首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Abstract Chaetoseris and Stenoseris are two morphologically close genera from the tribe Cichorieae of the sunflower family and they are endemic in alpine eastern Himalayas to the Hengduan Mountains of SW China. Mitotic chromosome numbers and karyotypes are reported for 12 populations representing eight species of Chaetoseris and two species of Stenoseris from the Hengduan Mountains region. Eight species are new and the other two provide confirmation of previous reference. All Chaetoseris and Stenoseris taxa are diploidy with 2n= 16 and their basic number is tentatively suggested as x= 8. Karyotypes of Chaetoseris and Stenoseris are similar to each other with 2A and 2B for the former and 2A for the latter. Cytological data of chromosomal numbers and karyotypes support a close relationship of the two genera. Currently no polyploids are found for these two genera and it seems that polyploidization has played a minor role in their evolutionary speciation in the Hengduan Mountains region.  相似文献   

2.
对横断山区两种菊科植物圆齿狗娃花和细叶亚菊进行了染色体数目报道和核型研究,其中圆齿狗娃花为首次报道,2n=18=2x=18m(2SAT);而细叶亚菊的为新的染色体数目,2n=72=8x=56m+16sm,与之前报道的36不同。研究结果发现菊科植物这两个属在横断山及其它地区同时存在二倍体与多倍体。  相似文献   

3.
In the present study, the karyotypes of 34 populations belonging to 11 species and one variety of Heracleum from the Hengduan Mountains in China were examined. Chromosome numbers and the karyotypes of three species (H. souliei, H. la'ngdoni, and H. wenchuanense) are reported for the first time, as are the karyotypes of H. moellendorffii and H. henryi (tetraploid). Populations of H. candicans, H. franchetii, and H. kingdoni in the Hengduan Mountains were found to consist of a mixture of diploid and tetraploid plants. Except for four species of Heracleum, namely H. candicans, H. franchetii, H. henryi, and H.kingdoni, which have both diploid and tetraploid karyotypes, all other species of Heracleum are were found to be diploid. All karyotypes were found to belong to the 2A type of Stebbins, with the exception ofH. candicans var. obtusifolium, which belongs to 2B, and H. hemsleyanum and H. franchetii (Mt. Dujuan, Daocheng, Sichuan, China), which belong to 1A. There was only a slight difference in the karyotype asymmetry index, which suggests a close kinship for species of Heracleum and that the entire phylogenetic development of Heracleum is relatively primitive. Species that exhibited advanced morphological features were also more advanced in karyotype structure, with the order ofkaryotype evolution being 1A→2A→2B. This phenomenon indicates that the species distributed in the Hengduan Mountains have not diverged completely and that the Hengduan Mountains are a relatively young and active area for the evolution of Heracleum. Polyploidization in Heracleum may be an important evolutionary mechanisms for some species, generating diversity. The biological attributes, distribution range, and the geological history of the genus have all played a part in accelerating the evolution through polyploidization or aneuploidization. It is known that as the distribution latitude of Heracleum decreases from north to south, the chromosome number, ploidy level, and asymmetry structure appear to increase. In the Hengd  相似文献   

4.
横断山区是中国柴胡属Bupleurum植物的分布中心。本文对横断山区6个种2变种进行了染色体记数报道,其中4个种2变种是首次报道。对横断山区的10个种4个变种、中国北方(河北和黑龙江)的3个种的nrDNA ITS进行测序,同时从GenBank里面下载同属的来自非洲和地中海西部的16个nrDNA ITS序列数据,结合染色体数目变化结果,初步探讨了横断山区柴胡属植物的系统发育。结果表明横断山区可能是现代柴胡属植物的频度中心和多样分布中心之一。它们的祖先种可能是非洲北部的木本柴胡属植物B.fruticosum,或者是地中海西部的柴胡属植物,推测是通过中东和高加索扩散而形成的,其中与非洲南部特有种B.mundtii的亲缘关系也较近;染色体基数演化趋势是:8是较原始基数,6和7是次生基数,其染色体异基数变异和多倍化可能是物种形成、进化以及向外扩散的主要方式;在ITS系统发育树中,中国柴胡属植物染色体基数为8的种类聚为一支,染色体基数为6和7的种类聚为了一支,不支持舒璞等(1998)关于中国柴胡属的属下分类系统。结合已有的形态学、细胞学、孢粉学证据和ITS系统发育树,建议窄竹叶柴胡B.marginatum var.stenophyllum独立成种。  相似文献   

5.
pleurum of Apiaceae in China. This paper reports chromosome numbers of six species and two varieties of Bupleurum, and for four species and two varieties their chromosome numbers are reported for the first time. The phylogeny of Bupleurum was investigated based on the ITS region of the nuclear ribosomal DNA (nrDNA) of 14 taxa from the Hengduan Mountains, 3 taxa from the North China (Hebei and Heilongjiang), and 16 taxa from Africa and the Mediterranean region. Varia-tions in chromosome numbers and the ITS sequences were used to infer phylogenetic relationships between Bupleurum species in Hengduan Mountains. The results showed that the Hengduan Mountains might represent one of the frequency and diversity centers for Bupleurum. The ancestors of Bupleurum species in the Hengduan Mountains may be related to the woody B. fruticosum in North Africa, or the species in the western Mediterranean region. It is postulated that the ancestral population migrated into Hengduan Mountains through the Middle East and the Caucasus. Furthermore, the neo-endemic B. mundtii in South Africa appeared to be a close relative of the species in the Hengduan Mountains. In the trend of basic chromosome number evolution, x = 8 should be regarded as the ancestral basic number, while x = 6, 7 as the derived ones. The Bupleurum species in the Hengduan Moun-tains have been undergoing changes in the basic chromosome numbers or the ploidy level. The ITS phylogenetic tree showed that the Chinese species were divided into two clades: one with the basic chromosome number x = 8, and the other with x = 6, 7. The results rejected the previous infrageneric classification of Bupleurum in China. We further suggested to raise B. marginatum var. stenophyllum to species rank based on the combined evidence from morphology, karyology, pollen morphology, and the ITS phylogenetic tree.  相似文献   

6.
Abstract In the present study, the karyotypes of 34 populations belonging to 11 species and one variety of Heracleum from the Hengduan Mountains in China were examined. Chromosome numbers and the karyotypes of three species (H. souliei, H. kingdoni, and H. wenchuanense) are reported for the first time, as are the karyotypes of H. moellendorffii and H. henryi (tetraploid). Populations of H. candicans, H. franchetii, and H. kingdoni in the Hengduan Mountains were found to consist of a mixture of diploid and tetraploid plants. Except for four species of Heracleum, namely H. candicans, H. franchetii, H. henryi, and H. kingdoni, which have both diploid and tetraploid karyotypes, all other species of Heracleum are were found to be diploid. All karyotypes were found to belong to the 2A type of Stebbins, with the exception of H. candicans var. obtusifolium, which belongs to 2B, and H. hemsleyanum and H. franchetii (Mt. Dujuan, Daocheng, Sichuan, China), which belong to 1A. There was only a slight difference in the karyotype asymmetry index, which suggests a close kinship for species of Heracleum and that the entire phylogenetic development of Heracleum is relatively primitive. Species that exhibited advanced morphological features were also more advanced in karyotype structure, with the order of karyotype evolution being 1A→2A→2B. This phenomenon indicates that the species distributed in the Hengduan Mountains have not diverged completely and that the Hengduan Mountains are a relatively young and active area for the evolution of Heracleum. Polyploidization in Heracleum may be an important evolutionary mechanisms for some species, generating diversity. The biological attributes, distribution range, and the geological history of the genus have all played a part in accelerating the evolution through polyploidization or aneuploidization. It is known that as the distribution latitude of Heracleum decreases from north to south, the chromosome number, ploidy level, and asymmetry structure appear to increase. In the Hengduan Mountains, these tendencies are also evident. Finally, based on all the available cytogeographic data, we speculate that the more advanced tetraplont or aneuploid species of Heracleum in India may be derived from early diplont species that were distributed in the Caucasus region and Hengduan Mountains. The dispersal of Heracleum was from Eurasia to India, because this correlates with the emergence of the Himalayan Mountains through tectonic movement. Thus, the Hengduan Mountains are not only a center of diversity for Heracleum, but also a center of active speciation in modern times.  相似文献   

7.
横断山区被子植物染色体研究概况   总被引:1,自引:0,他引:1  
横断山区作为全球生物多样性热点地区之一 ,染色体数目的研究对探讨植物区系起源和进化有重要的意义。本文对横断山区被子植物染色体数目报道方面的情况进行收集和整理并进行统计分析 ,结果发现共有 42科 1 4 3属 51 8种被子植物有染色体数目报道。  相似文献   

8.
中国独活属的核型研究   总被引:6,自引:0,他引:6  
本文首次报道了我国独活属10种(含1变种)的核型,其中8种的染色体数目亦为首次报道。研究表明它们的染色体数目均为2n=2x=22,为二倍体,其核型为中部着丝点和亚中部着丝点染色体组成,仅具1A和2A两种类型。有4种具随体染色体,在部分H.vicinum植株中发现有1条B染色体,在H.millefolium var.longilobum中同时存在2n=22和2n=24的非整倍体.不同种的染色体形态不同,为分类研究提供了细胞学依据。 本文在核型分析基础上讨论了该属分类群的划分、种间亲缘关系及演化,并结合我国毗邻地区该属细胞学资料和地理分布规律,提出我国西南部的横断山区是独活属的频度中心和多样性中心。  相似文献   

9.
The Hengduan Mountains comprise one of the world's most important hot spots of biodiversity. Tibetia (Ali) H.P. Tsui (Fabaceae), which has four or five species in two sections, is one of the genera endemic to the region. This paper describes for the first time the karyotype of three of those species. The chromosome counts of all three are 2 n = 16. The karyotypes of the species examined contain chromosomes of variable karyotypic symmetry with centromeres at median and submedian positions that correlate with the morphological characteristics of the species. Karyotypic variation at the diploid level appears to be the predominant feature of chromosome evolution in the genus and may provide a clue to the study of evolutionary patterns of plants in this region.  相似文献   

10.
中国横断山区狭义百合科四属部分植物核型研究   总被引:2,自引:0,他引:2  
用细胞压片法对分布于中国横断山区的百合科4属部分植物进行了核型研究,其中百合属(Lilium)中除卷丹(L.tigrinum)为三倍体2n=36外,大部分都是2倍体,2n=24;贝母属(Fritillaria)全为2倍体,2n=24,其次缢痕较多,且比较明显;假百合属假百合(Notholirion bulbuliferum)同时存在2倍体和3倍体,2n=24以及2n=36;洼瓣花属(Lloydia)只研究了一种,即西藏洼瓣花(Lloydia tibetica),发现2n=23。4个属的核型区别明显,为确定属间亲缘关系提供了一定的参考。其中,马塘百合(L.matangense)和西藏洼瓣花的核型是首次报道。  相似文献   

11.
The Hengduan Mountains comprise one of the world's most important hot spots of biodiversity. Tibetia (Ali) H.P. Tsui (Fabaceae), which has four or five species in two sections, is one of the genera endemic to the region. This paper describes for the first time the karyotype of three of those species. The chromosome counts of all three are 2n = 16. The karyotypes of the species examined contain chromosomes of variable karyotypic symmetry with centromeres at median and submedian positions that correlate with the morphological characteristics of the species. Karyotypic variation at the diploid level appears to be the predominant feature of chromosome evolution in the genus and may provide a clue to the study of evolutionary patterns of plants in this region. Received: June 12, 2001 / Accepted: September 12, 2001  相似文献   

12.
The chromosome numbers and morphology in 92 populations belonging to 49 species and three varieties in the genus Delphinium L. (Ranunculaceae), mostly from the Hengduan Mountains region of south‐west China, were studied. Forty seven species and three varieties were diploid, with 2n = 16, one species was tetraploid, with 2n = 32, and one species had diploid and tetraploid cytotypes. Three species had B chromosomes, representing the first time the occurrence of B chromosomes has been reported in the genus. The karyotypes of all the diploid species were quite uniform, commonly bimodal, and usually consisted of one pair of large median‐centromeric (m), one pair of large submedian‐centromeric (sm), five pairs of medium‐sized subterminal‐centromeric (st), and one pair of smaller sm (rarely st) chromosomes. The low incidence of polyploids in Delphinium from the Hengduan Mountains region indicates that polyploidy has played a minor role in the speciation of this highly diversified genus in the region. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 172–188.  相似文献   

13.
Cytological studies were carried out on eight species of five genera ( Anisodus , Atropanthe , Hyoscyamus , Mandragora and Przewalskia ) in the tribe Hyoscyameae (Solanaceae). First chromosome counts were reported in six species: Anisodus luridus , A. acutangulus , A. tanguticus , A. carniolicoides , Atropanthe sinensis and Mandragora caulescens , all with 2 n  = 8 x  = 48. Two records, for Hyoscyamus niger (2 n  = 2 x  = 34) and Przewalskia tangutica (2 n  = 4 x  = 44), were also confirmed. All species studied showed the proximal type of mitotic prophase chromosome condensation pattern. Three types of interphase nuclei were recognized: the round prochromosome type for Anisodus , Atropanthe and Mandragora , the rod prochromosome type for Przewalskia and the complex chromocentre type for Hyoscyamus . The cytological data supported the close relationship of all four species of Anisodus . Evidence from the interphase nuclei and chromosome base numbers supported the traditional classification of Hyoscyameae into two groups, i.e. Physochlaina praealta + Hyoscyamus (complex interphase type and x  = 7, 14, 17) and Przewalskia + Atropanthe + Anisodus + Scopolia + Atropa + Mandragora (prochromosome type and x  = 6, 11). Polyploidy is found in most species of the tribe in the Himalayan–Hengduan Mountains, as well as in the Mediterranean region, west–central Asia and eastern Asia. It seems that it probably occurred very early in Hyoscyameae evolution, before the uplift of the Himalayan–Hengduan Mountains. The Himalayan orogeny might have played a minor role in the polyploid evolution of plants in this tribe.  © 2005 The Linnean Society of London. Botanical Journal of the Linnean Society , 2005, 147 , 457–468.  相似文献   

14.
粉条儿菜属(AletrisL.)隶属于肺筋草科,全世界有23种1变种,东亚有18种1变种,北美东南部有5种,为典型的东亚-北美间断分布的属.本文在种(变种)的水平上,研究了粉条儿菜属的地理分布及其分布中心和多样化中心,并对其起源和分化以及现代洲际间断分布格局的成因进行了分析.结果表明,(1)中国共分布有粉条儿菜属植物15种1变种,而广义的横断山地区集中分布有13种1变种,是东亚粉条儿菜属植物分布最为集中的地区,而且包含该属植物各个进化阶段的代表.因此,广义的横断山地区是粉条儿菜属在东亚的分布中心和多样化中心.(2)根据粉条儿菜属及其近缘属的分布格局推测,该属可能在不晚于第三纪早期,起源于古北大陆.东亚和北美的粉条儿菜属植物形态区别明显,应该是隔离分化的结果.(3)该属植物可能曾经广布于北半球,后来地质、气候以及冰川等因素的变化,导致该属在一些地区灭绝,而仅存于东亚和北美东南部.(4)尽管横断山及其周边地区是东亚粉条儿菜属的多样化中心,但该地区很可能并不是粉条儿菜属最早的分化中心,因横断山地区周边的一些特有种可能是在晚近的时期形成的新特有种;另外,东亚粉条儿菜属一些原始的种类主要分布于我国中东部到日本一带.所以,中国中东部到日本一带可能是粉条儿菜属早期的分化中心.  相似文献   

15.
An investigation of gamasid mites on the body surface of small mammals was carried out in Yunnan Province of China from 1990 to 2004. The small mammal hosts were captured from 25 counties which represent five geographical subregions, namely Middle Subregion of Hengduan Mountains, Southern Subregion of Hengduan Mountains, Eastern Plateau Subregion of Yunnan, Western Plateau Subregion of Yunnan and Southern Moun- tainous Subregion of Yunnan. The captured 10 803 small mammal hosts belong to nine families, 29 genera and 52 species in four orders (Rodentia, Insectivora, Scandentia and Lagomorpha). A total of 68 571 gamasid mites were collected from the body surface of the captured small mammal hosts and all the gamasid mites were identified to 10 families, 33 genera and 112 species. This paper lists all the mite species, together with their taxonomic position (genera and families) and their corresponding hosts. Much more mite species were found in the Middle Subregion of Hengduan Mountains than in other geographical subregions. The total individuals of mites and small mammals in the Middle Subregion of Hengduan Mountains are also the most plentiful in the five geographical subregions. Three dominant mite species and three dominant small mammal hosts were determined as the dominant species in the investigated areas of Yunnan Province. The dominant hosts are Rattus flavipectus (which accounts for 34.85% of the total individuals), Apodemus chevrieri (13.43%) and Rattus norvegicus (10.40%) while the dominant gamasid mite species are Laelaps nuttalli (Hirst, 1915) (27.84%), Laelaps echidninus (Berlese, 1887) (18.38%) and Laelaps guizhouensis (Gu et Wang, 1981) (14.79%). The results showed the high species diversity of gamasid mites in Yunnan Province and the uneven distribution feature in different subregions.  相似文献   

16.
吸虱是寄生于真兽类哺乳动物体表的专性吸血寄生虫,广布于世界各地。云南省已知吸虱昆虫9科13属44种,分别占中国已知吸虱科、属、种的81.82%,59.09%,45.83%。文章参考大量相关文献,从分类阶元、特有物种、动物地理区划和宿主动物4个方面分析云南省吸虱的物种多样性。云南省吸虱特有种有13种,占云南省已知吸虱种类的29.55%,27种为东洋种,15种为古北和东洋两界兼有种,广布种9种。吸虱在5个地理小区的分布,以横断山中部和横断山南部2个地理小区的吸虱物种多样性较高,其它3个区的物种多样性较低。相对于全国而言,云南省吸虱物种多样性较高,吸虱的宿主动物种类丰富。但蚤、恙螨和革螨等其它体表寄生虫相比较,兽类宿主动物体表吸虱的物种多样性明显低于其它体表寄生虫,1科(属)阶元的吸虱其宿主多为相对一致的1个科(属)动物阶元,反映了吸虱宿主特异性较高的事实,吸虱昆虫与其对应的宿主动物已经形成了比较稳定的"一对一"的寄生关系,这是吸虱昆虫与其宿主动物协同进化的生态学表现。  相似文献   

17.
横断山区蚜虫区系的组成和特点   总被引:6,自引:3,他引:6  
研究了横断山区蚜虫区系的组成和特点.横断山区共有蚜虫11科69属125种,以东洋区、特有种类占优势.蚜虫区系古北成分和东洋成分充分交融,特有种类丰富,区系组成复杂多样.对该区蚜虫的分布进行了初步分析,特有种分布不均衡,水平主要分布在滇西北的丽江和玉龙雪山地区,垂直分布在海拔3 000~3 200 m,是特有种丰富度最高的地带.此外,对跨古北和东洋区分布种类的东亚起源进行了初步探讨.  相似文献   

18.
The Hengduan Mountain Region on the south-eastern fringe of the Qinghai- Xizang (Tibet) Plateau is located in W. Sichuan, N. W. Yunnan and E. Xizang, with a wide area of juxtaposition from the east to the west, the mountains extending and the rivers flowing from the north to the south. In this paper it covers an area from Daojie, Wayao, Yingping, Yangbi, Dali of Yunnan and Dukou of Sichuan in the south, to Banbar, Dengqeu, Shenda of Tibet and Serxu, Dainkog, Shuajingsi and Nanping (Jiuzhaigou) of Sichuan in the north, and from Lharong, Baxoi and Zayü of Tibet in the west, to Maowen, Wenchuan, Mt. Erlang, Mt. Emei and Xichang of Sichuan in the east (Fig. 1.). The Gongga Mountain is the highest in the region, its summit being at an altitude of 7556m, whereas the Dadu River Valley in the eastern part of the area is only 1150 m above sea level. Therefore, the relative height is about 6400 m in the region. The Hengduan Mountain Region is well-known for its various topography, complex natural conditions and rich flora. The floristic composition and features of orchids in Hengduan Mountain Region. 1. The species of orchids are abundant in the region. As we know so far, orchids in the Hengduan Mountain Region comprise 91 genera and 363 species with 9 varieties, and thus it is one of concentration centres of orchids in China, making up 56.17% of the total number of orchids genera in China, only less than in Yunnan and Taiwan, and 34.87% of the total number of orchids species in China, only less than in Yunnan and Sichuan. 2. The orchids genera in the Hengduan Mountain Region are complex in geographical components as indicated below: (1) Four geneva are endemic to China and one of them is endemic to the region. (2) Fourteen genera are of the north temperate distribution pattern, 2 of the Old World temperate one, 18 of the East-Asian one (including Sino-Himalayan and Sino-Japanese) and 3 of the East-Asian-North American one. (3) Twenty one genera belong to the tropical Asian distribution pattern, 3 to the tropical Asian-tropical African one, 13 to the tropical Asian-tropical Australian one, 1 to the tropical Asian-tropical South American one, 8 to the Old World tropical one and 2 to the pantropical one. (4) Two genera are cosmopolitan. The analysis of genera: Fourty eight genera (containing 151 species with 4 varieties) of the tropical distribution occur in the region, among which Calanthe and Cymbidium distributed in the temperate region, and Bulbophyllum and Peristylus in the subtropical part of China are comparatively abundant (with over 10 species), but the other 25 genera are monospecific and 11 genera each contain only 2-3 species. Some epiphytic genera mainly distributed in tropical Asia and belonging to tropical florestic elements, such as Vanda, Luisia, Schoenorchis, Flickingeria, Monomeria, Kingidium, Acampe, Phalaenopsis, Thrixspermum, Eria, Taeniophyllum, and terrestrial genera, such as Aphyllorchis, Collabium, Mischobulbum, Paphiopedilum, Thunia, Brachycarythis, Satyrium, Corybas, Geodorum, Zeuxine, Tropidia, have the Hengduan Mountain Region as the northern limit of distribution. Of 151 species with 4 varieties, 41 species with 4 varieties are endemic to China, and 14 species with 3 varieties of them are endemic to the area, making up 3.86% of the total in the region under discussion. There are 41 genera (containing 189 species with 5 varieties) of the temperate distribution, which occur in the region. Among them Platanthera (22 species with 1 variety), Cypripedium (17 species), Herminium (16 species), Amitostigma (15 species with 1 variety), Orchis (12 species), Hemipilia (8 species with 1 variety), Neottianthe (4 species), Gymnadenia (4 species), Diphylax (3 species), Bletilla (3 species), have the Hengduan Mountain Region as the distribution centre and differentiation centre. Among the 189 species with 5 varieties, 111 species with 5 varieties are endemic to China, and 54 species with 5 varieties are endemic to the area, making up 14.88% of the total of orchids in the Hengduan Mountain Region. Although the number of temperate distribution genera is smaller than that of tropical distribution ones, several points may be mentioned: (1) The Hengduan Mountain Region is distribution centre and differentiation centre of a number of temperate genera in China, and is the northern limit of many genera mainly distributed in the tropics. (2) The number in the former category is obviously larger than that in the latter. (3) Endemic species in the former category in the area are over three times as many as those in the latter. The differentiation of species of the temperate distribution genera is obviously stronger than the tropical ones, which characterizes the orchid flora in the area as the temperate one. The life forms of genera. The orchid flora in the Hengduan Mountain Region so far known comprises 91 genera, among which 51 are terrestrial, 32 epiphytic and 8 saprophytic, thus with the terrestrial one dominant. The analysis of species: The orchid flora in the Hengduan Mountain Region so far known comprises 363 species with 9 varieties. Their distribution patterns and floristic components, to which they belong, are indicated as follows: (1) Fifty four species, belonging to 33 genera, are widespread, covering the whole East Asian Region, but 6 of them are endemic to China. (2) Forty four species, belonging to 27 genera, are the elements of the Sino-Japanese Subregion, but 22 species of them are endemic to China. (3) One hundred and ninety five species with nine varieties, belonging to 53 genera, are the elements of the Sino-Himalayan Subregion under discussion: (A) Four species (i.e. Aphyllorchis alpine, Listera divaricata, L. pinetorum and Oreorchis micrantha) are distributed in the Himalayan Region and S. E. Xizang (Tibet), western part of this region. (B) Twenty five species, belonging to 17 genera, are distributed in N. W. Yunnan and the Himalayan Region (Appendix, 1.). (C) Sixteen species, belonging to 11 genera, are distributed in the Himalayan region and W. Sichuan. Among them 6 species occur only with Mt. Emei as the easternmost limit and 10 species occur in the region west of Mt. Emei. (D) Ten species, belonging to 9 genera, are distributed in the Himalayan region, this region and S. Shaanxi, S. Gansu or S. E. Qinghai. (E) Eight species, belonging to 6 genera, are distributed in the Himalayan region and this region. Among them 6 species have their range extending eastwards to Guizhou and 2 species eastwards to Guangxi. (F) Five species, belonging to 5 genera, having their range extending from this region southwards to N. Burma. (G) One handred and twenty seven species with nine varieties are endemic to China behind discussion. (4) (A) Three species (i.e. Anoectochilus moulmeinensis, Bulbophyllum forrestii and Liparis chapaensis) are distributed in Indo-China, Burma and the region. (B) Nine species, belonging to 7 genera, are distributed in Indo-China, N. E. India and this region. (C) Forty six species, belonging to 21 genera, are distributed in Indo-China, the Himalayan Region and this region (Appendix, 2.). (D) Twelve species, belonging to 11 genera, are distributed in Indo-China and this region (Appendix, 3.) 3. The vicarism is obvious in the orchid flora of the Hengduan Mountain Region. There are 10 species-pairs (in genera Calanthe, Tropidia, Anoectochilus, Mischobulbum, Bulbophyllum, Gymnadenia, Pogonia, Tipularia, Tulotis, Orchis, etc.) of the horizontal vicarism and 7 species-pairs (in genera Epigeneium, Epipogium, Platanthera, Pogonia, etc.) of the vertical vicarism in the region. 4. The endemic species are prolific in the region. In the orchid flora of the Hengduan Mountain Region there are 155 species and 9 varieties endemic to China: (1) Six species are widespread in the whole East-Asian Region. (2) Twenty two species are the elements of the Sino-Japanese Subregion. (3) One hundred and twenty seven species with nine varieties are the elements of the Sino-Himalayan Subregion. Among them 69 species with 5 varieties are endemic to the region (Appendix, 4.), making up 19% of the total in the region; other 58 species with 4 varieties are distributed in the region and neighbouring regions or provinces of it (Appendix, 5.). 5. Remarkable differentiation of the orchid flora in the Hengduan Mountain Region is shown by evident vicarism and abundance of endemic elements, exampled by Amitostigma, Herminium, Orchis, Cypripedium, Platanthera, etc. and one group of Platanthera, which is confined to the south fringe of the Xizang (Tibet) Plateau-Hengduan Mountain Region. The group consists of 12 species, of which one (P. edgeworthii) is distributed in the Western Himalayas from Hazara in Pakistan to Kumaun in India, and all the other 11 species (i.e.P. stenantha, P. bakeriana, P. roseotincta, P. deflexilabella, P. longiglandula, P. exilliana, P. chiloglossa, P. leptocaulon, P. platantheroides, P. clavigera and P. latilabris) occur in China, with 3 of them (i.e.P. deflexilabella, P. longiglandula and P. chiloglossa) endemic to China. According to their structure of gynostemum and form of labellum they belong to Platanthera without question, although they are different from the other members of Platanthera in stigma convex (not concave) and sepals mammillary-ciliate, stigma exhibits a series of evolutionary trends in part of species, from stigma single, convex, elliptic and located near rear of spur mouth (in P. stenantha) to stigma single, suddle, and located near front of spur mouth (in P. bakeriana) and to stigma double, separate and located at front of spur mouth in the other ten species. The group in Platanthera is only confined to the area from the south fringe of the Xizang (Tibet) Plateau to the Hengduan Mountain Region. It seems that the genus has been affected by intense lift of the area, causing variation and differentiation and giving rise to the group due to the long-term natural selection. Mt. Emei in Sichuan Province is the eastern limit of distribution of the group, where there are three spcies, among which two (P. deflexilabella and P. longiglandula) are endemic to the mountains. In addition, among Risleya (1 species), Diphylax (3 species) and Diplomeris (2 species), three genera typical of distribution in the Sino-Himalayan Subregion, Risleya and Diphylax have Mt. Emei as their eastern limit. Eleven species, belonging to elements of the SinoJapanese Subregion, occur only from Japan to Western Sichuan with Mt. Emei as the western limit. Among nine species, belonging to elements of the Sino-Himalayan Subregion, six occur from the Himalayas to W. Sichuan and three of them are endemic to the Hengduan Mountain Region, with Mt. Emei as their eastern limit of distribution. There are eight endemic species and one variety of orchids in Mt. Emei, making up about 11.59% of the total endemic species in the Hengduan Mountain Region. Orchid floristic elements in Mt. Emei are obviously different from those in Mt. Jinfo, the former being mainly of the Sino-Himalayan Subregion, while the latter being mainly of the Sino-Japanese Subregion. From the distribution patterns of the orchid floristic elements in the Hengduan Mountain Region and Eastern China, the Emei Mountain is considered important for drawing a boundary line between the Sino-Japanese Subregion and the Sino-Himalayan Subregion. The discussion may be summarized as follows: the floristic features of the orchid flora in the Hengduan Mountain Region are: (1) rich in species, complex in geographical components, eminent vicarism and differentiation, and prolific in endemic species; (2) terrestrial life form is dominant one; (3) mainly consisting of temperate and subtropical East-Asian elements, es pecially, elements of Sino-Himalayan Subregion, though with some tropical elements and elem-ents of other regions.  相似文献   

19.
青藏高原跳甲亚科昆虫区系研究   总被引:3,自引:0,他引:3  
讨论青藏高原(包括横断山区)的跳甲亚科昆虫区系。该区已知47属228种。1)据属级阶元的分布类型分析,以东洋属和南型属种显占优势,是区系主体,显示该区跳甲区系的热带渊源,其中高山属种赋予该区以高山区系特征;2)该区物种分化活跃,是某些多种属中国种类的分布中心和分化中心;3)联系中国跳甲亚科区系,在地理分布格局上显示西-东分布,如Hespera属的分布和西南-东北分布或西南-东北的间断分布格局,如Pentamesa和Stenoluperus属的分布。这种地理分布格局反映青藏高原的隆起给中国昆虫区系带来重要影响。  相似文献   

20.
Abstract.  1. Based on the geographic distribution database of museum specimens and published literature, the diversity and distribution of aphids in the Qinghai–Tibetan Plateau–Himalayas was studied using the GIS method.
2. A total of 646 aphid species/subspecies belonging to 195 genera in Adelgidae, Phylloxeridae, and 16 subfamilies of Aphididae were recorded from this region; among which Aphidinae shared the highest species proportion (343 species, 53.1%), followed by Greenidinae (63, 9.7%), Eriosomatinae (54, 8.3%), and Lachninae (48, 7.4%). A total of 326 species and 20 genera are endemic to this region.
3. The aphid fauna has diverse faunal components and shows affinity with other zoogeographic realms. It is also rich in alpine species.
4. The aphid fauna exhibits an asymmetric distribution pattern with few species found on the high surface of the plateau. Four distribution centres were mapped. These were (i) the associated mountainous areas of the Qinghai–Tibetan Plateau and the western Qinling Mountains and southern Gansu Province, (ii) the Hengduan Mountains Region, (iii) the eastern Himalayas, and (iv) the western Himalayas.
5. The aphid fauna of the region may have multiple origins, and has been influenced by geological and ecological factors, such as glaciers and diversified vegetation. Possible reasons for the species diversity and distribution patterns are discussed. The implications and priorities for conservation based, on these distribution patterns, are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号