首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Buckminsterfullerenols were recently investigated for their protective properties in different models of acute and chronic neurodegeneration. We tested C3-fullero-tris-methanodicarboxylic acid in our in vitro model of apoptotic neuronal death, which consists of shifting the culture K+ concentration from 25 to 5 mM for rat cerebellar granule cells. The impairment of mitochondrial respiratory function as well as chromatin derangement and fragmentation of DNA in apoptotic oligonucleosomes that occur in these conditions were protected by this compound in a concentration-dependent way. To assess whether antioxidant activity could account for the rescue of cerebellar granule cells from apoptosis, we tested the fullerene derivative under FeSO4-induced oxidative stress and found significant protection. Thus, we visualized membrane and cytoplasmic peroxides and reactive oxygen species and found a significant reduction of the species after 24 h in 5 mM K+ with the fullerene derivative. Such evidence suggests that this compound exerts a protective role in cerebellar granule cell apoptosis, likely reducing the oxidative stress.  相似文献   

2.
Neurodegeneration can occur as a result of endogenous oxidative stress. Primary cerebellar granule cells were used in this study to determine if mitochondrial DNA (mtDNA) repair deficiencies correlate with oxidative stress-induced apoptosis in neuronal cells. Granule cells exhibited a significantly higher intracellular oxidative state compared with primary astrocytes as well as increases in reductants, such as glutathione, and redox sensitive signaling molecules, such as AP endonuclease/redox effector factor-1. Cerebellar granule cultures also exhibited an increased susceptibility to exogenous oxidative stress. Menadione (50 μM) produced twice as many lesions in granule cell mtDNA compared with astrocytes, and granule cell mtDNA repair was significantly less efficient. A decreased capacity to repair oxidative mtDNA damage correlates strongly with mitochondrial initiated apoptosis in these neuronal cultures. Interestingly, the mitochondrial activities of initiators for base excision repair (BER), the bifunctional glycosylase/AP lyases as well as AP endonuclease, were significantly higher in cerebellar granule cells compared with astrocytes. The increased mitochondrial AP endonuclease activity in combination with decreased polymerase γ activity may cause an imbalance in oxidative BER leading to an increased production and persistence of mtDNA damage in neurons when treated with menadione. This study provides evidence linking neuronal mtDNA repair capacity with oxidative stress-related neurodegeneration.  相似文献   

3.
Abstract: To gain insight into the mechanism through which the neurotransmitter glutamate causally participates in several neurological diseases, in vitro cultured cerebellar granule cells were exposed to glutamate and oxygen radical production was investigated. To this aim, a novel procedure was developed to detect oxygen radicals; the fluorescent dye 2',7'-dichlorofluorescein was used to detect production of peroxides, and a specific search for the possible conversion of the enzyme xanthine dehydrogenase into xanthine oxidase after the excitotoxic glutamate pulse was undertaken. A 100 µ M glutamate pulse administered to 7-day-old cerebellar granule cells is accompanied by the onset of neuronal death, the appearance of xanthine oxidase, and production of oxygen radicals. Xanthine oxidase activation and superoxide (O2•−) production are completely inhibited by concomitant incubation of glutamate with MK-801, a specific NMDA receptor antagonist, or by chelation of external calcium with EGTA. Partial inhibition of both cell death and parallel production of reactive oxygen species is achieved with allopurinol, a xanthine oxidase inhibitor, leupeptin, a protease inhibitor, reducing agents such as glutathione or dithiothreitol, antioxidants such as vitamin E and vitamin C, and externally added superoxide dismutase. It is concluded that glutamate-triggered, NMDA-mediated, massive Ca2+ influx induces rapid conversion of xanthine dehydrogenase into xanthine oxidase with subsequent production of reactive oxygen species that most probably have a causal involvement in the initial steps of the series of intracellular events leading to neuronal degeneration and death.  相似文献   

4.
活性氧参与-氧化氮诱导的神经细胞凋亡   总被引:2,自引:0,他引:2  
采用激光共聚焦成像技术,用氧化还原敏感的特异性荧光探针(DCFH-DA和DHR123)直接研究了一氧 化氮供体S-亚硝基-N-乙酰基青霉胺(SNAP)诱导未成熟大鼠小脑颗粒神经元凋亡过程中的细胞胞浆、线粒体 中活性氧水平的变化,发现神经细胞经0.5mmol/LSNAP处理1h后,细胞胞浆及线粒体中活性氧水平大大增 加.一氧化氮清除剂血红蛋白能够有效抑制细胞胞浆、线粒体中活性氧的产生,防止细胞凋亡.外源性谷胱甘 肽对细胞也具有良好的保护作用,而当细胞中谷胱甘肽的合成被抑制后,一氧化氮的神经毒性大大增强.实验 结果表明一氧化氮通过促进神经细胞产生内源性活性氧而启动细胞凋亡程序,而谷胱甘肽可能是重要的防止一 氧化氮引发神经损伤的内源性抗氧化剂  相似文献   

5.
活性氧参与一氧化氮诱导的神经细胞凋亡   总被引:5,自引:0,他引:5       下载免费PDF全文
采用激光共聚焦成像技术,用氧化还原敏感的特异性荧光探针(DCFH-DA和DHR123)直接研究了一氧化氮供体S-亚硝基-N-乙酰基青霉胺(SNAP)诱导未成熟大鼠小脑颗粒神经元凋亡过程中的细胞胞浆、线粒体中活性氧水平的变化,发现神经细胞经0.5 mmol/L SNAP处理1 h后,细胞胞浆及线粒体中活性氧水平大大增加.一氧化氮清除剂血红蛋白能够有效抑制细胞胞浆、线粒体中活性氧的产生,防止细胞凋亡.外源性谷胱甘肽对细胞也具有良好的保护作用,而当细胞中谷胱甘肽的合成被抑制后,一氧化氮的神经毒性大大增强.实验结果表明一氧化氮通过促进神经细胞产生内源性活性氧而启动细胞凋亡程序,而谷胱甘肽可能是重要的防止一氧化氮引发神经损伤的内源性抗氧化剂.  相似文献   

6.
Wei T  Sun H  Zhao X  Hou J  Hou A  Zhao Q  Xin W 《Life sciences》2002,70(16):1889-1899
Pistafolia A is a novel gallotannin isolated from the leaf extract of Pistacia weinmannifolia. In the present investigation, the ability of Pistafolia A to scavenge reactive oxygen species including hydroxyl radicals and superoxide anion was measured by ESR spin trapping technique. The inhibition effect on iron-induced lipid peroxidaiton in liposomes was studied. The protective effects of Pistafolia A against oxidative neuronal cell damage and apoptosis induced by peroxynitrite were also assessed. The results showed that Pistafolia A could scavenge both hydroxyl radicals and superoxide anion dose-dependently and inhibit lipid peroxidation effectively. In cerebellar granule cells pretreated with Pistafolia A, peroxynitrite-induced oxidative neuronal damage and apoptosis were prevented markedly. The antioxidant capacity of Pistafolia A was much more potent then that of the water-soluble analog of vitamin E, Trolox. The results suggested that Pistafolia A might be used as an effective natural antioxidant for the prevention and cure of neuronal diseases associated with the production of peroxynitrite and related reactive oxygen species.  相似文献   

7.
The Thioredoxin (Trx)/Thioredoxin reductase (TrxR)-system has emerged as a crucial component of many cellular functions particularly antioxidant defence. We investigated the effect of the selective TrxR inhibitor 1-chloro-2,4-dinitrobenzene (CDNB) on survival and redox status in neuronal cell lines. CDNB was found to cause apoptosis without depletion of glutathione or loss of mitochondrial complex I-activity. Cells treated with CDNB displayed an early increase of reactive oxygen species and rapid activation of stress inducible protein kinases c-Jun N-terminal kinase (JNK) and mitogen activated protein kinase kinase 4 (MKK4). Thus TrxR inhibition by CDNB results in generation of reactive oxygen species and subsequent activation of stress-inducible kinases without impairment of the cellular antioxidant status or mitochondrial function. Inhibition of the specific kinases involved in cell death triggered by Trx/TrxR dysfunction could represent a novel and selective therapeutic approach in neurodegenerative disorders.  相似文献   

8.
Apoptosis is a prominent mechanism of programmed cell death in lymphocytes and in cancer cells not previously found in neurons. We have identified apoptosis and internucleosomal DNA degradation in cultures of cerebellar granule neurons. 1-methyl-4-phenylpyridinium, a selective neurotoxin that destroys the dopaminergic nigrostriatal pathway and results in a parkinsonian syndrome, increases the rate of apoptosis and kills cerebellar granule cells in culture via induction of programmed cell death. Inhibition of gene expression in granule cells with cycloheximide prevents the MPP(+)-induced apoptosis and the DNA fragmentation. Our findings demonstrate a new pathway of neuron death and suggest the possibility that neurodegenerative diseases may result from the inappropriate activation of programmed cell death by apoptosis.  相似文献   

9.
Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86(-/-) SOD1 transgenic embryos over that seen in Ku86(-/-) embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.  相似文献   

10.
11.
During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration.  相似文献   

12.
Hypoxia/ischaemia is known to trigger neuronal death, but the role of neuronal nitric oxide synthase (nNOS) in this process is controversial. Nitric oxide (NO) inhibits cytochrome oxidase in competition with oxygen. We tested whether NO derived from nNOS synergises with hypoxia to induce neuronal death by inhibiting mitochondrial cytochrome oxidase. Sixteen hours of hypoxia (2% oxygen) plus deoxyglucose (an inhibitor of glycolysis) caused extensive, excitotoxic death of neurons in rat cerebellar granule cell cultures. Three different nNOS inhibitors (including the selective inhibitor N-4S-4-amino-5-2-aminoethyl-aminopentyl-N'-nitroguanidine) decreased this neuronal death by half, indicating a contribution of nNOS to hypoxic death. The selective nNOS inhibitor did not, however, block neuronal death induced either by added glutamate or by added azide (an uncompetitive inhibitor of cytochrome oxidase), indicating that nNOS does not act downstream of glutamate or cytochrome oxidase. Hypoxia plus deoxyglucose-induced glutamate release and neuronal depolarisation, and the nNOS inhibitor decreased this. Hypoxia inhibited cytochrome oxidase activity in the cultures, but a selective nNOS inhibitor prevented this inhibition, indicating NO from nNOS was inhibiting cytochrome oxidase in competition with oxygen. These data indicate that hypoxia synergises with NO from nNOS to induce neuronal death via cytochrome oxidase inhibition causing neuronal depolarisation. This mechanism might contribute to ischaemia/stroke-induced neuronal death in vivo.  相似文献   

13.
Cytosine arabinoside (AraC) is a nucleoside analog that produces significant neurotoxicity in cancer patients. The mechanism by which AraC causes neuronal death is a matter of some debate because the conventional understanding of AraC toxicity requires incorporation into newly synthesized DNA. Here we demonstrate that AraC-induced apoptosis of cultured cerebral cortical neurons is mediated by oxidative stress. AraC-induced cell death was reduced by treatment with several different free-radical scavengers (N-acetyl-L-cysteine, dipyridamole, uric acid, and vitamin E) and was increased following depletion of cellular glutathione stores. AraC induced the formation of reactive oxygen species in neurons as measured by an increase in the fluorescence of the dye 5-(6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate. AraC produced DNA single-strand breaks as measured by single-cell gel electrophoresis and the level of DNA strand breakage was reduced by treatment with the free radical scavengers. These data support a model in which AraC induces neuronal apoptosis by provoking the generation of reactive oxygen species, causing oxidative DNA damage and initiating the p53-dependent apoptotic program. These observations suggest the use of antioxidant therapies to reduce neurotoxicity in AraC chemotherapeutic regimens.  相似文献   

14.
The exposure of freshwater mussels Unio tumidus to phenolic compounds (tannic, ellagic and gallic acid) in vivo caused changes in proteins and DNA function of digestive gland cells. The mussels were exposed to various concentrations of tested polyphenols (60, 200 and 500 microM) for 24 and 48 h and their antioxidant and pro-oxidant effects were determined. The number of SH-groups was quantified spectrophotometrically using Ellman's reagent. Oxidative modification of proteins increased in the digestive gland cells in a dose- and time-dependent manner. The level of nuclear DNA damage was investigated using the comet assay. The results revealed that polyphenolic acids induce single and double-strand breaks in DNA. The highest changes were observed for tannic and gallic acids and the smallest ones for ellagic acid. 1h of DNA repair process was also studied using the same method. The data obtained in this experiment demonstrate that the most effective DNA repair occurs in the cells exposed to phenolic compounds for 24h. A longer incubation (up to 48 h) does not decrease the capacity of the repair mechanism. The antioxidant activity of the tested phenols was analyzed spectrofluorimetrically using a fluorescence probe DCFH-DA (dichlorofluorescein-diacetate). The experimental data showed that the tested acids can act as antioxidants when used at higher doses (200 and 500 microM) against the reactive oxygen species present in the digestive gland cells. The most effective was ellagic acid, also applied at the smallest dose of 60 microM, in comparison with tannic and gallic acids. In conclusion, our results demonstrate that chosen water-soluble polyphenols, which are located in various plant tissues and are also found in the aquatic environment, can influence organisms living in the water. They can be exposed to these chemicals that cause morphological alterations and changes in certain physiological processes in their organs (i.e. digestive gland cells of bivalve molluscs).  相似文献   

15.
Apoptosis is characterized by chromatin condensation, phosphatidylserine translocation, and caspase activation. Neuronal apoptotic death involves the participation of reactive oxygen species (ROS), which have also been implicated in necrotic cell death. In this study we evaluated the role of different ROS in neuronal death. Superoxide anion was produced by incubating cells with xanthine and xanthine oxidase plus catalase, singlet oxygen was generated with rose Bengal and luminic stimuli, and hydrogen peroxide was induced with the glucose and glucose oxidase. Cultured cerebellar granule neurons died with the characteristics of apoptotic death in the presence of superoxide anion or singlet oxygen. These two conditions induced caspase activation, nuclear condensation, phosphatidylserine translocation, and a decrease in intracellular calcium levels. On the other hand, hydrogen peroxide led to a necrosis-like cell death that did not induce caspase activation, phosphatidylserine translocation, or changes in calcium levels. Cell death produced by both singlet oxygen and superoxide anion, but not hydrogen peroxide, was partially reduced by an increase in intracellular calcium levels. These results suggest that formation of specific ROS can lead to different molecular cell death mechanisms (necrosis and apoptosis) and that ROS formed under different conditions could act as initiators or executioners on neuronal death.  相似文献   

16.
Nitric oxide induces oxidative stress and apoptosis in neuronal cells   总被引:9,自引:0,他引:9  
Within the central nervous system and under normal conditions, nitric oxide (NO) is an important physiological signaling molecule. When produced in large excess, NO also displays neurotoxicity. In our previous report, we have demonstrated that the exposure of neuronal cells to NO donors induced apoptotic cell death, while pretreatment with free radical scavengers L-ascorbic acid 2-[3, 4-dihydro-2,5,7,8-tetramethyl-2-(4,8, 12-trimethyltridecyl)-2H-1-benzopyran-6-yl-hydrogen phosphate] potassium salt (EPC-K1) or superoxide dismutase attenuated apoptosis effectively, suggesting that reactive oxygen species (ROS) may be involved in the cascade of events leading to apoptosis. In the present investigation, we directly studied the kinetic generation of ROS in NO-treated neuronal cells by flow cytometry using 2', 7'-dichloro-fluorescein diacetate and dihydrorhodamine 123 as redox-sensitive fluorescence probes. The results indicated that exposure of cerebellar granule cells to the NO donor S-nitroso-N-acetylpenicillamine (SNAP) induced oxidative stress, which was characterized by the accumulation of cytosolic and mitochondrial ROS, the increase in the extracellular hydrogen peroxide level, and the formation of lipid peroxidation products. SNAP treatment also induced apoptotic cell death as confirmed by the formation of cytosolic mono- and oligonucleosomes. Pretreating cells with the novel antioxidant EPC-K1 effectively prevented oxidative stress induced by SNAP, and attenuated cells from apoptosis.  相似文献   

17.
Neuronal apoptosis contributes to the progression of neurodegenerative disease. Primary cerebellar granule neurons are an established in vitro model for investigating neuronal death. After removal of serum and depolarizing potassium, granule neurons undergo apoptosis via a mechanism that requires intrinsic (mitochondrial) death signals; however, the role of extrinsic (death receptor-mediated) signals is presently unclear. Here, we investigate involvement of death receptor signaling in granule neuron apoptosis by expressing adenoviral, AU1-tagged, dominant-negative Fas-associated death domain (Ad-AU1-deltaFADD). Ad-AU1-deltaFADD decreased apoptosis of granule neurons from 65 +/- 5 to 27 +/- 2% (n = 7, p < 0.01). Unexpectedly, immunocytochemical staining for AU1 revealed that <5% of granule neurons expressed deltaFADD. In contrast, deltaFADD was expressed in >95% of calbindin-positive Purkinje neurons ( approximately 2% of the cerebellar culture). Granule neurons in proximity to deltaFADD-expressing Purkinje cells demonstrated markedly increased survival. Both granule and Purkinje neurons expressed insulin-like growth factor-I (IGF-I) receptors, and deltaFADD-mediated survival of granule neurons was inhibited by an IGF-I receptor blocking antibody. These results demonstrate that the selective suppression of death receptor signaling in Purkinje neurons is sufficient to rescue neighboring granule neurons that depend on Purkinje cell-derived IGF-I. Thus, the extrinsic death pathway has a profound but indirect effect on the survival of cerebellar granule neurons.  相似文献   

18.
Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag?/?) or O6-methylguanine methyltransferase (Mgmt?/?), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt?/? neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag?/? neurons were for the most part significantly less sensitive than wild type or Mgmt?/? neurons to MAM and HN2. Aag?/? neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt?/? mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag?/? or MGMT-overexpressing (MgmtTg+) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in MgmtTg+ mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.  相似文献   

19.
Impairment of proteasomal function has been shown to be implicated in neuronal cell degeneration. The compounds which have antioxidant and anti-inflammatory abilities appear to provide a neuroprotective effect. Flavone apigenin is known to exhibits antioxidant and anti-inflammatory effects. Nevertheless, the effect of apigenin on the proteasome inhibition-induced neuronal apoptosis has not been studied. Therefore, we assessed the effect of apigenin on the proteasome inhibition-induced apoptotic neuronal cell death using differentiated PC12 cells and human neuroblastoma SH-SY5Y cells. Apigenin attenuated the proteasome inhibitors (MG132 and MG115)-induced decrease in the levels of Bid and Bcl-2, increase in the levels of Bax and p53, loss of the mitochondrial transmembrane potential, release of cytochrome c, activation of caspases (-8, -9 and -3), cleavage of PARP-1 and cell death in both cell lines. Apigenin attenuated the production of reactive oxygen species, the depletion and oxidation of glutathione, the formations of malondialdehyde and carbonyls in cell lines treated with proteasome inhibitors. The results show that apigenin appears to attenuate the proteasome inhibitor-induced apoptosis in differentiated PC12 cells and SH-SY5Y cells by suppressing the activation of the mitochondrial pathway, and of the caspase-8- and Bid-dependent pathways. The inhibitory effect of apigenin on the proteasome inhibitor-induced apoptosis appears to be attributed to the suppressive effect on the production of reactive oxygen species, the depletion and oxidation of glutathione and the formations of malondialdehyde and carbonyls.  相似文献   

20.
Oxidative stress has long been linked to cell death in many neurodegenerative conditions. Treatment with antioxidants is a promising approach for slowing disease progression. In this study, we used the neuroblastoma SH-SY5Y cells as an in vitro model to first assess the effect of polypeptide from Chlamys farreri (PCF), a natural marine antioxidant, on H2O2-induced neuronal cell death. Pre-treatment of SH-SY5Y cells with PCF inhibited H2O2-induced cell death in a concentration-dependent manner. In parallel, intracellular reactive oxygen species generation and lipid peroxidation were inhibited by PCF. Under severe H2O2 insult, PCF promoted endogenous antioxidant defense components including glutathione peroxidase, catalase, superoxide dismutase, and glutathione. PCF also protected DNA from oxidative damage and enhanced the removal of 8-oxo-7,8-dihydro-2'-deoxyguanosine from DNA. Further, we found that PCF potentially prevented H2O2–induced cell apoptosis. When investigated mitogen-activated protein kinase signaling pathway, we found that pre-treatment of cells with PCF significantly blocked H2O2–induced phosphorylation of c- Jun N-terminal kinase of the mitogen-activated protein kinase family. However, PCF had little inhibitory effect on the H2O2–induced activation of extracellular signal-regulated kinase. Taken together, these data demonstrate that PCF prevents oxidative stress-induced reactive oxygen species production and c- Jun N-terminal kinase activation and may be useful in the treatment of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号