randomly assembled but highly nested. A nested pattern means that species-poor carcasses support a subset of the scavenger assemblage occurring at progressively species-rich carcasses. This result contradicts the conventional view of facultative scavenging as random and opportunistic and supports recent findings in scavenging ecology. It also suggests that factors other than competition play a major role in determining community structure. Nested patterns in scavenger communities appear to be promoted by the high diversity in carrion resources and consumers, the differential predictability of the ungulate carcass types and stressful environmental conditions.  相似文献   

17.
Carcasses of large herbivores are pulsed resources whose impact on animal communities and ecological processes is poorly understood. In temperate forests, long-lasting ungulate carcasses are a prime resource for many species of birds and mammals during winter. Facultative carrion-eaters also consume live prey, thus potentially leading to unexpected secondary effects on populations of species not directly linked to carcass exploitation. By snow-tracking and direct observations we investigated in Bia?owie?a Forest (E. Poland) whether large ungulate carcasses elicit spatial responses in facultative scavengers and their prey. We found that in the vicinity of carcass sites the probability of the presence of common ravens Corvus corax, jays Garrulus glandarius and red foxes Vulpes vulpes increased significantly. Indeed, large groups of the two bird species were exclusively found in those places. Because of these aggregations, the probability of predator–prey encounters (red foxes and brown hares Lepus europaeus) was significantly higher near carcass sites. Accordingly, the abundance of hares and other live prey such as red squirrels Sciurus vulgaris decreased at their vicinities, probably as a consequence of direct killing and/or predator avoidance. This study provides the first evidence of carrion pulses permeating into apparently distant trophic levels, such as herbivores, via facultative scavengers, thus highlighting some unnoticed but relevant effects of carrion resources on community structure.  相似文献   

18.
Bat fatalities at wind facilities have been reported worldwide, and environmental impact assessments depend on searches for carcasses around wind turbines to quantify impacts. Some of the carcasses may go undetected by search teams or be removed by scavengers during search intervals, so these biases must be evaluated and taken into account in fatality estimation. We investigated the influence of different factors on searcher efficiency and scavenger removal in a dry forest area in northeastern Brazil, one of the regions with the highest density of wind turbines in the Neotropics. We conducted searcher efficiency and scavenger removal trials around 34 wind turbines from January 2017 to January 2018. Searcher efficiency was influenced by cover type, season, and carcass size, ranging between 12% for small bats in shrub vegetation during the rainy season and 96% for large bats in absent or sparse vegetation during the dry season. Carcass type and season affected scavenger removal; carcass persistence time was shorter for chicks (1.2 days) than for bats and mice (2.1 days), and the probability of a carcass persisting for a whole day was higher in the rainy season, while the probability of carcass persistence for 7, 14, and 28 days was higher in the dry season. The scavenger community was composed of canids, birds of prey, and insects, with systematic removal of carcasses by the crab-eating fox (Cerdocyon thous) throughout the year and by dung beetles in the rainy season. Based on our findings, impact assessments of wind facilities on bats should conduct searcher efficiency trials in all seasons and cover types around wind turbines, using bat carcasses or models of different sizes. Scavenger removal trials should cover all seasons as well, and use mouse carcasses (but not chick carcasses) as surrogates for bats.  相似文献   

19.
We compared scavenging bird abundance and diversity across 17 estuaries on the Central Coast of British Columbia, Canada in relation to landscape characteristics and biomass of spawning salmon and senescent and depredated salmon carcasses. We discovered that all metrics for spawning salmon and carcass biomasses were strong predictors of scavenger abundance and diversity. Specifically, Shannon’s diversity, which emphasizes rare species richness, and total abundances of scavengers, corvids (Corvus spp.), and small and large gulls (Larus spp.) were most strongly predicted by total biomass of carcasses. In contrast, the abundance of bald eagles Haliaeetus leucocephalus was most strongly predicted by biomass of carcasses that had been killed or scavenged by other predators (mostly bears and wolves). Simpson’s diversity, which emphasizes evenness of common species, was best predicted by total spawning salmon biomass. Estuary area also featured prominently among top predictors of most scavenger metrics. Our results suggest a link between terrestrial salmon predators and bald eagles, and that available salmon biomass is important for maintaining the abundance and diversity of scavenging birds that congregate at estuaries throughout the spawning season.  相似文献   

20.
Carcass decomposition largely depends on vertebrate scavengers. However, how behavioral differences between vertebrate scavenger species, the dominance of certain species, and the diversity of the vertebrate scavenger community affect the speed of carcass decomposition is poorly understood. As scavenging is an overlooked trophic interaction, studying the different functional roles of vertebrate species in the scavenging process increases our understanding about the effect of the vertebrate scavenger community on carcass decomposition. We used motion‐triggered infrared camera trap footages to profile the behavior and activity of vertebrate scavengers visiting carcasses in Dutch nature areas. We grouped vertebrate scavengers with similar functional roles. We found a clear distinction between occasional scavengers and more specialized scavengers, and we found wild boar (Sus scrofa) to be the dominant scavenger species in our study system. We showed that these groups are functionally different within the scavenger community. We found that overall vertebrate scavenger diversity was positively correlated with carcass decomposition speed. With these findings, our study contributes to the understanding about the different functional roles scavengers can have in ecological communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号