首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The signal transduction adapter protein Disabled-2 (Dab2) is one of the two mammalian orthologs of the Drosophila Disabled. The brain-specific Disabled-1 (Dab1) functions in positional organization of brain cells during development. Dab2 is widely distributed and is highly expressed in many epithelial cell types. The dab2 gene was interrupted by in-frame insertion of beta-galactosidase (LacZ) in embryonic stem cells and transgenic mice were produced. Dab2 expression was first observed in the primitive endoderm at E4.5, immediately following implantation. The homozygous Dab2-deficient mutant is embryonic lethal (earlier than E6.5) due to defective cell positioning and structure formation of the visceral endoderm. In E5.5 dab2 (-/-) conceptus, visceral endoderm-like cells are present in the deformed primitive egg cylinder; however, the visceral endoderm cells are not organized, the cells of the epiblast have not expanded, and the proamniotic cavity fails to form. Disorganization of the visceral endodermal layer is evident, as cells with positive visceral endoderm markers are scattered throughout the dab2 (-/-) conceptus. Only degenerated remains were observed at E6.5 for dab2 (-/-) embryos, and by E7.5, the defective embryos were completely reabsorbed. In blastocyst in vitro culture, initially cells with characteristics of endoderm, trophectoderm, and inner cell mass were observed in the outgrowth of the hatched dab2 (-/-) blastocysts. However, the dab2 (-/-) endodermal cells are much more dispersed and disorganized than those from wild-type blastocysts, the inner cell mass fails to expand, and the outgrowth degenerates by day 7. Thus, Dab2 is required for visceral endodermal cell organization during early mouse development. The absence of an organized visceral endoderm in Dab2-deficient conceptus leads to the growth failure of the inner cell mass. We suggest that Dab2 functions in a signal pathway to regulate endodermal cell organization using endocytosis of ligands from the blastocoel cavity as a positioning cue.  相似文献   

3.
4.
During mouse embryogenesis GATA-4 is expressed first in primitive endoderm and then in definitive endoderm derivatives, including glandular stomach and intestine. To explore the role of GATA-4 in specification of definitive gastric endoderm, we generated chimeric mice by introducing Gata4(-/-) ES cells into ROSA26 morulae or blastocysts. In E14.5 chimeras, Gata4(-/-) cells were represented in endoderm lining the proximal and distal stomach. These cells expressed early cytodifferentiation markers, including GATA-6 and ApoJ. However, by E18.5, only rare patches of Gata4(-/-) epithelium were evident in the distal stomach. This heterotypic epithelium had a squamous morphology and did not express markers associated with differentiation of gastric epithelial cell lineages. Sonic Hedgehog, an endoderm-derived signaling molecule normally down-regulated in the distal stomach, was overexpressed in Gata4(-/-) cells. We conclude that GATA-4-deficient cells have an intrinsic defect in their ability to differentiate. Similarities in the phenotypes of Gata4(-/-) chimeras and mice with other genetically engineered mutations that affect gut development suggest that GATA-4 may be involved in the gastric epithelial response to members of the TGF-beta superfamily.  相似文献   

5.
6.
7.
The Disabled-2 (Dab2) gene has been proposed to act as a tumor suppressor. Cell culture studies have implicated Dab2 in signal transduction by mitogens, TGFbeta and endocytosis of lipoprotein receptors. To identify in vivo functions of Dab2, targeted mutations were made in the mouse. In the absence of Dab2, embryos arrest prior to gastrulation with a phenotype reminiscent of those caused by deletion of some TGFbeta signal transduction molecules involved in Nodal signaling. Dab2 is expressed in the extra-embryonic visceral endoderm but not in the epiblast. Dab2 could be conditionally deleted from the embryo without affecting normal development, showing that Dab2 is required in the visceral endoderm but dispensable in the embryo proper. Conditionally mutant Dab2(-/-) mice are overtly normal, but have reduced clathrin-coated pits in kidney proximal tubule cells and excrete specific plasma proteins in the urine, consistent with reduced transport by a lipoprotein receptor, megalin/gp330, in the proximal tubule. This evidence indicates that Dab2 is pleiotropic and regulates both visceral endoderm function and lipoprotein receptor trafficking in vivo.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Lactase-phlorizin hydrolase (LPH), a marker of intestinal differentiation, is expressed in absorptive enterocytes on small intestinal villi in a tightly regulated pattern along the proximal-distal axis. The LPH promoter contains binding sites that mediate activation by members of the GATA-4, -5, and -6 subfamily, but little is known about their individual contribution to LPH regulation in vivo. Here, we show that GATA-4 is the principal GATA factor from adult mouse intestinal epithelial cells that binds to the mouse LPH promoter, and its expression is highly correlated with that of LPH mRNA in jejunum and ileum. GATA-4 cooperates with hepatocyte nuclear factor (HNF)-1alpha to synergistically activate the LPH promoter by a mechanism identical to that previously characterized for GATA-5/HNF-1alpha, requiring physical association between GATA-4 and HNF-1alpha and intact HNF-1 binding sites on the LPH promoter. GATA-4 also activates the LPH promoter independently of HNF-1alpha, in contrast to GATA-5, which is unable to activate the LPH promoter in the absence of HNF-1alpha. GATA-4-specific activation requires intact GATA binding sites on the LPH promoter and was mapped by domain-swapping experiments to the zinc finger and basic regions. However, the difference in the capacity between GATA-4 and GATA-5 to activate the LPH promoter was not due to a difference in affinity for binding to GATA binding sites on the LPH promoter. These data indicate that GATA-4 is a key regulator of LPH gene expression that may function through an evolutionarily conserved mechanism involving cooperativity with an HNF-1alpha and/or a GATA-specific pathway independent of HNF-1alpha.  相似文献   

16.
GATA-6 is expressed in presumptive cardiac mesoderm before gastrulation, but its role in heart development has been unclear. Here we show that Xenopus and zebrafish embryos, injected with antisense morpholino oligonucleotides designed specifically to knock-down translation of GATA-6 protein, are severely compromised for heart development. Injected embryos express greatly reduced levels of contractile machinery genes and, at the same stage, of regulatory genes such as bone morphogenetic protein-4 (BMP-4) and the Nkx2 family. In contrast, initial BMP and Nkx2 expression is normal, suggesting a maintenance role for GATA-6. Endoderm is critical for heart formation in several vertebrates including Xenopus, and separate perturbation of GATA-6 expression in the deep anterior endoderm and in the overlying heart mesoderm shows that GATA-6 is required in both for cardiogenesis. The GATA-6 requirement in cardiac mesoderm was confirmed in zebrafish, an organism in which endoderm is thought not to be necessary for heart formation. We therefore conclude that proper maturation of cardiac mesoderm requires GATA-6, which functions to maintain BMP-4 and Nkx2 expression.  相似文献   

17.
The formation of the primitive endoderm layer on the surface of the inner cell mass is one of the earliest epithelial morphogenesis in mammalian embryos. In mouse embryos deficient of Disabled-2 (Dab2), the primitive endoderm cells lose the ability to position on the surface, resulting in defective morphogenesis. Embryonic stem cells lacking Dab2 are also unable to position on the surface of cell aggregates and fail to form a primitive endoderm outer layer in the embryoid bodies. The cellular function of Dab2, a cargo-selective adaptor, in mediating endocytic trafficking of clathrin-coated vesicles is well established. We show here that Dab2 mediates directional trafficking and polarized distribution of cell surface proteins such as megalin and E-cadherin and propose that loss of polarity is the underlying mechanism for the loss of epithelial cell surface positioning in Dab2-deficient embryos and embryoid bodies. Thus, the findings indicate that Dab2 is a surface positioning gene and suggest a novel mechanism of epithelial cell surface targeting.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号