首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic map of Bremia lactucae was expanded utilizing 97 F(1) progeny derived from a cross between Finnish and Californian isolates (SF5xC82P24). Genetic maps were constructed for each parent utilizing 7 avirulence genes, 83 RFLP markers, and 347 AFLP markers, and a consensus map was constructed from the complete data set. The framework map for SF5 contained 24 linkage groups distributed over 835cM; the map for C82P24 contained 21 linkage groups distributed over 606cM. The consensus map contained 12 linkage groups with markers from both parents and 24 parent-specific groups. Six avirulence genes mapped to different linkage groups; four were located at the ends of linkage groups. The closest linkages between molecular markers and avirulence genes were 3cM to Avr4 and 1cM to Avr7. Mating type seemed to be determined by a single locus, where the heterozygote determined the B(2) type and the homozygous recessive genotype determined the B(1) type.  相似文献   

2.
A genetic linkage map of the basidiomycete Heterobasidion annosum, casual agent of root rot in conifers, was constructed from a compatible mating between isolates from the North American S and P intersterility groups. In a population consisting of 102 progeny isolates, 358 AFLP markers were scored. The linkage analysis generated 19 large linkage groups, containing 6 or more markers, which covered 1468 cM. The physical size to genetic distance was approximately 11.1 kbp/cM. Segregation of three intersterility gene loci were analysed through mating of the progeny isolates with three tester strains carrying known intersterility genotypes. The loci for the two intersterility genes (S and P) were successfully located in the map. Segregation of the mating type locus was analysed by backcrossing the progeny isolates with their parental strains. The mating type locus could not be located in the map.  相似文献   

3.
Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level.Herein,we report a new genetic linkage map developed from an F1-derived doubled haploid (DH) population of 168 lines,which was generated from the cross between two elite Chinese common wheat (Triticum aestivum L.) varieties,Huapei 3 and Yumai 57.The map contained 305 loci,represented by 283 simple sequence repeat (SSR) and 22 expressed sequence tag (EST)-SSR markers,which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers on the map.The chromosomal locations and map positions of 22 new SSR markers were determined,and were found to distribute on 14 linkage groups.Twenty SSR loci showed different chromosomal locations from those reported in other maps.Therefore,this map offers new information on the SSR markers of wheat.This genetic map provides new opportunities to detect and map QTLs controlling agronomically important traits.The unique features of this map are discussed.  相似文献   

4.
A segregating population of single basidiospore isolates from a sexual cross was used to generate the first moderately dense genetic linkage map of Cryptococcus neoformans var. neoformans (Serotype D). Polymorphic DNA markers were developed using amplified fragment length polymorphisms, random amplified polymorphic DNA, and gene-encoding sequences. These markers were used to analyze 100 meiotic progeny. All markers were tested for distorted segregation with a goodness of fit test. Of the total of 181 markers, 148 showed balanced (1:1) segregation ratios. Segregation distortion was observed for 33 markers. Based on all the markers, a linkage map was generated that consists of 14 major linkage groups with 127 markers, several small linkage groups, and 2 linkage groups that consist only of highly skewed markers. The genetic distance of the linkage map is 1356.3 cM. The estimated total haploid genome size for C. neoformans var. neoformans was calculated using Hulberts method and yielded a map size of 1917 cM. The number of major linkage groups correlates well with the proposed number of 13 chromosomes for C. neoformans var. neoformans. Several genes, including CAP64, CnLAC, and the mating-type locus, were mapped, and their associations were consistent with published data. To date, 6 linkage groups have been assigned to their corresponding chromosomes. This linkage map should provide a framework for the ongoing genome sequencing project and will be a useful tool for studying the genetics and pathogenicity of this important medical yeast.  相似文献   

5.
A genetic map of the powdery mildew fungus, Blumeria graminis f. sp. hordei, an obligate biotrophic pathogen of barley, is presented. The linkage analysis was conducted on 81 segregating haploid progeny isolates from a cross between 2 isolates differing in seven avirulence genes. A total of 359 loci were mapped, comprising 182 amplified fragment length polymorphism markers, 168 restriction fragment length polymorphism markers including 42 LTR-retrotransposon loci and 99 expressed sequence tags (ESTs), all the seven avirulence genes, and a marker closely linked to the mating type gene. The markers are distributed over 34 linkage groups covering a total of 2114 cM. Five avirulence genes were found to be linked and mapped in clusters of three and two, and two were unlinked. The Avr(a6) gene was found to be closely linked to markers suitable for a map-based cloning approach. A linkage between ESTs allowed us to demonstrate examples of synteny between genes in B. graminis and Neurospora crassa.  相似文献   

6.
Based on an F1 progeny of 73 individuals, two parental maps were constructed according to the double pseudo-test cross strategy. The paternal map contained 16 linkage groups for a total genetic length of 1,792 cM. The maternal map covered 1,920 cM, and consisted of 12 linkage groups. These parental maps were then integrated using 66 intercross markers. The resulting consensus map covered 2,035 cM and included 755 markers (661 AFLPs, 74 SSRs, 18 ESTPs, the 5S rDNA and the early cone formation trait) on 12 linkage groups, reflecting the haploid number of chromosomes of Picea abies. The average spacing between two adjacent markers was 2.6 cM. The presence of 39 of the SSR and/or ESTP markers from this consensus map on other published maps of different Picea and Pinus species allowed us to establish partial linkage group homologies across three P. abies maps (up to five common markers per linkage group). This first saturated linkage map of P. abies could be therefore used as a support for developing comparative genome mapping in conifers.Communicated by O. Savolainen  相似文献   

7.
Here we present the first comprehensive genetic linkage map of the heterothallic oomycetous plant pathogen Phytophthora infestans. The map is based on polymorphic DNA markers generated by the DNA fingerprinting technique AFLP (Vos et al., 1995, Nucleic Acids Res. 23: 4407-4414). AFLP fingerprints were made from single zoospore progeny and 73 F1 progeny from two field isolates of P. infestans. The parental isolates appeared to be homokaryotic and diploid, their AFLP patterns were mitotically stable, and segregation ratios in the F1 progeny were largely Mendelian. In addition to 183 AFLP markers, 7 RFLP markers and the mating type locus were mapped. The linkage map comprises 10 major and 7 minor linkage groups covering a total of 827 cM. The major linkage groups are composed of markers derived from both parents, whereas the minor linkage groups contain markers from either the A1 or the A2 mating type parent. Non-Mendelian segregation ratios were found for the mating type locus and for 13 AFLP markers, all of which are located on the same linkage group as the mating type locus. Copyright 1997 Academic Press  相似文献   

8.
Here we present the first comprehensive genetic linkage map of the heterothallic oomycetous plant pathogenPhytophthora infestans.The map is based on polymorphic DNA markers generated by the DNA fingerprinting technique AFLP (Voset al.,1995,Nucleic Acids Res.23:4407–4414). AFLP fingerprints were made from single zoospore progeny and 73 F1 progeny from two field isolates ofP. infestans.The parental isolates appeared to be homokaryotic and diploid, their AFLP patterns were mitotically stable, and segregation ratios in the F1 progeny were largely Mendelian. In addition to 183 AFLP markers, 7 RFLP markers and the mating type locus were mapped. The linkage map comprises 10 major and 7 minor linkage groups covering a total of 827 cM. The major linkage groups are composed of markers derived from both parents, whereas the minor linkage groups contain markers from either the A1 or the A2 mating type parent. Non-Mendelian segregation ratios were found for the mating type locus and for 13 AFLP markers, all of which are located on the same linkage group as the mating type locus.  相似文献   

9.
A segregating population of single basidiospore isolates from a sexual cross was used to generate the first moderately dense genetic linkage map of Cryptococcus neoformans var. neoformans (Serotype D). Polymorphic DNA markers were developed using amplified fragment length polymorphisms, random amplified polymorphic DNA, and gene-encoding sequences. These markers were used to analyze 100 meiotic progeny. All markers were tested for distorted segregation with a goodness of fit test. Of the total of 181 markers, 148 showed balanced (1:1) segregation ratios. Segregation distortion was observed for 33 markers. Based on all the markers, a linkage map was generated that consists of 14 major linkage groups with 127 markers, several small linkage groups, and 2 linkage groups that consist only of highly skewed markers. The genetic distance of the linkage map is 1356.3 cM. The estimated total haploid genome size for C. neoformans var. neoformans was calculated using Hulberts method and yielded a map size of 1917 cM. The number of major linkage groups correlates well with the proposed number of 13 chromosomes for C. neoformans var. neoformans. Several genes, including CAP64, CnLAC, and the mating-type locus, were mapped, and their associations were consistent with published data. To date, 6 linkage groups have been assigned to their corresponding chromosomes. This linkage map should provide a framework for the ongoing genome sequencing project and will be a useful tool for studying the genetics and pathogenicity of this important medical yeast.  相似文献   

10.
The Japanese quail (Coturnix japonica) is a notably valuable egg and meat producer but has also been used as a laboratory animal. In the present study, we constructed a Japanese quail linkage map with 1735 polymorphic amplified fragment length polymorphisms markers, and nine chicken microsatellite (MS) markers, as well as sex and phenotypes of two genetic diseases; a muscular disorder (LWC) and neurofilament-deficient mutant (Quv). Linkage analysis revealed 578 independent loci. The resulting linkage map contained 44 multipoint linkage groups covering 2597.8 cM and an additional 218.2 cM was contained in 21 two-point linkage groups. The total map was 2816 cM in length with an average marker interval of 5.5 cM. The Quv locus was located on linkage group 5, but linkage was not found between the LWC locus and any of the markers. Comparative mapping with chicken using orthologous markers revealed chromosomal assignments of the quail linkage group 1 to chicken chromosome 2 (GGA2), 5 to GGA22, 2 to GGA5, 8 to GGA7, 27 to GGA11, 29 to GGA1 and 45 to GGA4.  相似文献   

11.
An F(1) mapping population of the septoria tritici blotch pathogen of wheat, Mycosphaerella graminicola, was generated by crossing the two Dutch field isolates IPO323 and IPO94269. AFLP and RAPD marker data sets were combined to produce a high-density genetic linkage map. The final map contained 223 AFLP and 57 RAPD markers, plus the biological traits mating type and avirulence, in 23 linkage groups spanning 1216 cM. Many AFLPs and some RAPD markers were clustered. When markers were reduced to 1 per cluster, 229 unique positions were mapped, with an average distance of 5.3 cM between markers. Because M. graminicola probably has 17 or 18 chromosomes, at least 5 of the 23 linkage groups probably will need to be combined with others once additional markers are added to the map. This was confirmed by pulsed-field gel analysis; probes derived from 2 of the smallest linkage groups hybridized to two of the largest chromosome-sized bands, revealing a discrepancy between physical and genetic distance. The utility of the map was demonstrated by identifying molecular markers tightly linked to two genes of biological interest, mating type and avirulence. Bulked segregant analysis was used to identify additional molecular markers closely linked to these traits. This is the first genetic linkage map for any species in the genus Mycosphaerella or the family Mycosphaerellaceae.  相似文献   

12.
To lay the foundation for molecular breeding efforts, the first genetic linkage map of mulberry (2n=2x=28) was constructed with 50 F1 full-sib progeny using randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and simple sequence repeat (SSR) markers and two-way pseudotestcross mapping strategy. We selected 100 RAPD, 42 ISSR, and 9 SSR primers that amplified 517 markers, of which 188 (36.36%) showed a test-cross configuration, corresponding to the heterozygous condition in one parent and null in the other. Two separate female and male maps were constructed using 94 each of female- and male-specific testcross markers, containing 12 female linkage groups and 14 male linkage groups. At a minimum logarithm of the odds (LOD) score threshold of 6.0 and at a maximum map distance of 20 cM, the female map covered a 1,196.6-cM distance, with an average distance of 15.75 cM and maximum map distance of 37.9 cM between two loci; the male-specific map covered a 1,351.7-cM distance, with an average distance of 18.78 cM and a maximum map distance between two loci is of 34.7 cM. The markers distributed randomly in all linkage groups without any clustering. All 12 linkage groups in the female-specific map consisted of 4–10 loci ranging in length from 0 to 140.4 cM, and in the male-specific map, the 13 largest linkage groups (except linkage group 12, which contained three loci) consisted of 4–12 loci, ranging in length from 53.9 to 145.9 cM and accounting for 97.22% of the total map distance. When mapping, progeny pass through their juvenile phase and assume their adult characters, mapping morphological markers and identification of quantitative trait loci for adaptive traits will be the primary target. In that sense, our map provides reference information for future molecular breeding work on Morus and its relatives.  相似文献   

13.
A consensus map for sugi (Cryptomeria japonica) was constructed by integrating linkage data from two unrelated third-generation pedigrees, one derived from a full-sib cross and the other by self-pollination of F1 individuals. The progeny segregation data of the first pedigree were derived from cleaved amplified polymorphic sequences, microsatellites, restriction fragment length polymorphisms, and single nucleotide polymorphisms. The data of the second pedigree were derived from cleaved amplified polymorphic sequences, isozyme markers, morphological traits, random amplified polymorphic DNA markers, and restriction fragment length polymorphisms. Linkage analyses were done for the first pedigree with JoinMap 3.0, using its parameter set for progeny derived by cross-pollination, and for the second pedigree with the parameter set for progeny derived from selfing of F1 individuals. The 11 chromosomes of C. japonica are represented in the consensus map. A total of 438 markers were assigned to 11 large linkage groups, 1 small linkage group, and 1 nonintegrated linkage group from the second pedigree; their total length was 1372.2 cM. On average, the consensus map showed 1 marker every 3.0 cM. PCR-based codominant DNA markers such as cleaved amplified polymorphic sequences and microsatellite markers were distributed in all linkage groups and occupied about half of mapped loci. These markers are very useful for integration of different linkage maps, QTL mapping, and comparative mapping for evolutional study, especially for species with a large genome size such as conifers.  相似文献   

14.
A restriction fragment length polymorphism (RFLP) map has been constructed of the nuclear genome of the plant pathogenic ascomycete Cochliobolus heterostrophus. The segregation of 128 RFLP and 4 phenotypic markers was analyzed among 91 random progeny of a single cross; linkages were detected among 126 of the markers. The intact chromosomal DNAs of the parents and certain progeny were separated using pulsed field gel electrophoresis and hybridized with probes used to detect the RFLPs. In this way, 125 markers were assigned to specific chromosomes and linkages among 120 of the markers were confirmed. These linkages totalled 941 centimorgans (cM). Several RFLPs and a reciprocal translocation were identified tightly linked to Tox1, a locus controlling host-specific virulence. Other differences in chromosome arrangement between the parents were also detected. Fourteen gaps of at least 40 cM were identified between linkage groups on the same chromosomes; the total map length was therefore estimated to be, at a minimum, 1501 cM. Fifteen A chromosomes ranging from about 1.3 megabases (Mb) to about 3.7 Mb were identified; one of the strains also has an apparent B chromosome. This chromosome appears to be completely dispensable; in some progeny, all of 15 markers that mapped to this chromosome were absent. The total genome size was estimated to be roughly 35 Mb. Based on these estimates of map length and physical genome size, the average kb/cM ratio in this cross was calculated to be approximately 23. This low ratio of physical length to map distance should make this RFLP map a useful tool for cloning genes.  相似文献   

15.
A consolidated linkage map for rainbow trout (Oncorhynchus mykiss)   总被引:20,自引:0,他引:20  
Androgenetic doubled haploid progeny produced from a cross between the Oregon State University and Arlee clonal rainbow trout (Oncorhynchus mykiss) lines, used for a previous published rainbow trout map, were used to update the map with the addition of more amplified fragment length polymorphic (AFLP) markers, microsatellites, type I and allozyme markers. We have added more than 900 markers, bringing the total number to 1359 genetic markers and the sex phenotype including 799 EcoRI AFLPs, 174 PstI AFLPs, 226 microsatellites, 72 VNTR, 38 SINE markers, 29 known genes, 12 minisatellites, five RAPDs, and four allozymes. Thirty major linkage groups were identified. Synteny of linkage groups in our map with the outcrossed microsatellite map has been established for all except one linkage group in this doubled haploid cross. Putative homeologous relationships among linkage groups, resulting from the autotetraploid nature of the salmonid genome, have been revealed based on the placement of duplicated microsatellites and type I loci.  相似文献   

16.
A genetic linkage map of the basidiomycete Coprinus cinereus was constructed on the basis of the segregation of 219 RAPD markers, 28 RFLP markers and the A and B mating-type loci among 40 random basidiospore progeny from a single cross between a wild-type homokaryon, KF(3)#2, and an AmutBmut strain, #326. Thirteen linkage groups covering a total of 1346cM were identified and correlated to the 13 chromosomes of this fungus by hybridization of RFLP and RAPD marker probes to CHEF blots. These probes also revealed chromosome length polymorphisms (CLP), which could be associated with haplotype plots of the progeny. The average kb/cM ratio in this cross was approximately 27.9kb/cM. The AmutBmut strain undergoes sexual development without mating, because of mutations in both A and B mating-type loci, and has been used to identify mutations affecting developmental processes such as dikaryosis, fruit body morphogenesis, and meiosis. The markers in the map, especially the RAPD ones, would facilitate mapping of genes responsible for such mutations induced in the AmutBmut strain.  相似文献   

17.
A linkage map of the Japanese quail (Coturnix japonica) genome was constructed based upon segregation analysis of 72 microsatellite loci in 433 F(2) progeny of 10 half-sib families obtained from a cross between two quail lines of different genetic origins. One line was selected for long duration of tonic immobility, a behavioural trait related to fearfulness, while the other was selected based on early egg production. Fifty-eight of the markers were resolved into 12 autosomal linkage groups and a Z chromosome-specific linkage group, while the remaining 14 markers were unlinked. The linkage groups range from 8 cM (two markers) to 206 cM (16 markers) and cover a total map distance of 576 cM with an average spacing of 10 cM between loci. Through comparative mapping with chicken (Gallus gallus) using orthologous markers, we were able to assign linkage groups CJA01, CJA02, CJA05, CJA06, CJA14 and CJA27 to chromosomes. This map, which is the first in quail based solely on microsatellites, is a major step towards the development of a quality molecular genetic map for this valuable species. It will provide an important framework for further genetic mapping and the identification of quantitative trait loci controlling egg production and fear-related behavioural traits in quail.  相似文献   

18.
Phycomyces blakesleeanus is a member of the subphylum Mucoromycotina. A genetic map was constructed from 121 progeny of a cross between two wild type isolates of P. blakesleeanus with 134 markers. The markers were mostly PCR-RFLPs. Markers were located on 46 scaffolds of the genome sequence, covering more than 97% of the genome. Analysis of the alleles in the progeny revealed nine or 12 linkage groups, depending on the log of the odds (LOD) score, across 1583.4 cM at LOD 5. The linkage groups were overlaid on previous mapping data from crosses between mutants, aided by new identification of the mutations in primary metabolism mutant strains. The molecular marker map, the phenotype map and the genome sequence are overall congruent, with some exceptions. The new genetic map provides a genome-wide estimate for recombination, with the average of 33.2 kb per cM. This frequency is one piece of evidence for meiosis during zygospore development in Mucoromycotina species. At the same time as meiosis, transmission of non-recombinant chromosomes is also evident in the mating process in Phycomyces. The new map provides scaffold ordering for the genome sequence and a platform upon which to identify the genes in mutants that are affected in traits of interest, such as carotene biosynthesis, phototropism or gravitropism, using positional cloning.  相似文献   

19.
An amplified fragment length polymorphism map of the silkworm   总被引:52,自引:0,他引:52  
Tan YD  Wan C  Zhu Y  Lu C  Xiang Z  Deng HW 《Genetics》2001,157(3):1277-1284
The silkworm (Bombyx mori L.) is a lepidopteran insect with a long history of significant agricultural value. We have constructed the first amplified fragment length polymorphism (AFLP) genetic linkage map of the silkworm B. mori at a LOD score of 2.5. The mapping AFLP markers were genotyped in 47 progeny from a backcross population of the cross no. 782 x od100. A total of 1248 (60.7%) polymorphic AFLP markers were detected with 35 PstI/TaqI primer combinations. Each of the primer combinations generated an average of 35.7 polymorphic AFLP markers. A total of 545 (44%) polymorphic markers are consistent with the expected segregation ratio of 1:1 at the significance level of P = 0.05. Of the 545 polymorphic markers, 356 were assigned to 30 linkage groups. The number of markers on linkage groups ranged from 4 to 36. There were 21 major linkage groups with 7-36 markers and 9 relatively small linkage groups with 4-6 markers. The 30 linkage groups varied in length from 37.4 to 691.0 cM. The total length of this AFLP linkage map was 6512 cM. Genetic distances between two neighboring markers on the same linkage group ranged from 0.2 to 47 cM with an average of 18.2 cM. The sex-linked gene od was located between the markers P1T3B40 and P3T3B27 at the end of group 3, indicating that AFLP linkage group 3 was the Z (sex) chromosome. This work provides an essential basic map for constructing a denser linkage map and for mapping genes underlying agronomically important traits in the silkworm B. mori L.  相似文献   

20.
Parental and consensus genetic maps of Vitis vinifera L. (2n = 38) were constructed using a F1 progeny of 139 individuals from a cross between two partially seedless genotypes. The consensus map contained 301 markers [250 amplification fragment length polymorphisms (AFLPs), 44 simple sequence repeats (SSRs), three isozymes, two random amplified polymorphic DNAs (RAPDs), one sequence-characterized amplified region (SCAR), and one phenotypic marker, berry color] mapped onto 20 linkage groups, and covered 1,002 cM. The maternal map consisted of 157 markers covering 767 cM (22 groups). The paternal map consisted of 144 markers covering 816 cM (23 groups). Differences in recombination rates between these maps and another unpublished map are discussed. The major gene for berry color was mapped on both the paternal and consensus maps. Quantitative trait loci (QTLs) for several quantitative subtraits of seedlessness in 3 successive years were searched for, based on parental maps: berry weight, seed number, seed total fresh and dry weights, seed percent dry matter, and seed mean fresh and dry weights. QTLs with large effects (R2 up to 51%) were detected for all traits and years at the same location on one linkage group, with some evidence for the existence of a second linked major QTL for some of them. For these major QTLs, differences in relative parental effects were observed between traits. Three QTLs with small effects (R2 from 6% to 11%) were also found on three other linkage groups, for berry weight and seed number in a single year, and for seed dry matter in 2 different years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号