首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
Amitriptyline, the most widely used tricyclic antidepressant, has been associated with very rare but severe incidences of hepatotoxicity in patients. While the mechanism of idiosyncratic hepatotoxicity remains unknown, it is proposed that metabolic activation of amitriptyline and subsequent covalently binding of reactive metabolites to cellular proteins play a causative role. Studies were initiated to determine whether amitriptyline undergoes cytochrome P450 (P450)-mediated bioactivation in human liver microsomes to electrophilic intermediates. LC/MS/MS analysis of incubations containing amitriptyline and NADPH-supplemented microsomes in the presence of glutathione (GSH) revealed the formation of GSH conjugates derived from the addition of the sulfydryl nucleophile to hydrated metabolites of amitriptyline and nortriptyline, the major N-dealkylated metabolite of amitriptyline. Formation of GSH conjugates was primarily catalyzed by heterologously expressed recombinant CYP2D6, CYP3A4, CYP3A5, and to a less extent, CYP1A2. Corresponding dihydrodiol metabolites of amitriptyline and nortriptyline were also detected by tandem mass spectrometry. These findings are consistent with a bioactivation sequence involving initial P450-catalyzed oxidation of the aromatic nucleus in amitriptyline to an electrophilic arene oxide intermediate, which is subsequently attacked by glutathione and water yielding the sulfydryl conjugate and the dihydrodiol metabolite, respectively. The results from the current investigation constitute the first report on the cytochrome P450-catalyzed bioactivation of the antidepressants amitriptyline and nortriptyline. It is proposed that the arene oxide intermediate(s) may represent a rate-limiting step in the initiation of amitriptyline and nortriptyline-mediated hepatotoxicity.  相似文献   

2.
A detailed study directed towards metabolic stability optimization of the alkoxy substituents on the catechol moiety of CDP-840 is reported. Replacement of the methoxy and cyclopentyloxy substituents by cyclobutyloxy and/or difluromethoxy groups resulted in the discovery of potent and selective PDE4 inhibitors where the formation of reactive metabolites that could covalently bind to microsomal protein was significantly reduced or eliminated.  相似文献   

3.
Biotransformation of chemically stable compounds to reactive metabolites which can bind covalently to macromolecules, such as proteins and DNA, is considered as an undesirable feature of drug candidates. As part of an overall assessment of absorption, distribution, metabolism and excretion (ADME) properties, many pharmaceutical companies have put methods in place to screen drug candidates for their tendency to generate reactive metabolites and as well characterize the nature of the reactive metabolites through in vitro and in vivo studies. After identification of the problematic compounds, steps can be taken to minimize the potential of bioactivation through appropriate structural modifications. For these reasons, detection, structural characterization and quantification of reactive metabolites by mass spectrometry have become an important task in the drug discovery process. Triple quadrupole mass spectrometry is traditionally employed for the analysis of reactive metabolites. In the past 3 years, a number of new mass spectrometry methodologies have been developed to improve the sensitivity, selectivity and throughput of the analysis. This review focuses on the recent advances in the detection and characterization of reactive metabolites by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in drug discovery and development, especially through the use of linear ion trap (LTQ), hybrid triple quadrupole-linear ion trap (Q-trap) and the high resolution LTQ-Orbitrap instruments.  相似文献   

4.
In a preliminary paper [Decker et al. (1986) Biochem. Biophys. Res. Commun. 136, 1162] we have shown that the antimineralocorticoid spironolactone (SPL) preferentially inactivates dexamethasone (DEX) inducible rat hepatic cytochrome P450p isozymes in a suicidal manner. These findings are now confirmed, and the kinetic characteristics of such a process are detailed. In an effort to elucidate the mechanism of SPL-mediated inactivation of cytochrome P450, we have examined the metabolism of SPL in vitro. Incubation of [14C]SPL and NADPH with liver microsomes prepared from DEX-pretreated rats results in the formation of several polar metabolites separable by HPLC with UV detection. This process is found to be dependent on NADPH, O2, SPL, and enzyme concentration, as well as temperature. Furthermore, metabolite formation was significantly attenuated by P450 inhibitors CO and n-octylamine. Mass spectral analysis (thermospray LC/MS, FAB/MS, and FAB/MS/MS) of the two most prominent polar metabolites indicated that these compounds had molecular weights that corresponded to the sulfinic and sulfonic acid derivatives of deacetyl-SPL (SPL-SH). These findings document the formation of previously unreported polar metabolites of SPL by rat liver microsomes enriched in cytochrome P450p and implicate a role for this isozyme in the oxidation of the thiol moiety of deacetyl-SPL. The detection of such metabolites also implicates a catalytic trajectory that includes the thiyl radical and/or sulfenic acid species as a plausible protagonist in drug-mediated inactivation of cytochrome P450p.  相似文献   

5.
In an increasing number of cases, a deeper understanding of the biochemical basis for idiosyncratic adverse drug reactions (IADRs) has aided to replace a vague perception of a chemical class effect with a sharper picture of individual molecular peculiarity. Considering that IADRs are too complex to duplicate in a test tube, and their idiosyncratic nature precludes prospective clinical studies, it is currently impossible to predict which new drugs will be associated with a significant incidence of toxicity. Because it is now widely appreciated that reactive metabolites, as opposed to the parent molecules from which they are derived, are responsible for the pathogenesis of some IADRs, the propensity of drug candidates to form reactive metabolites is generally considered a liability. Procedures have been implemented to monitor reactive‐metabolite formation in discovery with the ultimate goal of eliminating or minimizing the liability via rational structural modification of the problematic chemical series. While such mechanistic studies have provided retrospective insight into the metabolic pathways which lead to reactive metabolite formation with toxic compounds, their ability to accurately predict the IADR potential of new drug candidates has been challenged. There are several instances of drugs that form reactive metabolites, but only a fraction thereof cause toxicity. This review article will outline current approaches to evaluate bioactivation potential of new compounds with particular emphasis on the advantages and limitation of these assays. Plausible reason(s) for the excellent safety record of certain drugs susceptible to bioactivation will also be explored and should provide valuable guidance in the use of reactive‐metabolite assessments when nominating drug candidates for development.  相似文献   

6.
The phenothiazine-derived antipsychotics, namely chlorpromazine and thioridazine, have been associated with very rare but severe incidences of hepatotoxicity in patients. While the mechanism of idiosyncratic hepatotoxicity remains unknown, it is possible that metabolic activation and subsequent covalently binding of reactive metabolites to cellular proteins play a causative role. Studies were initiated to determine whether chlorpromazine and thioridazine undergo cytochrome P450 (P450)-mediated bioactivation in human liver microsomes to electrophilic intermediates. LC/MS/MS analysis of incubations containing chlorpromazine or thioridazine in the presence of NADPH and glutathione (GSH) revealed the formation of GSH conjugates derived from the addition of the sulfydryl nucleophile to monohydroxy metabolites of chlorpromazine and thioridazine, respectively. Formation of reactive intermediates of chlorpromazine and thioridazine was primarily mediated by heterologously expressed recombinant CYP2D6, and to a less extent, CYP1A2. The 7-hydroxyl metabolites of chlorpromazine and thioridazine were also detected by tandem mass spectrometry. A tentative pathway states that after initial 7-hydroxylation, a bioactivation sequence involves P450-catalyzed oxidation of the phenothiazine core to an electrophilic quinone imine intermediate, which is subsequently attacked by glutathione yielding the sulfydryl conjugates. The results from the current investigation constitute the first report on the cytochrome P450-catalyzed bioactivation of the phenothiazine antipsychotics chlorpromazine and thioridazine.  相似文献   

7.
The present study was conducted to characterize the metabolome of accessory gland fluid (AGF) of locally adapted Morada Nova rams, raised in the Brazilian Northeast. AGF was collected by an artificial vagina from five vasectomized rams. Metabolites were identified by gas chromatography‐mass spectrometry (GC/MS) and high‐performance liquid chromatography‐mass spectrometry (LC/MS), with the support of Human Metabolome Database, PubChem, LIPID Metabolites, Pathways Strategy databases, and MetaboAnalyst platforms. There were 182 and 190 metabolites detected by GC/MS and LC/MS, respectively, with an overlap of one molecule. Lipids and lipid‐like molecules were the most abundant class of metabolites in the ram AGF (127 compounds), followed by amino acids, peptides, and analogs(103 metabolites). Considering all GC/MS and LC/MS, fructose, glycerol, citric acid, d ‐mannitol, d ‐glucose, and l ‐(+)‐lactic acid were the most abundant single metabolites present in the ram AGF. Meaningful pathways associated with AGF metabolites included glycine, serine and threonine metabolism; pantothenate and CoA biosynthesis; galactose metabolism; glutamate metabolism and phenylalanine metabolism, and so forth. In conclusion, the combined use of LC/MS and GC/MS was essential for getting a holistic view of the compounds embedded in the ram AGF. Chemical analysis of the accessory sex gland secretion is relevant for understanding sperm function and fertilization.  相似文献   

8.
The mechanism for the hepatotoxicity of trovafloxacin remains unresolved. Trovafloxacin contains a cyclopropylamine moiety which has a potential to be oxidized to reactive intermediate(s) although other putative elements may exist. In this study, a drug model of trovafloxacin containing the cyclopropylamine substructure was synthesized. Chemical oxidation of the drug model by K3Fe(CN)6 and NaClO revealed that both oxidants oxidize this drug model to a reactive ,β-unsaturated aldehyde, 11. The structure of 11 was fully elucidated by LC/MS/MS and NMR analysis. These results suggested that P450s with heme-iron center and myeloperoxidase generating hypochlorous acid in the presence of chloride ion are capable of bioactivating the cyclopropylamine moiety of trovafloxacin. This deleterious metabolism may lead to eventual hepatotoxicity.  相似文献   

9.
Trichoderma koningii Oudemans, a strain isolated from a shellfish farming area, was selected for its high frequency in samples and its ability to produce metabolites when cultured in natural seawater. Combined use of LC/MS and a biological test on blowfly larvae allowed the characterization of four compounds after purification in only two steps (VLC and HPLC). ESI/MS, a powerful tool for rapid identification and sequence determination of peptides, confirmed that these compounds were peptide, alpha-aminoisobutyric acid and amino alcohol (peptaibols), the usual metabolites of Trichoderma.  相似文献   

10.
Mass spectrometry-based metabolomics is a rapidly growing field in both research and diagnosis. Generally, the methodologies and types of instruments used for clinical and other absolute quantification experiments are different from those used for biomarkers discovery and untargeted analysis, as the former requires optimal sensitivity and dynamic range, while the latter requires high resolution and high mass accuracy. We used a Q-TOF mass spectrometer with two different types of pentafluorophenyl (PFP) stationary phases, employing both positive and negative ionization, to develop and validate a hybrid quantification and discovery platform using LC–HRMS. This dual-PFP LC–MS platform quantifies over 50 clinically relevant metabolites in serum (using both MS and MS/MS acquisitions) while simultaneously collecting high resolution and high mass accuracy full scans to monitor all other co-eluting non-targeted analytes. We demonstrate that the linearity, accuracy, and precision results for the quantification of a number of metabolites, including amino acids, organic acids, acylcarnitines and purines/pyrimidines, meets or exceeds normal bioanalytical standards over their respective physiological ranges. The chromatography resolved highly polar as well as hydrophobic analytes under reverse-phase conditions, enabling analysis of a wide range of chemicals, necessary for untargeted metabolomics experiments. Though previous LC–HRMS methods have demonstrated quantification capabilities for various drug and small molecule compounds, the present study provides an HRMS quant/qual platform tailored to metabolic disease; and covers a multitude of different metabolites including compounds normally quantified by a combination of separate instrumentation.  相似文献   

11.
Foliar stomatal movements are critical for regulating plant water loss and gas exchange. Elevated carbon dioxide (CO2) levels are known to induce stomatal closure. However, the current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report metabolomic responses of Brassica napus guard cells to elevated CO2 using three hyphenated metabolomics platforms: gas chromatography‐mass spectrometry (MS); liquid chromatography (LC)‐multiple reaction monitoring‐MS; and ultra‐high‐performance LC‐quadrupole time‐of‐flight‐MS. A total of 358 metabolites from guard cells were quantified in a time‐course response to elevated CO2 level. Most metabolites increased under elevated CO2, showing the most significant differences at 10 min. In addition, reactive oxygen species production increased and stomatal aperture decreased with time. Major alterations in flavonoid, organic acid, sugar, fatty acid, phenylpropanoid and amino acid metabolic pathways indicated changes in both primary and specialized metabolic pathways in guard cells. Most interestingly, the jasmonic acid (JA) biosynthesis pathway was significantly altered in the course of elevated CO2 treatment. Together with results obtained from JA biosynthesis and signaling mutants as well as CO2 signaling mutants, we discovered that CO2‐induced stomatal closure is mediated by JA signaling.  相似文献   

12.
Reactive metabolites have been putatively linked to many adverse drug reactions including idiosyncratic toxicities for a number of drugs with black box warnings or withdrawn from the market. Therefore, it is desirable to minimize the risk of reactive metabolite formation for lead molecules in optimization, in particular for non-life threatening chronic disease, to maximize benefit to risk ratio. This article describes our effort in addressing reactive metabolite issues for a series of 3-amino-2-pyridone inhibitors of BTK, e.g. compound 1 has a value of 459 pmol/mg protein in the microsomal covalent binding assay. Parallel approaches were taken to successfully resolve the issues: establishment of a predictive screening assay with correlation association of covalent binding assay, identification of the origin of reactive metabolite formation using MS/MS analysis of HLM as well as isolation and characterization of GSH adducts. This ultimately led to the discovery of compound 7 (RN941) with significantly reduced covalent binding of 26 pmol/mg protein.  相似文献   

13.
Barea F  Bonatto D 《Mutation research》2008,642(1-2):43-56
Glucose and fructose are major dietary carbohydrates that are essential for general metabolism. The elevated consumption of these two monosaccharides by the human population is related to the development of pluri-metabolic syndromes (e.g., diabetes mellitus and obesity). Glucose and fructose are metabolized by specific biochemical pathways to generate energy and metabolites. Many of these metabolites are mono- and bi-phosphorylated compounds, which renders them likely to generate reactive carbonyl species (RCS). Under physiological conditions, RCS react non-enzymatically with macromolecules and small molecules by means of Maillard reactions, forming stable glycated/fructated compounds called advanced glycation end products (AGEs). DNA and dNTPs are prone to react with RCS, forming DNA- and dNTP-AGEs, and many of these compounds are genotoxic and/or mutagenic. Unfortunately, little is understood about the genotoxicity and/or mutagenicity of carbohydrate intermediate metabolites or their interactions with DNA repair and carbohydrate metabolic-associated proteins. To elucidate these associations between carbohydrate metabolic pathways, DNA repair mechanisms, and dNTP-/DNA-AGEs, a systems biology study was performed by employing algorithms to mine literature data and construct physical protein-protein interactions. The results obtained in this work allow us to construct a model suggesting that yeast carbohydrate metabolic-associated enzymes activate different mechanisms for DNA repair and dNTP synthesis and act during DNA replication to protect the genome against the effects of RCS.  相似文献   

14.
15.
Several novel selenium containing compounds were characterized in staple crops (wheat, rice and maize) grown on soils naturally rich in selenium. A dedicated method based on the coupling of liquid chromatography with multiplexed detection (ICP-MS, ESI-Orbitrap MS(/MS)) was developed for the speciation of low-molecular weight (<5 kDa) selenium metabolites. Nine species present in different proportions as a function of the crop type were identified by cation-exchange HPLC-ESI-Orbitrap MS on the basis of the accurate molecular mass and MS/MS spectra. The natural origin of these species was then validated by varying extraction conditions and by using hydrophilic interaction LC (HILIC)-ESI-Orbitrap MS(/MS). Among the identified compounds, Se-containing monosaccharides (hexose moiety, m/z 317 and m/z 358) or Se-containing disaccharides (hexose-pentose moiety, m/z 407 and m/z 408) were the first selenosugars reported in edible plants. It is also the first report of the presence of 2,3-dihydroxypropionyl-selenolanthionine (m/z 345) in rice. Because these crops can be an important source of selenium in animal and human nutrition, the understanding of the origin and the fate of these species during metabolic processes will be of great interest.  相似文献   

16.
Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC‐ESI‐MS2 and MALDI‐TOF‐MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath‐associated heterotrophic bacteria, by MALDI‐TOF‐MS and multiple displacement amplification of single cells. Finally, the traditional morphology‐based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.  相似文献   

17.
The incompleteness of genome-scale metabolic models is a major bottleneck for systems biology approaches, which are based on large numbers of metabolites as identified and quantified by metabolomics. Many of the revealed secondary metabolites and/or their derivatives, such as flavor compounds, are non-essential in metabolism, and many of their synthesis pathways are unknown. In this study, we describe a novel approach, Reverse Pathway Engineering (RPE), which combines chemoinformatics and bioinformatics analyses, to predict the “missing links” between compounds of interest and their possible metabolic precursors by providing plausible chemical and/or enzymatic reactions. We demonstrate the added-value of the approach by using flavor-forming pathways in lactic acid bacteria (LAB) as an example. Established metabolic routes leading to the formation of flavor compounds from leucine were successfully replicated. Novel reactions involved in flavor formation, i.e. the conversion of alpha-hydroxy-isocaproate to 3-methylbutanoic acid and the synthesis of dimethyl sulfide, as well as the involved enzymes were successfully predicted. These new insights into the flavor-formation mechanisms in LAB can have a significant impact on improving the control of aroma formation in fermented food products. Since the input reaction databases and compounds are highly flexible, the RPE approach can be easily extended to a broad spectrum of applications, amongst others health/disease biomarker discovery as well as synthetic biology.  相似文献   

18.
We have developed an online analytical method that combines A431 cell membrane chromatography (A431/CMC) with high performance liquid chromatography and mass spectrometry (LC/MS) for identifying active components from Radix Caulophylli acting on human EGFR. Retention fractions on A431/CMC model were captured onto an enrichment column and the components were directly analyzed by combining a 10-port column switcher with an LC/MS system for separation and preliminary identification. Using Sorafenib tosylate as a positive control, taspine and caulophine from Radix Caulophylli were identified as the active molecules which could act on the EGFR. This A431/CMC-online-LC/MS method can be applied for screening active components acting on EGFR from traditional Chinese medicines exemplified by Radix Caulophylli and will be of great utility in drug discovery using natural medicinal herbs as a source of novel compounds.  相似文献   

19.
In vitro metabolic stability of dopamine D(3)/D(4) receptor antagonists and identification of their metabolites by high-performance liquid chromatography (HPLC) coupled with ion-trap mass spectrometry (ITMS) were assessed in rat liver microsomes. The compounds were divided into three cassette groups for rapid quantitative analysis of multiple drugs and simultaneous detection of their metabolites. The samples from incubation with rat liver microsomes were pooled into designed cassette groups and analyzed by HPLC/electrospray ITMS in full-scan mode. The metabolic stability of the drugs was determined by comparing their signals after incubation for 0 and for 30min. The metabolic stability of the examined dopamine receptor antagonists was in the range of 9.9-84.4%. In addition, the present cassette analysis allowed the simultaneous detection of metabolites formed during the same incubation without having to reanalyze the samples. The metabolites were first characterized by nominal mass measurement of the corresponding protonated molecules. Subsequent multistage tandem mass spectrometry on the ion-trap instrument allowed characterization of the structure of the detected metabolites. N,O-dealkylation and ring hydroxylation reactions were identified as major metabolic reactions in piperazinylalkylisoxazole derivatives. These results suggested that the present approach is useful for the rapid evaluation of metabolic stability and structural characterization of metabolites within a short period in new drug discovery.  相似文献   

20.
A comparative metabolomic study of a marine derived fungus (Aspergillus terreus) grown under various culture conditions is presented. The fungus was grown in eleven different culture conditions using solid agar, broth cultures, or grain based media (OSMAC). Multivariate analysis of LC/MS data from the organic extracts revealed drastic differences in the metabolic profiles and guided our subsequent isolation efforts. The compound 7‐desmethylcitreoviridin was isolated and identified, and is fully described for the first time. In addition, 16 known fungal metabolites were also isolated and identified. All compounds were elucidated by detailed spectroscopic analysis and tested for antibacterial activities against five human pathogens and tested for cytotoxicity. This study demonstrates that LC/MS based multivariate analysis provides a simple yet powerful tool to analyze the metabolome of a single fungal strain grown under various conditions. This approach allows environmentally‐induced changes in metabolite expression to be rapidly visualized, and uses these differences to guide the discovery of new bioactive molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号