首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
This analysis investigates the ontogeny of body size dimorphism in apes. The processes that lead to adult body size dimorphism are illustrated and described. Potential covariation between ontogenetic processes and socioecological variables is evaluated. Mixed-longitudinal growth data from 395 captive individuals (representing Hylobates lar [gibbon], Hylobates syndactylus [siamang], Pongo pygmaeus [orangutan], Gorilla gorilla [gorilla], Pan paniscus [pygmy chimpanzee], and Pan troglodytes [“common” chimpanzee]) form the basis of this study. Results illustrate heterogeneity in the growth processes that produce ape dimorphism. Hylobatids show no sexual differentiation in body weight growth. Adult body size dimorphism in Pongo can be largely attributed to indeterminate male growth. Dimorphism in African apes is produced by two different ontogenetic processes. Both pygmy chimpanzees (Pan paniscus) and gorillas (Gorilla gorilla) become dimorphic primarily through bimaturism (sex differences in duration of growth). In contrast, sex differences in rate of growth account for the majority of dimorphism in common chimpanzees (Pan troglodytes). Diversity in the ontogenetic pathways that produce adult body size dimorphism may be related to multiple evolutionary causes of dimorphism. The lack of sex differences in hylobatid growth is consistent with a monogamous social organization. Adult dimorphism in Pongo can be attributed to sexual selection for indeterminate male growth. Interpretation of dimorphism in African apes is complicated because factors that influence female ontogeny have a substantial effect on the resultant adult dimorphism. Sexual selection for prolonged male growth in gorillas may also increase bimaturism relative to common chimpanzees. Variation in female growth is hypothesized to covary with foraging adaptations and with differences in female competition that result from these foraging adaptations. Variation in male growth probably corresponds to variation in level of sexual selection. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Growth and sexual dimorphism have long been the focus of investigation for researchers interested in the life history and socioecology of nonhuman primates. Previous research has shown that sex differences in the duration of growth, or bimaturism, are primarily responsible for the sexual dimorphism observed in anthropoid primates with multimale–multifemale social structure, such as macaques. The present study investigates sex differences in patterns of craniofacial and somatometric growth relative to head and body size and relative to dental development in a population of hybrid macaques (Cercopithecidae: Macaca ) from Sulawesi, Indonesia. How these patterns may contribute to sexual dimorphism in this hybrid population is also examined. The results of the study suggest that there is no substantial effect on the levels of sexual dimorphism associated with hybridization in these macaques. Although sex differences in patterns of size-related, or allometric, growth patterns play a significant role in the development of sexual dimorphism for some cranial dimensions in these hybrids, bimaturism seems to be the primary component in the ontogeny of sexual dimorphism in this hybrid population. The observed levels of hybrid dimorphism and the predominant ontogenetic pattern of bimaturism characterized by prolonged male growth are consistent with previously published reports on dimorphism and growth in other cercopithecine primates.  相似文献   

3.
This study examines statistical correlations between socioecological variables (including measures of group composition, intermale competition, and habitat preference) and the ontogeny of body size sexual dimorphism in anthropoid primates. A regression-based multivariate measure of dimorphism in body weight ontogeny is derived from a sample of 37 species. Quantitative estimates of covariation between socioecological variables and this multivariate measure are evaluated. Statistically significant covariation between the ontogeny of dimorphism and socioecological variables, with the possible exception of habitat preference, is observed. Sex differences in ontogeny are lacking in species that exhibit low levels of intermale competition and are classifiable as species with monogamous/polyandrous mating systems. Among dimorphic species, two modes of dimorphic growth are apparent, which seem to be related to different kinds of group compositions. Multimale/multifemale species tend to become dimorphic through bimaturism (sex differences in duration of growth) with minimal sex differences in growth rate. Single-male/multifemale species tend to attain dimorphism through differences in rate of growth, often with limited bimaturism. Measures of intermale competition may also covary with these modes of dimorphic growth, but the relations among these variables are sometimes ambiguous. Correlations between dimorphic growth and behavioral variables may reflect alternative life history strategies in primates. Specifically, the ways in which risks faced by subadult males are distributed and the relations of these risks to growth rates seem to influence the evolution of size ontogenies. The absence of dimorphic ontogeny in some species can be tied to similar distributions of risk in each sex. In taxa that become dimorphic primarily through rate differences in growth, the lifetime distribution of risks for males may change rapidly. In contrast, males may face a pattern of uniformly changing or stable risk in species that become dimorphic through bimaturism. Finally, much variation recorded by this study remains unexplained, providing additional evidence of the need to specially examine female ontogeny before primate body size dimorphism can be satisfactorily explained. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Sexual dimorphism often arises as a response to selection on traits that improve a male's ability to physically compete for access to mates. In primates, sexual dimorphism in body mass and canine size is more common in species with intense male–male competition. However, in addition to these traits, other musculoskeletal adaptations may improve male fighting performance. Postcranial traits that increase strength, agility, and maneuverability may also be under selection. To test the hypothesis that males, as compared to females, are more specialized for physical competition in their postcranial anatomy, we compared sex-specific skeletal shape using a set of functional indices predicted to improve fighting performance. Across species, we found significant sexual dimorphism in a subset of these indices, indicating the presence of skeletal shape sexual dimorphism in our sample of anthropoid primates. Mean skeletal shape sexual dimorphism was positively correlated with sexual dimorphism in body size, an indicator of the intensity of male–male competition, even when controlling for both body mass and phylogenetic relatedness. These results suggest that selection on male fighting ability has played a role in the evolution of postcranial sexual dimorphism in primates.  相似文献   

5.
Studies of sexual dimorphism have traditionally focused on the static differences in size and shape between adult males and females. In this paper, I suggest that an investigation of the ontogenetic bases of sexual dimorphism can provide new insights and information unobtainable from studies concerned only with adult endpoints. While growth is often viewed as simply the developmental pathway utilized to attain final adult size and shape, we must recognize that it is the entire pattern of sex-differentiated growth, and not merely the adult endpoints, which is adaptive and the target of natural selection. The importance of an ontogenetic approach to the analysis of sexual dimorphism is also demonstrated by the fact that a given morphologicalresult (e.g., a certain degree of adult weight dimorphism) may be attained by very different developmentalprocesses, signalling selection for quite different factors. The need to analyze the ontogenetic bases of sexual dimorphism in size and shape has recently been recognized by Jarman, in his study of dimorphism in large terrestrial herbivores. Here I combine aspects of Jarman’s approach with those of allometry and heterochrony in an analysis of sexual dimorphism in selected anthropoid primates. It is demonstrated that although all dimorphic anthropoids appear to be characterized by somebimaturism, the degree varies significantly. Marked weight dimorphism in certain species is primarily produced by an increased differentiation of female and male growthrates, while in other species the primary change involves differences in thetime or duration of growth between the sexes. These variations are illustrated with anthropoid genera such asMiopithecus, Cercopithecus, Erythrocebus, Macaca, Papio, Pan, andGorilla. It is suggested that additional ontogenetic investigations of other anthropoids will help clarify some of the socioecological bases of this variation in the ways of attaining an adult dimorphic state. This will contribute to our understanding of the complex factors underlying and producing sexual dimorphism in primates and other mammals.  相似文献   

6.
Understanding the evolutionary history of canine sexual dimorphism is important for interpreting the developmental biology, socioecology and phylogenetic position of primates. All current evidence for extant primates indicates that canine dimorphism is achieved through bimaturism rather than via differences in rates of crown formation time. Using incremental growth lines, we charted the ontogeny of canine formation within species of Eocene Cantius, the earliest known canine-dimorphic primate, to test whether canine dimorphism via bimaturism was developmentally canalized early in primate evolution. Our results show that canine dimorphism in Cantius is achieved primarily through different rates of crown formation in males and females, not bimaturism. This is the first demonstration of rate differences resulting in canine dimorphism in any primate and therefore suggests that canine dimorphism is not developmentally homologous across Primates. The most likely interpretation is that canine dimorphism has been selected for at least twice during the course of primate evolution. The power of this approach is its ability to identify underlying developmental processes behind patterns of morphological similarity, even in long-extinct primate species.  相似文献   

7.
Among anthropoid primates there are interspecific differences in the degree of sexual dimorphism in both body size and canine size. Within the suborder body size dimorphism and canine size dimorphism are positively correlated,r=0.76. This correlation suggests that the two dimorphisms are equally developed in some species, while in other species there is a differential degree of sexual dimorphism. An analysis of these results and their relation to social organization and other ecological variables reveals: (1) the degree of canine size dimorphism is closely related to the amount of male intrasexual selection in a given mating system; and (2) the degree of body size dimorphism is also related to male intrasexual selection, but may be modified (either enhanced or diminished) by selection pressure from factors such as habitat, diet, foraging behavior, antipredator behavior, locomotory behavior, and female preference.  相似文献   

8.
Three fundamental ontogenetic pathways lead to the development of size differences between males and females. Males and females may grow at the same rate for different durations (bimaturism), grow for the same duration at different rates, or grow at a mix of rate and duration differences. While patterns of growth and the development of adult body size are well established for many haplorhines, the extent to which rate and duration differences affect strepsirrhine growth trajectories remains unclear. Here, we present iterative piecewise regression models that describe the ontogeny of adult body mass for males and females of five lorisoid species (i.e., lorises and galagos) from the Duke Lemur Center. We test the hypotheses that, like most haplorhines, sexual size dimorphism (SSD) is a result of bimaturism, and males and females of monomorphic species grow at the same rate for a similar duration. We confirm that the galagos in this sample (Galago moholi and Otolemur garnettii) show significant SSD that is achieved through bimaturism. Unlike monomorphic lemurids, the lorises in this sample show a diversity of ontogenetic patterns. Loris tardigradus does follow a lemur-like trajectory to monomorphism but Nycticebuscoucang and Nycticebus pygmaeus achieve larger adult female body sizes through a mixture of rate and duration differences. We show that contrary to previous assumptions, there are patterns of both similarity and difference in growth trajectories of comparably sized lorises and galagos. Furthermore, when ontogenetic profiles of lorisoid and lemurid growth are compared, it is evident that lorisoids grow faster for a shorter period of time.  相似文献   

9.
This study tests hypotheses regarding the ontogeny of canine tooth size dimorphism in five anthropoid primate species (Saguinus fuscicollis, Macaca mulatta, Cercocebus atys, Papio hamadryas, and Mandrillus sphinx). Canine measurements and chronological age data are analyzed to determine if bimaturism, a sex difference in the age at which eruption ceases, accounts for canine tooth sexual dimorphism. Canine height measurements are evaluated through a variety of regression techniques. Results show a lack of sexual dimorphism in Saguinus. While size dimorphism is absent in the deciduous teeth of all species analyzed, the adult teeth in cercopithecines become increasingly dimorphic through ontogeny. Female adult tooth eruption regularly precedes male tooth eruption, and regression-based eruption trajectories for both sexes intersect at about the age at which the female tooth reaches adult size. Males erupt the tooth later and more rapidly than females. Males also reach a larger adult size than females by erupting the tooth for much longer periods of time. Bimaturism is primary in the production of dimorphism, but rates of eruption show modest variation. These results point to the scheduling of sexual selection through intermale competition as a primary factor determining male eruption timing, rates of eruption, and adult size. Life history factors may play a role in determining the relations between the scheduling of intrasexual competition and canine eruption. Female contributions to sexual dimorphism are apparent in these species, suggesting that similar levels of dimorphism can be attained through diverse ontogenetic pathways.  相似文献   

10.
Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro‐ and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra‐ and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female‐biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male‐biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.  相似文献   

11.
A prominent interspecific pattern of sexual size dimorphism (SSD) is Rensch's rule, according to which male body size is more variable or evolutionarily divergent than female body size. Assuming equal growth rates of males and females, SSD would be entirely mediated, and Rensch's rule proximately caused, by sexual differences in development times, or sexual bimaturism (SBM), with the larger sex developing for a proportionately longer time. Only a subset of the seven arthropod groups investigated in this study exhibits Rensch's rule. Furthermore, we found only a weak positive relationship between SSD and SBM overall, suggesting that growth rate differences between the sexes are more important than development time differences in proximately mediating SSD in a wide but by no means comprehensive range of arthropod taxa. Except when protandry is of selective advantage (as in many butterflies, Hymenoptera, and spiders), male development time was equal to (in water striders and beetles) or even longer than (in drosophilid and sepsid flies) that of females. Because all taxa show female-biased SSD, this implies faster growth of females in general, a pattern markedly different from that of primates and birds (analyzed here for comparison). We discuss three potential explanations for this pattern based on life-history trade-offs and sexual selection.  相似文献   

12.
A number of factors, including sexual selection, body weight, body-weight dimorphism, predation, diet, and phylogenetic inertia have been proposed as influences on the evolution of canine dimorphism in anthropoid primates. Although these factors are not mutually exclusive, opinions vary as to which is the most important. The role of sexual selection has been questioned because mating system, which should reflect its strength, poorly predicts variation in canine dimorphism, particularly among polygynous species. Kay et al. (1988) demonstrate that a more refined estimate of intermale competition explains a large proportion of the variation in canine dimorphism in platyrrhine primates. We expand their analysis, developing a more generalized measure of intermale competition based on the frequency and intensity of male-male agonism. We examine the relative influences of predation (inferred by substrate use), female body weight, body-weight dimorphism, diet, and sexual selection on the evolution of anthropoid canine dimorphism. Intermale competition is very strongly associated with canine dimorphism. Predation also has a marked effect on canine dimorphism, in that savanna-dwelling species consistently show greater canine dimorphism than other species, all other factors being held equal. Body-weight dimorphism is also strongly associated with canine dimorphism, though apparently through a common selective basis, rather than through allometric effects. Body weight seems to play only a minor, indirect role in the evolution of canine dimorphism. Diet plays no role. Likewise, we find little evidence that phylogenetic inertia is a constraint on the evolution of canine dimorphism.  相似文献   

13.
Richard Shine 《Oecologia》1986,69(2):260-267
Filesnakes (Acrochordus arafurae) are large (to 2 m), heavy-bodied snakes of tropical Australia. Sexual dimorphism is evident in adult body sizes, weight/length ratios, and body proportions (relative head and tail lengths). Dimorphism is present even in neonates. Two hypotheses for the evolution of such dimorphism are (1) sexual selection or (2) adaptation of the sexes to different ecological niches. The hypothesis of sexual selection is consistent with general trends of sexually dimorphic body sizes in snakes, and accurately predicts, for A. arafurae, that the larger sex (female) is the one in which reproductive success increases most strongly with increasing body size. However, the sexual dimorphism in relative head sizes is not explicable by sexual selection.The hypothesis of adaptation to sex-specific niches predicts differences in habitats and/or prey. I observed major differences between male and female A. arafurae in prey types, prey sizes and habitat utilization (shallow versus deep water). Hence, the sexual dimorphism in relative head sizes is attributed to ecological causes rather than sexual selection. Nonetheless, competition between the sexes need not be invoked as the selective advantage of this character divergence. It is more parsimonious to interpret these differences as independent adaptations of each sex to increase foraging success, given pre-existing sexually-selected differences in size, habitat or behavior. Data for three other aquatic snake species, from phylogenetically distant taxa, suggest that sexual dimorphism in food habits, foraging sites and feeding morphology, is widespread in snakes.  相似文献   

14.
Sexual size dimorphism is generally associated with sexual selection via agonistic male competition in nonhuman primates. These primate models play an important role in understanding the origins and evolution of human behavior. Human size dimorphism is often hypothesized to be associated with high rates of male violence and polygyny. This raises the question of whether human dimorphism and patterns of male violence are inherited from a common ancestor with chimpanzees or are uniquely derived. Here I review patterns of, and causal models for, dimorphism in humans and other primates. While dimorphism in primates is associated with agonistic male mate competition, a variety of factors can affect male and female size, and thereby dimorphism. The causes of human sexual size dimorphism are uncertain, and could involve several non-mutually-exclusive mechanisms, such as mate competition, resource competition, intergroup violence, and female choice. A phylogenetic reconstruction of the evolution of dimorphism, including fossil hominins, indicates that the modern human condition is derived. This suggests that at least some behavioral similarities with Pan associated with dimorphism may have arisen independently, and not directly from a common ancestor.  相似文献   

15.
Pattern of skull development and sexual dimorphism was studied in Cebus apella and Alouatta caraya using univariate, bivariate, and multivariate statistics. In both species, sexual dimorphism develops because the common growth trajectory in males extends and because of differences in growth rates between sexes. The expectation that the ontogenetic bases of adult dimorphism vary interspecifically is well substantiated by this study. A. caraya exhibits transitional dimorphism in its subadult stage, although the condylobasal length, zygomatic breadth, and rostrum length are strongly dimorphic in the final adult stage, being greater in males. Most cranial measurements in C. apella exhibit significant dimorphism in the adult stage, being strongly influenced by a faster rate of growth in males. Sexual dimorphism is also evidenced through sex differences in growth rates in several cranial measurements. These results also indicate that different ontogenetic mechanisms are acting in C. apella and A. caraya and reveal differences in the way through which neotropical primates attain adult sexual dimorphism. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
Gorillas are the largest and among the most sexually dimorphic of all extant primates. While gorillas have been incorporated in broad-level comparisons among large-bodied hominoids or in studies of the African apes, comparisons between gorilla subspecies have been rare. During the past decade, however, behavioral, morphological, and molecular data from a number of studies have indicated that the western lowland (Gorilla gorilla gorilla) and eastern mountain (Gorilla gorilla beringei) subspecies differ to a greater extent than has been previously believed. In this study I compare patterns of relative growth of the postcranial skeleton to evaluate whether differences between subspecies result from the differential extension of common patterns of relative growth. In addition, patterns of ontogeny and sexual dimorphism are also examined. Linear skeletal dimensions and skeletal weight were obtained for ontogenetic series of male and female G.g. gorilla (n = 315) and G.g. beringei (n = 38). Bivariate and multivariate methods of analysis were used to test for differences in patterns of relative growth, ontogeny, and sexual dimorphism between sexes of each subspecies and in same-sex comparisons between subspecies. Results indicate males and females of both subspecies are ontogenetically scaled for postcranial proportions and that females undergo an earlier skeletal growth spurt compared to males. However, results also indicate that the onset of the female growth spurt occurs at different dental stages in lowland and mountain gorillas and that mountain gorillas may be characterized by higher rates of growth. Finally, data demonstrate lowland and mountain gorilla females do not differ significantly in adult body size, but mountain gorilla males are significantly larger than lowland gorilla males, suggesting mountain gorillas are characterized by a higher degree of sexual dimorphism in body size. Thus, although lowland and mountain gorillas do not appear to have evolved novel adaptations of the postcranium which correlate with differences in locomotor behavior, the present investigation establishes subspecies differences in ontogeny and sexual dimorphism which may be linked with ecological variation. Specifically, these findings are evaluated in the context of risk aversion models which predict higher growth rates and increased levels of sexual dimorphism in extreme folivores. Am. J. Primatol. 43:1–31, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Microcephaly genes are amongst the most intensively studied genes with candidate roles in brain evolution. Early controversies surrounded the suggestion that they experienced differential selection pressures in different human populations, but several association studies failed to find any link between variation in microcephaly genes and brain size in humans. Recently, however, sex‐dependent associations were found between variation in three microcephaly genes and human brain size, suggesting that these genes could contribute to the evolution of sexually dimorphic traits in the brain. Here, we test the hypothesis that microcephaly genes contribute to the evolution of sexual dimorphism in brain mass across anthropoid primates using a comparative approach. The results suggest a link between selection pressures acting on MCPH1 and CENPJ and different scores of sexual dimorphism.  相似文献   

18.
Sexual dimorphism is commonly used to directly infer or support reconstructions of social behavior in early hominins. This is often done by comparing the magnitude of sexual size dimorphism to that seen in extant primates and extrapolating a likely social behavior. Such comparisons are of limited value, though, allowing only the inference of strong male–male competition when dimorphism is strong. Recent studies have begun to focus on the selective factors that impact female body size, and thereby size dimorphism. Considerations of changes in male and female size in the fossil record potentially allow insight into the meaning of changes in sexual dimorphism through time. To illustrate, I compare estimates of body mass dimorphism for four hominin taxa to assess changes in male and female size. Assuming that early Homo represents a single taxon, sexual size dimorphism increased in early Homo through an increase in male size, but was subsequently reduced through an increase in female size in Homo erectus. This would imply a significant increase in sexual selection acting on males in early Homo. An increase in female size with a loss of dimorphism in Homo erectus would imply a simultaneous shift in female optimal body size through selection for increased female fecundity, and/or an increase in female resource abundance, coupled with a shift in selection acting on male size. Although none of these inferences are certain, the exercise illustrates the potential for considering how dimorphism changes through time, rather than simply focusing on the magnitude of size dimorphism in isolation.  相似文献   

19.
Strong sex-specific selection on traits common to both sexes typically results in sexual dimorphism. Here we find that Wellington tree weta (Hemideina crassidens) are sexually dimorphic in both head shape and size due to differential selection pressures on the sexes: males use their heads in male-male combat and feeding whereas females use theirs for feeding only. Remarkably, the sexes share a common ontogenetic trajectory with respect to head growth. Male head shape allometry is an extension of the female’s trajectory despite maturing two instars earlier, a feat achieved through ontogenetic acceleration and hypermorphosis. Strong sexual selection also favours the evolution of alternative reproductive strategies in which some males produce morphologically different weapons. Wild-caught male H. crassidens are trimorphic with regard to weapon size, a rare phenomenon in nature, and weapon shape is related to each morph’s putative mating strategy.  相似文献   

20.
Many mammalian species display sexual dimorphism in the pelvis, where females possess larger dimensions of the obstetric (pelvic) canal than males. This is contrary to the general pattern of body size dimorphism, where males are larger than females. Pelvic dimorphism is often attributed to selection relating to parturition, or as a developmental consequence of secondary sexual differentiation (different allometric growth trajectories of each sex). Among anthropoid primates, species with higher body size dimorphism have higher pelvic dimorphism (in converse directions), which is consistent with an explanation of differential growth trajectories for pelvic dimorphism. This study investigates whether the pattern holds intraspecifically in humans by asking: Do human populations with high body size dimorphism also display high pelvic dimorphism? Previous research demonstrated that in some small-bodied populations, relative pelvic canal size can be larger than in large-bodied populations, while others have suggested that larger-bodied human populations display greater body size dimorphism. Eleven human skeletal samples (total N: male = 229, female = 208) were utilized, representing a range of body sizes and geographical regions. Skeletal measurements of the pelvis and femur were collected and indices of sexual dimorphism for the pelvis and femur were calculated for each sample [ln(M/F)]. Linear regression was used to examine the relationships between indices of pelvic and femoral size dimorphism, and between pelvic dimorphism and female femoral size. Contrary to expectations, the results suggest that pelvic dimorphism in humans is generally not correlated with body size dimorphism or female body size. These results indicate that divergent patterns of dimorphism exist for the pelvis and body size in humans. Implications for the evaluation of the evolution of pelvic dimorphism and rotational childbirth in Homo are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号