首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
A single-gene nuclear mutant has been selected from the yeast Schizosaccharomyces pombe for growth resistance to Dio-9, a plasma membrane H+-ATPase inhibitor. From this mutant, called pma1, an ATPase activity has been purified. It contains a Mr = 100,000 major polypeptide which is phosphorylated by [gamma-32P] ATP. Proton pumping is not impaired since the isolated mutant ATPase is able, in reconstituted proteoliposomes, to quench the fluorescence of the delta pH probe 9-amino-6-chloro-2-methoxy acridine. The isolated mutant ATPase is sensitive to Dio-9 as well as to seven other plasma membrane H+-ATPase inhibitors. The mutant H+-ATPase activity tested in vitro is, however, insensitive to vanadate. Its Km for MgATP is modified and its ATPase specific activity is decreased. The pma1 mutation decreases the rate of extracellular acidification induced by glucose when cells are incubated at pH 4.5 under nongrowing conditions. During growth, the intracellular mutant pH is more acid than the wild type one. The derepression by ammonia starvation of methionine transport is decreased in the mutant. The growth rate of pma1 mutants is reduced in minimal medium compared to rich medium, especially when combined to an auxotrophic mutation. It is concluded that the H+-ATPase activity from yeast plasma membranes controls the intracellular pH as well as the derepression of amino acid, purine, and pyrimidine uptakes. The pma1 mutation modifies several transport properties of the cells including those responsible for the uptake of Dio-9 and other inhibitors (Ulaszewski, S., Coddington, A., and Goffeau, A. (1986) Curr. Genet. 10, 359-364).  相似文献   

2.
We have characterized a class of mutations in PMA1, (encoding plasma membrane ATPase) that is ideal for the analysis of membrane targeting in Saccharomyces cerevisiae. This class of pma1 mutants undergoes growth arrest at the restrictive temperature because newly synthesized ATPase fails to be targeted to the cell surface. Instead, mutant ATPase is delivered to the vacuole, where it is degraded. Delivery to the vacuole occurs without previous arrival at the plasma membrane because degradation of mutant ATPase is not prevented when internalization from the cell surface is blocked. Disruption of PEP4, encoding vacuolar proteinase A, blocks ATPase degradation, but fails to restore growth because the ATPase is still improperly targeted. One of these pma1 mutants was used to select multicopy suppressors that would permit growth at the nonpermissive temperature. A novel gene, AST1, identified by this selection, suppresses several pma1 alleles defective for targeting. The basis for suppression is that multicopy AST1 causes rerouting of mutant ATPase from the vacuole to the cell surface. pma1 mutants deleted for AST1 have a synthetic growth defect at the permissive temperature, providing genetic evidence for interaction between AST1 and PMA1. Ast1 is a cytoplasmic protein that associates with membranes, and is localized to multiple compartments, including the plasma membrane. The identification of AST1 homologues suggests that Ast1 belongs to a novel family of proteins that participates in membrane traffic.  相似文献   

3.
Null mutations in genes encoding V-ATPase subunits in Saccharomyces cerevisiae result in a phenotype that is unable to grow at high pH and is sensitive to high and low metal-ion concentrations. Treatment of these null mutants with ethylmethanesulfonate causes mutations that suppress the V-ATPase null phenotype, and the mutant cells are able to grow at pH 7.5. The suppressor mutants were denoted as svf (suppressor of V-ATPase function). The frequency of svf is relatively high, suggesting a large target containing several genes for the ethylmethanesulfonate mutagenesis. The suppressors' frequency is dependent on the individual genes that were inactivated to manifest the V-ATPase null mutation. The svf mutations are recessive, because crossing the svf mutants with their corresponding V-ATPase null mutants resulted in diploid strains that are unable to grow at pH 7.5. A novel gene family in which null mutations cause pleiotropic effects on metal-ion resistance or sensitivity and distribution of membrane proteins in different targets was discovered. The family was defined as VTC (Vacuolar Transporter Chaperon) and it contains four genes in the S. cerevisiae genome. Inactivation of one of them, VTC1, in the background of V-ATPase null mutations resulted in svf phenotype manifested by growth at pH 7.5. Deletion of the VTC1 gene (DeltaVTC1) results in a reduced amount of V-ATPase in the vacuolar membrane. These mutant cells fail to accumulate quinacrine into their vacuoles, but they are able to grow at pH 7.5. The VTC1 null mutant also results in a reduced amount of the plasma membrane H(+)-ATPase (Pma1p) in membrane preparations and possibly mis-targeting. This observation may provide an explanation for the svf phenotype in the double disruptant mutants of DeltaVTC1 and DeltaVMA subunits.  相似文献   

4.
The proton transport properties of hygromycin B-resistant pma1 mutants which show kinetic defects in the plasma membrane H+-ATPase were examined. It was found that net proton efflux, as measured by whole cell medium acidification in the presence of 25 mM KCl, was similar for normal and pma1 mutant cells. However, in the absence of added KCl, the extent of net proton efflux was considerably less in wild type than in pma1 mutant cells. The cellular membrane potential was implicated as an important factor in regulating net proton transport and was determined from [14C]tetraphenylphosphonium uptake studies to be considerably depolarized in the pma1 mutants. The growth of wild type cells, which is normally inhibited by hygromycin B at 200 micrograms/ml, was found to be resistant to the antibiotic by the addition of 50 mM KCl to the growth medium. These results suggest that the electrogenic behavior of proton transport by the H+-ATPase may be altered in pma1 mutants and that resistance to hygromycin B may be mediated via depolarization of the cellular membrane potential.  相似文献   

5.
The pma1-2 mutation affecting the plasma membrane H(+)-ATPase of Schizosaccharomyces pombe has been selected for resistance to the antibiotic Dio-9. In membrane fractions purified from glucose-starved cells, the mutant ATPase activity is reduced by 96%, is insensitive to inhibition by vanadate and has a pH profile displaced in the acidic pH range when compared to the wild type. The maximum velocity of the H(+)-ATPase activity of plasma membranes from glucose-activated pma1-2 cells is activated 20-fold. This is in striking contrast with the wild-type ATPase activity, the maximal velocity of which is not affected by glucose. However, similar to the wild-type enzyme, glucose activation of the pma1-2 mutant H(+)-ATPase reduces the Km for MgATP 9-2 mM and shifts the optimal pH from 4.8 to 6.0-6.5. The pma1-2 mutation modifies Lys250 to a threonine, which is highly conserved in fungal and plant H(+)-ATPases. These results, compared to those reported for mutations of neighbour residues in yeast or mammalian P-type ATPases, suggest that Lys250 could play a significant role, not only in phosphate binding and/or in the E1P-E2P conformational isomerisation, but also in glucose activation of the H(+)-ATPase.  相似文献   

6.
Mutations in the plasma membrane H(+)-ATPase gene (PMA1) of Saccharomyces cerevisiae that confer growth resistance to hygromycin B have been shown recently to cause a marked depolarization of whole cell membrane potential (Perlin, D. S., Brown, C. L., and Haber, J. E. (1988) J. Biol. Chem. 263, 18118-18122). In this report, the biochemical and genetic properties of H+-ATPases from four prominent hygromycin B-resistant pma1 mutants, pma1-105, pma1-114, pma1-147, and pma1-155, are described. Single base pair changes were identified in pma1-105, pma1-114, and pma1-147 that resulted in amino acid substitutions of Ser-368----Phe, Gly-158----Asp, Pro-640----Leu, respectively. An A----G transition mutation at -39 in the 5'-untranslated region of the mRNA of pma1-155 was also found. This mutation creates an out-of-Frame upstream AUG initiation codon that apparently reduces normal translation of PMA1. DNA sequence analysis of PMA1 from strain Y55 identified 9 base pair substitutions that resulted in 6 amino acid changes in nonconserved regions when compared to the published sequence for strain S288C. Plasma membranes of three of the four pma1 mutants contained normal amounts of H(+)-ATPase; membranes from pma1-155 contained enzyme at 62% of the wild-type level. The kinetics of ATP hydrolysis were most strongly altered for enzymes from pma1-105 and pma1-147 which showed changes in both Km and Vmax. A striking pH dependence for these parameters was found for enzyme from pma1-105 which resulted in a precipitous decline in Km and Vmax below pH 6.5. ATP hydrolysis by enzymes from pma1-105 and pma1-147 was insensitive to inhibition by vanadate. These enzymes, in contrast to wild-type and vanadate-sensitive mutant enzymes, were poorly protected from trypsin-induced inactivation by MgATP and vanadate or Pi alone. These results are pertinent to the mechanism of vanadate-induced enzyme inhibition and suggest that Ser-368 and Pro-640 influence the affinity of the phosphate-binding site for Pi. All mutant enzymes catalyzed ATP-induced pH gradient formation following purification and reconstitution into liposomes. Finally, these results further demonstrate the usefulness of hygromycin B as a generalized screening tool for isolating diverse plasma membrane ATPase mutants.  相似文献   

7.
A second transport ATPase gene in Saccharomyces cerevisiae   总被引:12,自引:0,他引:12  
A second transport ATPase gene from Saccharomyces cerevisiae has been identified by hybridization to a PMA1 probe and sequenced. The gene called PMA2 encodes a polypeptide of Mr = 102,157, which, with the exception of the 144 amino-terminal residues, is highly homologous to the structural gene PMA1 for the H+-ATPase. It is localized on the chromosome XVI at 16.7 centimorgan from gal4 and is not essential for haploid growth. Comparison between the upstream, noncoding DNA regions of PMA1 and PMA2 indicates that the two genes are controlled differently. The extensive amino acid sequence homology with the fungal H+-ATPases described so far indicates that the PMA2-encoded protein is also able to function as a H+ pump. This is supported by the observation that in pma1 mutants with reduced plasma membrane ATPase activity, disruption of the PMA2 gene confers the ability to grow under alkaline pH conditions. Slower development of diploids is also observed on normal minimal medium after bilateral disruption of PMA2 in the two parents.  相似文献   

8.
Mutant strains of Neurospora crassa have been selected which grow on media containing vanadate, an inhibitor of the plasma membrane ATPase. The mutations all map to a single region (designated van) on the left arm of linkage group VII. The van mutants are unable to take up vanadate from the medium and are also deficient in the uptake of phosphate via a derepressible, high-affinity phosphate transport system. In the van mutants, the K(m) for phosphate transport is elevated as much as 35-fold, indicating that the van locus may code for a structural component of the high-affinity phosphate transport system.  相似文献   

9.
Zymocin, a three-subunit (alpha beta gamma) toxin complex from Kluyveromyces lactis, imposes a cell cycle block on Saccharomyces cerevisiae. Phenotypic analysis of the resistant kti10 mutant implies a membrane defect, suggesting that KTI10 represents a gene involved early in the zymocin response. Consistently, KTI10 is shown here to be allelic to PMA1 encoding H(+)-ATPase, a plasma membrane H(+) pump vital for membrane energization (Delta Psi). Like pma1 mutants, kti10 cells lose viability at low pH, indicating a pH homeostasis defect, and resist the antibiotic hygromycin B, uptake of which is known to be Pma1 and Delta Psi sensitive. Similar to kti10 cells, pma1 mutants with reported H(+) pump defects survive in the presence of exozymocin but do not resist endogenous expression of its lethal gamma-toxin subunit. Based on DNA sequence data, kti10 cells are predicted to produce a malfunctional Pma1 variant with expression levels that are normal. Intriguingly, zymocin protection of kti10 cells is suppressed by excess H(+), a scenario ineffective in bypassing resistance of chitin or toxin target mutants. Together with unaltered zymocin docking and gamma-toxin import events in kti10 cells, our data suggest that Pma1's role in zymocin action is likely to involve activation of gamma-toxin in a step following its cellular uptake.  相似文献   

10.
Secretory vesicles that accumulate in the temperature-sensitive sec6-4 strain of yeast have been shown to contain a vanadate-sensitive ATPase, presumably en route to the plasma membrane (Walworth, N. C., and Novick, P. J. (1987) J. Cell Biol. 105, 163-174). We have now established this enzyme to be a fully functional form of the PMA1 [H+]ATPase, identical in its catalytic properties to that found in the plasma membrane. In addition, the secretory vesicles are sealed tightly enough to permit the measurement of ATP-dependent proton pumping with fluorescent probes. We have gone on to exploit the vesicles as an expression system for site-directed mutants of the ATPase. For this purpose, a sec6-4 strain has been constructed in which the chromosomal PMA1 gene is under control of the GAL1 promoter; the mutant pma1 allele to be studied is introduced on a centromeric plasmid under the control of a novel heat shock promoter. In galactose medium at 23 degrees C, the wild-type ATPase is produced and supports normal vegetative growth. When the cells are switched to glucose medium at 37 degrees C, however, the wild-type gene turns off, the mutant gene turns on, and secretory vesicles accumulate. The vesicles contain a substantial amount of newly synthesized, plasmid-encoded ATPase (5-10% of total vesicle protein), but only traces of residual wild-type PMA1 ATPase and no detectable mitochondrial ATPase, vacuolar ATPase, or acid or alkaline phosphatase. To test the expression strategy, we have made use of pma1-105 (Ser368----Phe), a vanadate-resistant mutant previously characterized by standard methods (Perlin, D. S., Harris, S. L., Seto-Young, D., and Haber, J. E. (1989) J. Biol. Chem. 264, 21857-21864). In secretory vesicles, as expected, the plasmid-borne pma1-105 allele gives rise to a mutant enzyme with a reduced rate of ATP hydrolysis and a 100-fold increase in Ki for vanadate. Proton pumping is similarly resistant to vanadate. Thus, the vesicles appear well suited for the production and characterization of mutant forms of the PMA1 [H+]ATPase. They should also aid the study of other yeast membrane proteins that are essential for growth as well as heterologous proteins whose appearance in the plasma membrane may be toxic to the cell.  相似文献   

11.
Spectinomycin-resistant (Spcr) mutants of Escherichia coli were isolated from nutrient agar plates containing 20% sucrose and 100 mug of spectinomycin per ml. About one-third of the Spcr mutants thus obtained were sucrose dependent (Sucd) and were classified into two types: I, those unable to grow on sucrose-free medium in the presence of spectinomycin; and II, those unable to grow on sucrose-free medium irrespective of the presence of spectinomycin. Most of these mutants were hypersensitive to antibiotics, dyes, and detergents and were abnormal in cell morphology, suggesting changes in cell envelopes. Reversion experiments indicated that the sucrose-dependent spectinomycin resistance and hypersensitivity to various chemicals were not independently induced properties. The Sucd-Spcr mutations of type I mutants were transducible by phage P1 and were mapped at the strA-aroE region.  相似文献   

12.
Modified plasma-membrane ATPase in mutants of Saccharomyces cerevisiae   总被引:6,自引:0,他引:6  
Mutations affecting the plasma membrane ATPase of Saccharomyces cerevisiae were obtained by selecting mutants resistant to Dio-9. In a plasma-membrane-enriched fraction of the mutant MG2130, the ATPase activity was resistant to vanadate (50% inhibition by 26 microM in the mutant compared to 1.3 microM in the parental strain). Several catalytic properties of the membrane-bound ATPase were modified by 60-120% in the mutant which had a higher Km for MgATP and was more heatstable, less sensitive to mercurials, and more stimulated by monovalent cations than the parental type. A single mutation is responsible for the phenotypes of four independent allelic mutants. Resistance to Dio-9 in vivo and resistance to vanadate in vitro segregated together in three tetrads issued from a cross between the wild type and mutant. The mutation is semi-dominant as shown by expression of the mutant phenotype in a heterozygous diploid resulting from the cross between the wild type and mutant. It is concluded that the pma locus, affected by these mutations, is the structural gene either for the 100000-Mr subunit of plasma membrane ATPase or for a protein which tightly controls the conformation of the plasma-membrane ATPase within the membrane.  相似文献   

13.
The pma1-105 mutation reduces the activity of the yeast plasma membrane H(+)-ATPase and causes cells to be both low pH and ammonium ion sensitive and resistant to the antibiotic hygromycin B. Revertants that can grow at pH 3.0 and on ammonium-containing plates frequently arise by ectopic recombination between pma1-105 and PMA2, a diverged gene that shares 85% DNA sequence identity with PMA1. The gene conversion tracts of revertants of pma1-105 were determined by DNA sequencing the hybrid PMA1::PMA2 genes. Gene conversion tracts ranged from 18-774 bp. The boundaries of these replacements were short (3-26 bp) regions of sequences that were identical between PMA1 and PMA2. These boundaries were not located at the regions of greatest shared identity between the two PMA genes. Similar results were obtained among low pH-resistant revertants of another mutation, pma1-147. One gene conversion was obtained in which the resulting PMA1::PMA2 hybrid was low pH-resistant but still hygromycin B-resistant. This partially active gene differs from a wild-type revertant only by the presence of two PMA2-encoded amino acid substitutions. Thus, some regions of PMA2 are not fully interchangeable with PMA1. We have also compared the efficiency of recombination between pma1-105 and either homeologous PMA2 sequence or homologous PMA1 donor sequences inserted at the same location. PMA2 X pma1-105 recombination occurred at a rate approximately 75-fold less than PMA1 X pma1-105 events. The difference in homology between the interacting sequences did not affect the proportion of gene conversion events associated with a cross-over, as in both cases approximately 5% of the Pma(+) recombinants had undergone reciprocal translocations between the two chromosomes carrying pma1-105 and the donor PMA sequences. Reciprocal translocations were identified by a simple and generally useful nutritional test.  相似文献   

14.
Many heterologous membrane proteins expressed in the yeast Saccharomyces cerevisiae fail to reach their normal cellular location and instead accumulate in stacked internal membranes. Arabidopsis thaliana plasma membrane H(+)-ATPase isoform 2 (AHA2) is expressed predominantly in yeast internal membranes and fails to complement a yeast strain devoid of its endogenous H(+)-ATPase Pma1. We observed that phosphorylation of AHA2 in the heterologous host and subsequent binding of 14-3-3 protein is crucial for the ability of AHA2 to substitute for Pma1. Thus, mutants of AHA2, complementing pma1, showed increased phosphorylation at the penultimate residue (Thr(947)), which creates a binding site for endogenous 14-3-3 protein. Only a pool of ATPase in the plasma membrane is phosphorylated. Double mutants carrying in addition a T947A substitution lost their ability to complement pma1. However, mutants affected in both autoinhibitory regions of the C-terminal regulatory domain complemented pma1 irrespective of their ability to become phosphorylated at Thr(947). This demonstrates that it is the activity status of the mutant enzyme and neither redirection of trafficking nor 14-3-3 binding per se that determines the ability of H(+)-pumps to rescue pma1.  相似文献   

15.
The pma2 gene of Schizosaccharomyces pombe codes for a polypeptide having a predicted Mr of 110,126 and which is 79% identical to the plasma membrane H(+)-ATPase encoded by the pma1 gene. The pma2 gene, unlike pma1, is weakly expressed and not essential to mitotic growth. By constructing yeast strains in which the chromosomal pma2 gene is under control of the adh promoter, it has been possible to identify the overproduced ATPase in plasma membrane via formation of a phosphoenzyme. In a pma1-1 mutant strain whose ATPase activity is insensitive to vanadate, the overexpressed pma2 gene restores vanadate sensitivity. It also rescues a pma1 null mutant from lethality. These results demonstrate that the two H(+)-ATPases are functionally interchangeable in vivo but differently expressed.  相似文献   

16.
We have analyzed the ability of A165V, V169I/D170N, and P536L mutations to suppress pma1 dominant lethal alleles and found that the P536L mutation is able to suppress the dominant lethality of the pma1-R271T, -D378N, -D378E, and -K474R mutant alleles. Genetic and biochemical analyses of site-directed mutants at Pro-536 suggest that this amino acid may not be essential for function but is important for biogenesis of the ATPase. Proteins encoded by dominant lethal pma1 alleles are retained in the endoplasmic reticulum, thus interfering with transport of wild-type Pma1. Immunofluorescence studies of yeast conditionally expressing revertant alleles show that the mutant enzymes are correctly located at the plasma membrane and do not disturb targeting of the wild-type enzyme. We propose that changes in Pro-536 may influence the folding of the protein encoded by a dominant negative allele so that it is no longer recognized and retained as a misfolded protein by the endoplasmic reticulum.  相似文献   

17.
Misfolded proteins are usually arrested in the endoplasmic reticulum (ER) and degraded by the ER-associated degradation (ERAD) machinery. Several mutant alleles of PMA1, the gene coding for the plasma membrane H(+)-ATPase, render misfolded proteins that are retained in the ER and degraded by ERAD. A subset of misfolded PMA1 mutants exhibit a dominant negative effect on yeast growth since, when coexpressed with the wild-type allele, both proteins are retained in the ER. We have used a pma1-D378T dominant negative mutant to identify new genes involved in ERAD. A genetic screen was performed for isolation of multicopy suppressors of a GAL1-pma1-D378T allele. ATG19, a member of the cytoplasm to vacuole targeting (Cvt) pathway, was found to suppress the growth arrest phenotype caused by the expression of pma1-D378T. ATG19 accelerates the degradation of pma1-D378T thus allowing the co-retained wild-type Pma1 to reach the plasma membrane. ATG19 was also able to suppress other dominant lethal PMA1 mutations. The degradation of the mutant ATPase occurs in the proteasome and requires intact both ERAD and Cvt/autophagy pathways. We propose the cooperation of both pathways for an efficient degradation of misfolded Pma1.  相似文献   

18.
Summary In the yeast Saccharomyces cerevisiae, the pma1 mutations confers vanadate-resistance to H+-ATPase activity when measured in isolated plasma membranes. In vivo, the growth of pma1 mutants is resistant to Dio-9, ethidium bromide and guanidine derivatives. This phenotype was used to man the pma1 mutation adjacent to LEU1 gene on chromosome VII. From a cosmid library of a wild-type Saccharomyces cerevisiae genome, a large 30 kb DNA fragment was isolated by complementation of a leu1-pma1 double mutant. A 5 kb HindIII fragment was subcloned and it restored both Leu+ and Pma+ phenotypes after integrative transformation. The restriction map of the 5 kb HindIII fragment and Southern blot analysis reveal that the cloned fragment contains the entire structural gene for the plasma membrane ATPase and the 5 end of the adjacent LEU1 gene. The pma1 mutation conferring vanadate-resistance is thus located in the structural gene for the plasma membrane ATPase.Publication no 2456 from the Biology Directorate of the Commission of European Communities  相似文献   

19.
We have isolated and characterized Dictyostelium discoideum mutants with conditional defects in phagocytosis. Under suspension conditions, the mutants exhibited dramatic reductions in the uptake of bacteria and polystyrene latex beads. The initial binding of these ligands was unaffected, however, indicating that the defect was not in a plasma membrane receptor: Because of the phagocytosis defect, the mutants were unable to grow when cultured in suspensions of heat-killed bacteria. The mutants exhibited normal capacities for fluid phase endocytosis and grew as rapidly as parental (AX4) cells in axenic medium. Both the defects in phagocytosis and growth on bacteria were corrected when the mutant Dictyostelium cells were cultured on solid substrates. Reversion and genetic complementation analysis suggested that the mutant phenotypes were caused by single gene defects. While the precise site of action of the mutations was not established, the mutations are likely to affect an early signaling event because the binding of bacteria to mutant cells in suspension was unable to trigger the localized polymerization of actin filaments required for ingestion; other aspects of actin function appeared normal. This class of conditional phagocytosis mutant should prove to be useful for the expression cloning of the affected gene(s).  相似文献   

20.
A salt-tolerant yeast Debaryomyces hansenii IFO 10939, which is able to grow at pH 10.0, was isolated and characterized. IFO 10939 had the ability of maintaining intracellular pH. The in vivo activation of plasma membrane ATPase was observed in cells grown at pH 6.2 during conditioning in buffer at pH 9.0. Alkalification of growth medium exhibited a significant increase in acetate and propionate production. The results suggested that the regulation of intracellular pH was involved in plasma membrane ATPase pumping protons out of the cells and weak acid formation for the source of the protons in cells growing at high pH. Received: 4 December 2001 / Accepted: 24 January 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号