首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
The integral ER membrane protein HMG-CoA reductase (HMGR) is a key enzyme of the mevalonate pathway from which sterols and other essential molecules are produced. HMGR degradation occurs in the ER and is regulated by mevalonate-derived signals. Little is known about the mechanisms responsible for regulating HMGR degradation. The yeast Hmg2p isozyme of HMGR undergoes regulated degradation in a manner very similar to mammalian HMGR, allowing us to isolate mutants deficient in regulating Hmg2p stability. We call these mutants cod mutants for the control of HMG-CoA reductase degradation. With this screen, we have identified the first gene of this class, COD1, which encodes a P-type ATPase and is identical to SPF1. Our data suggested that Cod1p is a calcium transporter required for regulating Hmg2p degradation. This role for Cod1p is distinctly different from that of the well-characterized Ca(2+) P-type ATPase Pmr1p which is neither required for Hmg2p degradation nor its control. The identification of Cod1p is especially intriguing in light of the role Ca(2+) plays in the regulated degradation of mammalian HMGR.  相似文献   

2.
Membrane transporter proteins are essential for the maintenance of cellular ion homeostasis. In the secretory pathway, the P-type ATPase family of transporters is found in every compartment and the plasma membrane. Here, we report the identification of COD1/SPF1 (control of HMG-CoA reductase degradation/SPF1) through genetic strategies intended to uncover genes involved in protein maturation and endoplasmic reticulum (ER)-associated degradation (ERAD), a quality control pathway that rids misfolded proteins. Cod1p is a putative ER P-type ATPase whose expression is regulated by the unfolded protein response, a stress-inducible pathway used to monitor and maintain ER homeostasis. COD1 mutants activate the unfolded protein response and are defective in a variety of functions apart from ERAD, which further support a homeostatic role. COD1 mutants display phenotypes similar to strains lacking Pmr1p, a Ca(2+)/Mn(2+) pump that resides in the medial-Golgi. Because of its localization, the previously reported role of PMR1 in ERAD was somewhat enigmatic. A clue to their respective roles came from observations that the two genes are not generally required for ERAD. We show that the specificity is rooted in a requirement for both genes in protein-linked oligosaccharide trimming, a requisite ER modification in the degradation of some misfolded glycoproteins. Furthermore, Cod1p, like Pmr1p, is also needed for the outer chain modification of carbohydrates in the Golgi apparatus despite its ER localization. In strains deleted of both genes, these activities are nearly abolished. The presence of either protein alone, however, can support partial function for both compartments. Taken together, our results reveal an interdependent relationship between two P-type ATPases to maintain homeostasis of the organelles where they reside.  相似文献   

3.
Spf1p is a P-type ATPase that is mainly localized to the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. The protein is involved in the maintenance of ion homeostasis in the ER. To investigate the intracellular role of Spf1p in more detail, we performed a genetic screen for mutations that lead to synthetic lethality in combination with a disruption of SPF1; the mutations identified have been termed lws (for lethal with spf1) mutations. Mutant alleles of five LWS genes (MDM39, RIC1, LAS21, TUP1 and BTS1) were recovered. The identification of these genes provides clues to the physiological relationships between Spf1p function and the secretory pathway. Among the five genes identified, MDM39 encodes a membrane protein that is similar to the protein CHD5/WRB, which is involved in the pathogenesis of Down syndrome-associated congenital heart disease in humans. We localized Mdm39p to the ER. The mdm39 mutant exhibited defects in glycosylation, cell wall organization and the unfolded protein response. It also showed calcium-related phenotypes and synthetic lethal interactions with deletion mutations in other LWS genes. Our findings imply a homeostatic role for Mdm39p, which may be related to the regulation of calcium ion fluxes in the ER, and is indispensable for mutants that lack Spf1p.  相似文献   

4.
Cdc50p, a transmembrane protein localized to the late endosome, is required for polarized cell growth in yeast. Genetic studies suggest that CDC50 performs a function similar to DRS2, which encodes a P-type ATPase of the aminophospholipid translocase (APT) subfamily. At low temperatures, drs2Delta mutant cells exhibited depolarization of cortical actin patches and mislocalization of polarity regulators, such as Bni1p and Gic1p, in a manner similar to the cdc50Delta mutant. Both Cdc50p and Drs2p were localized to the trans-Golgi network and late endosome. Cdc50p was coimmunoprecipitated with Drs2p from membrane protein extracts. In cdc50Delta mutant cells, Drs2p resided on the endoplasmic reticulum (ER), whereas Cdc50p was found on the ER membrane in drs2Delta cells, suggesting that the association on the ER membrane is required for transport of the Cdc50p-Drs2p complex to the trans-Golgi network. Lem3/Ros3p, a homolog of Cdc50p, was coimmunoprecipitated with another APT, Dnf1p; Lem3p was required for exit of Dnf1p out of the ER. Both Cdc50p-Drs2p and Lem3p-Dnf1p were confined to the plasma membrane upon blockade of endocytosis, suggesting that these proteins cycle between the exocytic and endocytic pathways, likely performing redundant functions. Thus, phospholipid asymmetry plays an important role in the establishment of cell polarity; the Cdc50p/Lem3p family likely constitute potential subunits specific to unique P-type ATPases of the APT subfamily.  相似文献   

5.
6.
7.
In this report, we show that zinc is required for endoplasmic reticulum function in Saccharomyces cerevisiae. Zinc deficiency in this yeast induces the unfolded protein response (UPR), a system normally activated by unfolded ER proteins. Msc2, a member of the cation diffusion facilitator (CDF) family of metal ion transporters, was previously implicated in zinc homeostasis. Our results indicate that Msc2 is one route of zinc entry into the ER. Msc2 localizes to the ER when expressed at normal levels. UPR induction in low zinc is exacerbated in an msc2 mutant. Genetic and biochemical evidence indicates that this UPR induction is due to genuine ER dysfunction. Notably, we found that ER-associated protein degradation is defective in zinc-limited msc2 mutants. We also show that the vacuolar CDF proteins Zrc1 and Cot1 are other pathways of ER zinc acquisition. Finally, zinc deficiency up-regulates the mammalian ER stress response indicating a conserved requirement for zinc in ER function among eukaryotes.  相似文献   

8.
Sec61p is required both for protein translocation and dislocation across the membrane of the endoplasmic reticulum (ER). However, the cellular role of the Sec61p homolog Ssh1p has not been clearly defined. We show that deltassh1 mutant cells have strong defects in both SRP-dependent and -independent translocation. Moreover, these cells were also found to be induced for the unfolded protein response and to be defective in dislocation of a misfolded ER protein. In addition, deltassh1 mutant cells rapidly became respiratory deficient. The other defects discussed above were suppressed in the respiratory-deficient state or under conditions where the rate of polypeptide translation was artificially reduced. These data identify Ssh1p as a component of a second, functionally distinct translocon in the yeast ER membrane.  相似文献   

9.
10.
Endoplasmic reticulum (ER) stress is triggered by various cellular stresses that disturb protein folding or calcium homeostasis in the ER. To cope with these stresses, ER stress activates the unfolded protein response (UPR) pathway, but unresolved ER stress induces reactive oxygen species (ROS) accumulation leading to apoptotic cell death. However, the mechanisms that underlie protection from ER stress-induced cell death are not clearly defined. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway plays a crucial role in the protection of cells against ROS-mediated oxidative damage. Keap1 acts as a negative regulator of Nrf2 activation. In this study, we investigated the role of the Nrf2-Keap1 pathway in protection from ER stress-induced cell death using tunicamycin (TM) as an ER stress inducer. We found that Nrf2 is an essential protein for the prevention from TM-induced apoptotic cell death and its activation is driven by autophagic Keap1 degradation. Furthermore, ablation of p62, an adapter protein in the autophagy process, attenuates the Keap1 degradation and Nrf2 activation that was induced by TM treatment, and thereby increases susceptibility to apoptotic cell death. Conversely, reinforcement of p62 alleviated TM-induced cell death in p62-deficient cells. Taken together, these results demonstrate that p62 plays an important role in protecting cells from TM-induced cell death through Nrf2 activation.  相似文献   

11.
In the classical form of alpha(1)-antitrypsin deficiency, a mutant protein accumulates in a polymerized form in the endoplasmic reticulum (ER) of liver cells causing liver damage and carcinogenesis by a gain-of-toxic function mechanism. Recent studies have indicated that the accumulation of mutant alpha(1)-antitrypsin Z in the ER specifically activates the autophagic response but not the unfolded protein response and that autophagy plays a critical role in disposal of insoluble alpha(1)-antitrypsin Z. In this study, we used genomic analysis of the liver in a novel transgenic mouse model with inducible expression to screen for changes in gene expression that would potentially define how the liver responds to accumulation of this mutant protein. There was no unfolded protein response. Of several distinct gene expression profiles, marked up-regulation of regulator of G signaling (RGS16) was particularly notable. RGS16 did not increase when model systems were exposed to classical inducers of ER stress, including tunicamycin and calcium ionophore, or when a nonpolymerogenic alpha(1)-antitrypsin mutant accumulated in the ER. RGS16 was up-regulated in livers from patients with alpha(1)-antitrypsin deficiency, and the degree of up-regulation correlated with the hepatic levels of insoluble alpha(1)-antitrypsin Z protein. Taken together, these results indicate that expression of RGS16 is an excellent marker for the distinct form of "ER stress" that occurs in alpha(1)-antitrypsin deficiency, presumably determined by the aggregation-prone properties of the mutant protein that characterizes the deficiency.  相似文献   

12.
Role of phylogenetically conserved amino acids in folding of Na,K-ATPase   总被引:1,自引:0,他引:1  
Jørgensen JR  Pedersen PA 《Biochemistry》2001,40(24):7301-7308
  相似文献   

13.
Here we describe the phenotypic characterization of the cta4+ gene, encoding a novel member of the P4 family of P-type ATPases of fission yeast. The cta4Delta mutant is temperature sensitive and cold sensitive lethal and displays several morphological defects in cell polarity and cytokinesis. Microtubules are generally destabilized in cells lacking Cta4p. The microtubule length is decreased, and the number of microtubules per cell is increased. This is concomitant with an increase in the number of microtubule catastrophe events in the midzone of the cell. These defects are likely due to a general imbalance in cation homeostasis. Immunofluorescence microscopy and membrane fractionation experiments revealed that green fluorescent protein-tagged Cta4 localizes to the ER. Fluorescence resonance energy transfer experiments in living cells using the yellow cameleon indicator for Ca2+ indicated that Cta4p regulates the cellular Ca2+ concentration. Thus, our results reveal a link between cation homeostasis and the control of cell shape, microtubule dynamics, and cytokinesis, and appoint Ca2+ as a key ion in controlling these processes.  相似文献   

14.
15.
16.
Btn2p, a novel cytosolic coiled-coil protein in Saccharomyces cerevisiae, was previously shown to interact with and to be necessary for the correct localization of Rhb1p, a regulator of arginine uptake, and Yif1p, a Golgi protein. We now report the biochemical and physical interactions of Btn2p with Ist2p, a plasma membrane protein that is thought to have a function in salt tolerance. A deletion in Btn2p (btn2Delta strains) results in a failure to correctly localize Ist2p, and strains lacking Btn2p and Ist2p (btn2Delta ist2Delta strains) are unable to grow in the presence of 0.5 or 1.0 M NaCl. Btn2p was originally identified as being up-regulated in a btn1Delta strain, which lacks the vacuolar-lysosomal membrane protein, Btn1p, and serves as a model for Batten disease. This up-regulation of Btn2p was shown to contribute to the maintenance of a stable vacuolar pH in the btn1Delta strain. Btn1p was subsequently shown to be required for the optimal transport of arginine into the vacuole. Interestingly, btn1Delta ist2Delta strains are also unable to grow in the presence of 0.5 or 1.0 M NaCl, and ist2Delta suppresses the vacuolar arginine transport defect in btn1Delta strains. Although further investigation is required, we speculate that altered vacuolar arginine transport in btn1Delta strains represents a mechanism for maintaining or balancing cellular ion homeostasis. Btn2p interacts with at least three proteins that are seemingly involved in different biological functions in different subcellular locations. Due to these multiple interactions, we conclude that Btn2p may play a regulatory role across the cell in response to alterations in the intracellular environment that may be caused by changes in amino acid levels or pH, a disruption in protein trafficking, or imbalances in ion homeostasis resulting from either genetic or environmental manipulation.  相似文献   

17.
Protein phosphorylation plays a major role in regulating cellular functions. We have previously demonstrated that Sky1p, the SR protein kinase of the budding yeast Saccharomyces cerevisiae, is a regulator of polyamine transport and ion homeostasis. Since its kinase activity was demonstrated essential for fulfilling these roles, we assumed that Sky1p function via substrates phosphorylation. Using an in vitro phosphorylation assay, we have identified Hrb1p as a putative Sky1p substrate. However, phosphorylation analysis in WT and sky1Delta cells and localization studies disproved Hrb1p as a true Sky1p substrate, although a segment of the RS domain is required for determining its subcellular localization. Furthermore, we demonstrate that Hrb1p and additional putative Sky1p substrates, identified by computational approach, are not involved in mediating the spermine tolerant phenotype of sky1Delta cells.  相似文献   

18.
Reticulophagy is a type of selective autophagy in which protein aggregate-containing and/or damaged endoplasmic reticulum(ER)fragments are engulfed for lysosomal degradation, which is important for ER homeostasis. Several chemical drugs and mutant proteins that promote protein aggregate formation within the ER lumen can efficiently induce reticulophagy in mammalian cells.However, the exact mechanism and cellular localization of reticulophagy remain unclear. In this report, we took advantage of the self-oligomerization property of p62/SQSTM1, an adaptor for selective autophagy, and developed a novel reticulophagy system based on an ER-targeted p62 mutant to investigate the process of reticulophagy in living cells. LC3 conversion analysis via western blot suggested that p62 mutant aggregate-induced ER stress triggered a cellular autophagic response. Confocal imaging showed that in cells with moderate aggregation conditions, the aggregates of ER-targeted p62 mutants were efficiently sequestered by autophagosomes, which was characterized by colocalization with the autophagosome precursor marker ATG16L1, the omegasome marker DFCP1, and the late autophagosomal marker LC3/GATE-16. Moreover, time-lapse imaging data demonstrated that the LC3-or DFCP1-positive protein aggregates are tightly associated with the reticular structures of the ER, thereby suggesting that reticulophagy occurs at the ER and that omegasomes may be involved in this process.  相似文献   

19.
Tyson JR  Stirling CJ 《The EMBO journal》2000,19(23):6440-6452
Lhs1p is an Hsp70-related chaperone localized in the endoplasmic reticulum (ER) lumen. Deltalhs1 mutant cells are viable but are constitutively induced for the unfolded protein response (UPR). Here, we demonstrate a severe growth defect in Deltaire1Deltalhs1 double mutant cells in which the UPR can no longer be induced. In addition, we have identified a UPR- regulated gene, SIL1, whose overexpression is sufficient to suppress the Deltaire1Deltalhs1 growth defect. SIL1 encodes an ER-localized protein that interacts directly with the ATPase domain of Kar2p (BiP), suggesting some role in modulating the activity of this vital chaperone. SIL1 is a non-essential gene but the Deltalhs1Deltasil1 double mutation is lethal and correlates with a complete block of protein translocation into the ER. We conclude that the IRE1-dependent induction of SIL1 is a vital adaptation in Deltalhs1 cells, and that the activities associated with the Lhs1 and Sil1 proteins constitute an essential function required for protein translocation into the ER. The Sil1 protein appears widespread amongst eukaryotes, with homologues in Yarrowia lipolytica (Sls1p), Drosophila and mammals.  相似文献   

20.
McClellan AJ  Brodsky JL 《Genetics》2000,156(2):501-512
The translocation of proteins across the yeast ER membrane requires ATP hydrolysis and the action of DnaK (hsp70) and DnaJ homologues. In Saccharomyces cerevisiae the cytosolic hsp70s that promote post-translational translocation are the products of the Ssa gene family. Ssa1p maintains secretory precursors in a translocation-competent state and interacts with Ydj1p, a DnaJ homologue. Although it has been proposed that Ydj1p stimulates the ATPase activity of Ssa1p to release preproteins and engineer translocation, support for this model is incomplete. To this end, mutations in the ATP-binding pocket of SSA1 were constructed and examined both in vivo and in vitro. Expression of the mutant Ssa1p's slows wild-type cell growth, is insufficient to support life in the absence of functional Ssa1p, and results in a dominant effect on post-translational translocation. The ATPase activity of the purified mutant proteins was not enhanced by Ydj1p and the mutant proteins could not bind an unfolded polypeptide substrate. Our data suggest that a productive interaction between Ssa1p and Ydj1p is required to promote protein translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号