首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two active sites of dimeric 5-aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, are located on the subunit interface with contribution of essential amino acids from each subunit. Linking the two subunits into a single polypeptide chain dimer (2XALAS) yielded an enzyme with an approximate sevenfold greater turnover number than that of wild-type ALAS. Spectroscopic and kinetic properties of 2XALAS were investigated to explore the differences in the coenzyme structure and kinetic mechanism relative to those of wild-type ALAS that confer a more active enzyme. The absorption spectra of both ALAS and 2XALAS had maxima at 410 and 330 nm, with a greater A(410)/A(330) ratio at pH approximately 7.5 for 2XALAS. The 330 nm absorption band showed an intense fluorescence at 385 nm but not at 510 nm, indicating that the 330 nm absorption species is the substituted aldamine rather than the enolimine form of the Schiff base. The 385 nm emission intensity increased with increasing pH with a single pK of approximately 8.5 for both enzymes, and thus the 410 and 330 nm absorption species were attributed to the ketoenamine and substituted aldamine, respectively. Transient kinetic analysis of the formation and decay of the quinonoid intermediate EQ(2) indicated that, although their rates were similar in ALAS and 2XALAS, accumulation of this intermediate was greater in the 2XALAS-catalyzed reaction. Collectively, these results suggest that ketoenamine is the active form of the coenzyme and forms a more prominent coenzyme structure in 2XALAS than in ALAS at pH approximately 7.5.  相似文献   

2.
Heme biosynthesis, a complex, multistage, and tightly controlled process, starts with 5-aminolevulinate (ALA) production, which, in metazoa and certain bacteria, is a reaction catalyzed by 5-aminolevulinate synthase (ALAS), a pyridoxal 5′-phosphate (PLP)-dependent enzyme. Functional aberrations in ALAS are associated with several human diseases. ALAS can adopt open and closed conformations, with segmental rearrangements of a C-terminal, 16-amino acid loop and an α-helix regulating accessibility to the ALAS active site. Of the murine erythroid ALAS (mALAS2) forms previously engineered to assess the role of the flexible C-terminal loop versus mALAS2 function one stood out due to its impressive gain in catalytic power. To elucidate how the simultaneously introduced seven mutations of this activity-enhanced variant affected structural and dynamic properties of mALAS2, we conducted extensive molecular dynamics simulation analysis of the dimeric forms of wild-type mALAS2, hepta-variant and Rhodobacter capsulatus ALAS (aka R. capsulatus HemA). This analysis revealed that the seven simultaneous mutations in the C-terminal loop, which extends over the active site of the enzyme, caused the bacterial and murine proteins to adopt different conformations. Specifically, a new β-strand in the mutated ‘loop’ led to interaction with two preexisting β-strands and formation of an anti-parallel three-stranded β-sheet, which likely endowed the murine hepta-variant a more ‘stable’ open conformation than that of wild-type mALAS2, consistent with a kinetic mechanism involving a faster closed-to-open conformation transition and product release for the mutated than wild-type enzyme. Further, the dynamic behavior of the mALAS2 protomers was strikingly different in the two dimeric forms.  相似文献   

3.
Pyridoxal 5'-phosphate (PLP, vitamin B6), a cofactor in many enzymatic reactions, has two distinct biosynthetic routes, which do not coexist in any organism. Two proteins, known as PdxS and PdxT, together form a PLP synthase in plants, fungi, archaea, and some eubacteria. PLP synthase is a heteromeric glutamine amidotransferase in which PdxT produces ammonia from glutamine and PdxS combines ammonia with five- and three-carbon phosphosugars to form PLP. In the 2.2-A crystal structure, PdxS is a cylindrical dodecamer of subunits having the classic (beta/alpha)8 barrel fold. PdxS subunits form two hexameric rings with the active sites positioned on the inside. The hexamer and dodecamer forms coexist in solution. A novel phosphate-binding site is suggested by bound sulfate. The sulfate and another bound molecule, methyl pentanediol, were used to model the substrate ribulose 5-phosphate, and to propose catalytic roles for residues in the active site. The distribution of conserved surfaces in the PdxS dodecamer was used to predict a docking site for the glutaminase partner, PdxT.  相似文献   

4.
5-Aminolevulinate synthase (ALAS), the first enzyme of the heme biosynthetic pathway in mammalian cells, is a member of the alpha-oxoamine synthase family of pyridoxal 5'-phosphate (PLP)-dependent enzymes. In all structures of the enzymes of the -oxoamine synthase family, a conserved histidine hydrogen bonds with the phenolic oxygen of the PLP cofactor and may be significant for substrate binding, PLP positioning, and maintenance of the pKa of the imine nitrogen. In ALAS, replacing the equivalent histidine, H282, with alanine reduces the catalytic efficiency for glycine 450-fold and decreases the slow phase rate for glycine binding by 85%. The distribution of the absorbing 420 and 330 nm species was altered with an A420/A330 ratio increased from 0.45 to 1.05. This shift in species distribution was mirrored in the cofactor fluorescence and 300-500 nm circular dichroic spectra and likely reflects variation in the tautomer distribution of the holoenzyme. The 300-500 nm circular dichroism spectra of ALAS and H282A diverged in the presence of either glycine or aminolevulinate, indicating that the reorientation of the PLP cofactor upon external aldimine formation is impeded in H282A. Alterations were also observed in the K(Gly)d value and spectroscopic and kinetic properties, while the K(PLP)d increased 9-fold. Altogether, the results imply that H282 coordinates the movement of the pyridine ring with the reorganization of the active site hydrogen bond network and acts as a hydrogen bond donor to the phenolic oxygen to maintain the protonated Schiff base and enhance the electron sink function of the PLP cofactor.  相似文献   

5.
5-Aminolevulinate synthase (ALAS) is the first enzyme of the heme biosynthetic pathway in non-plant eukaryotes and the alpha-subclass of purple bacteria. The pyridoxal 5'-phosphate cofactor at the active site undergoes changes in absorptive properties during substrate binding and catalysis that have allowed us to study the kinetics of these reactions spectroscopically. Rapid scanning stopped-flow experiments of murine erythroid 5-aminolevulinate synthase demonstrate that reaction with glycine plus succinyl-CoA results in a pre-steady-state burst of quinonoid intermediate formation. Thus, a step following binding of substrates and initial quinonoid intermediate formation is rate-determining. The steady-state spectrum of the enzyme is similar to that formed in the presence of 5-aminolevulinate, suggesting that release of this product limits the overall rate. Reaction of either glycine or 5-aminolevulinate with ALAS is slow (kf = 0.15 s-1) and approximates kcat. The rate constant for reaction with glycine is increased at least 90-fold in the presence of succinyl-CoA and most likely represents a slow conformational change of the enzyme that is accelerated by succinyl-CoA. The slow rate of reaction of 5-aminolevulinate with ALAS is 5-aminolevulinate-independent, suggesting that it also represents a slow isomerization of the enzyme. Reaction of succinyl-CoA with the enzyme-glycine complex to form a quinonoid intermediate is a biphasic process and may be irreversible. Taken together, the data suggest that turnover is limited by release of 5-aminolevulinate or a conformational change associated with 5-aminolevulinate release.  相似文献   

6.
J C Eads  M Beeby  G Scapin  T W Yu  H G Floss 《Biochemistry》1999,38(31):9840-9849
The biosynthesis of ansamycin antibiotics, including rifamycin B, involves the synthesis of an aromatic precursor, 3-amino-5-hydroxybenzoic acid (AHBA), which serves as starter for the assembly of the antibiotics' polyketide backbone. The terminal enzyme of AHBA formation, AHBA synthase, is a dimeric, pyridoxal 5'-phosphate (PLP) dependent enzyme with pronounced sequence homology to a number of PLP enzymes involved in the biosynthesis of antibiotic sugar moieties. The structure of AHBA synthase from Amycolatopsis mediterranei has been determined to 2.0 A resolution, with bound cofactor, PLP, and in a complex with PLP and an inhibitor (gabaculine). The overall fold of AHBA synthase is similar to that of the aspartate aminotransferase family of PLP-dependent enzymes, with a large domain containing a seven-stranded beta-sheet surrounded by alpha-helices and a smaller domain consisting of a four-stranded antiparallel beta-sheet and four alpha-helices. The uninhibited form of the enzyme shows the cofactor covalently linked to Lys188 in an internal aldimine linkage. On binding the inhibitor, gabaculine, the internal aldimine linkage is broken, and a covalent bond is observed between the cofactor and inhibitor. The active site is composed of residues from two subunits of AHBA synthase, indicating that AHBA synthase is active as a dimer.  相似文献   

7.
Zein F  Zhang Y  Kang YN  Burns K  Begley TP  Ealick SE 《Biochemistry》2006,45(49):14609-14620
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and is an important cofactor for several of the enzymes involved in the metabolism of amine-containing natural products such as amino acids and amino sugars. The PLP synthase holoenzyme consists of two subunits: YaaD catalyzes the condensation of ribulose 5-phosphate, glyceraldehyde-3-phosphate, and ammonia, and YaaE catalyzes the production of ammonia from glutamine. Here we describe the structure of the PLP synthase complex (YaaD-YaaE) from Thermotoga maritima at 2.9 A resolution. This complex consists of a core of 12 YaaD monomers with 12 noninteracting YaaE monomers attached to the core. Compared with the previously published structure of PdxS (a YaaD ortholog in Geobacillus stearothermophilus), the N-terminus (1-18), which includes helix alpha0, the beta2-alpha2 loop (46-56), which includes new helix alpha2a, and the C-terminus (270-280) of YaaD are ordered in the complex but disordered in PdxS. A ribulose 5-phosphate is bound to YaaD via an imine with Lys82. Previous studies have demonstrated a similar imine at Lys149 and not at Lys81 (equivalent to Lys150 and Lys82 in T. maritima) for the Bacillus subtilis enzyme suggesting the possibility that two separate sites on YaaD are involved in PLP formation. A phosphate from the crystallization solution is found bound to YaaD and also serves as a marker for a possible second active site. An ammonia channel that connects the active site of YaaE with the ribulose 5-phosphate binding site was identified. This channel is similar to one found in imidazole glycerol phosphate synthase; however, when the beta-barrels of the two complexes are superimposed, the glutaminase domains are rotated by about 180 degrees with respect to each other.  相似文献   

8.
5-Aminolevulinate synthase (EC 2.3.1.37) (ALAS), a pyridoxal 5′-phosphate (PLP)-dependent enzyme, catalyzes the initial step of heme biosynthesis in animals, fungi, and some bacteria. Condensation of glycine and succinyl coenzyme A produces 5-aminolevulinate, coenzyme A, and carbon dioxide. X-ray crystal structures of Rhodobacter capsulatus ALAS reveal that a conserved active site serine moves to within hydrogen bonding distance of the phenolic oxygen of the PLP cofactor in the closed substrate-bound enzyme conformation and within 3–4 Å of the thioester sulfur atom of bound succinyl-CoA. To evaluate the role(s) of this residue in enzymatic activity, the equivalent serine in murine erythroid ALAS was substituted with alanine or threonine. Although both the KmSCoA and kcat values of the S254A variant increased, by 25- and 2-fold, respectively, the S254T substitution decreased kcat without altering KmSCoA. Furthermore, in relation to wild-type ALAS, the catalytic efficiency of S254A toward glycine improved ∼3-fold, whereas that of S254T diminished ∼3-fold. Circular dichroism spectroscopy revealed that removal of the side chain hydroxyl group in the S254A variant altered the microenvironment of the PLP cofactor and hindered succinyl-CoA binding. Transient kinetic analyses of the variant-catalyzed reactions and protein fluorescence quenching upon 5-aminolevulinate binding demonstrated that the protein conformational transition step associated with product release was predominantly affected. We propose the following: 1) Ser-254 is critical for formation of a competent catalytic complex by coupling succinyl-CoA binding to enzyme conformational equilibria, and 2) the role of the active site serine should be extended to the entire α-oxoamine synthase family of PLP-dependent enzymes.  相似文献   

9.
The first and regulatory step of heme biosynthesis in mammals begins with the pyridoxal 5'-phosphate-dependent condensation reaction catalyzed by 5-aminolevulinate synthase. The enzyme functions as a homodimer with the two active sites at the dimer interface. Previous studies demonstrated that circular permutation of 5-aminolevulinate synthase does not prevent folding of the polypeptide chain into a structure amenable to binding of the pyridoxal 5'-phosphate cofactor and assembly of the two subunits into a functional enzyme. However, while maintaining a wild type-like three-dimensional structure, active, circularly permuted 5-aminolevulinate synthase variants possess different topologies. To assess whether the aminolevulinate synthase overall structure can be reached through alternative or multiple folding pathways, we investigated the guanidine hydrochloride-induced unfolding, conformational stability, and structure of active, circularly permuted variants in relation to those of the wild type enzyme using fluorescence, circular dichroism, activity, and size exclusion chromatography. Aminolevulinate synthase and circularly permuted variants folded reversibly; the equilibrium unfolding/refolding profiles were biphasic and, in all but one case, protein concentration-independent, indicating a unimolecular process with the presence of at least one stable intermediate. The formation of this intermediate was preceded by the disruption of the dimeric interface or dissociation of the dimer without significant change in the secondary structural content of the subunits. In contrast to the similar stabilities associated with the dimeric interface, the energy for the unfolding of the intermediate as well as the overall conformational stabilities varied among aminolevulinate synthase and variants. The unfolding of one functional permuted variant was protein concentration-dependent and had a potentially different folding mechanism. We propose that the order of the ALAS secondary structure elements does not determine the ability of the polypeptide chain to fold but does affect its folding mechanism.  相似文献   

10.
5-Aminolevulinate synthase (ALAS) is the first and rate-limiting enzyme of heme biosynthesis in humans, animals, other non-plant eukaryotes, and alpha-proteobacteria. It catalyzes the synthesis of 5-aminolevulinic acid, the first common precursor of all tetrapyrroles, from glycine and succinyl-coenzyme A (sCoA) in a pyridoxal 5'-phosphate (PLP)-dependent manner. X-linked sideroblastic anemias (XLSAs), a group of severe disorders in humans characterized by inadequate formation of heme in erythroblast mitochondria, are caused by mutations in the gene for erythroid eALAS, one of two human genes for ALAS. We present the first crystal structure of homodimeric ALAS from Rhodobacter capsulatus (ALAS(Rc)) binding its cofactor PLP. We, furthermore, present structures of ALAS(Rc) in complex with the substrates glycine or sCoA. The sequence identity of ALAS from R. capsulatus and human eALAS is 49%. XLSA-causing mutations may thus be mapped, revealing the molecular basis of XLSA in humans. Mutations are found to obstruct substrate binding, disrupt the dimer interface, or hamper the correct folding. The structure of ALAS completes the structural analysis of enzymes in heme biosynthesis.  相似文献   

11.
Threonine synthase (TS) is a fold-type II pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the ultimate step of threonine synthesis in plants and microorganisms. Unlike the enzyme from microorganisms, plant TS is activated by S-adenosylmethionine (AdoMet). The mechanism of activation has remained unknown up to now. We report here the crystallographic structures of Arabidopsis thaliana TS in complex with PLP (aTS) and with PLP and AdoMet (aTS-AdoMet), which show with atomic detail how AdoMet activates TS. The aTS structure reveals a PLP orientation never previously observed for a type II PLP-dependent enzyme and explains the low activity of plant TS in the absence of its allosteric activator. The aTS-AdoMet structure shows that activation of the enzyme upon AdoMet binding triggers a large reorganization of active site loops in one monomer of the structural dimer and allows the displacement of PLP to its active conformation. Comparison with other TS structures shows that activation of the second monomer may be triggered by substrate binding. This structure also discloses a novel fold for two AdoMet binding sites located at the dimer interface, each site containing two AdoMet effectors bound in tandem. Moreover, aTS-AdoMet is the first structure of an enzyme that uses AdoMet as an allosteric effector.  相似文献   

12.
The hemA gene encoding 5-aminolevulinic acid synthase (ALAS) was cloned from the genomic DNA of photosynthetic bacterium Rhodopseudomonas palustris KUGB306. The deduced protein (ALAS) of this gene contained 409 amino acids. The hemA gene was subcloned into an expression vector pGEX-KG and the encoded protein was overexpressed as a fusion protein with glutathione-S-transferase (GST) in Escherichia coli BL21. The recombinant ALAS was purified and isolated free of the fusion partner (GST) by affinity purification on glutathione-Sepharose 4B resin and cleavage of the purified fusion protein by thrombin protease. The optimum pH and temperature of the recombinant ALAS was found to be at pH 7.5-8.0 and 35-40 degrees C, respectively. The Km value of the enzyme was 2.01 mM for glycine and 49.55 microM for succinyl-CoA. The enzyme activity was strongly inhibited by Pb2+, Fe2+, Co2+, Cu2+, and Zn2+ at 1 mM, but slightly affected by Mg2+ and K+. The recombinant ALAS required pyridoxal 5'-phosphate (PLP) as a cofactor for catalysis. Removal of this cofactor led to complete loss of the activity. Ultraviolet-visible spectroscopy with the ALAS suggested the presence of an aldimine linkage between the enzyme and PLP.  相似文献   

13.
5-Aminolevulinate synthase (ALAS), a pyridoxal-5′phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0–3.0 and 7.5–10.5) and temperature (20 and 37 °C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH 2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH 10.5 and pH 9.5/37 °C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420 nm to 330 nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH 1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH 9.5/37 °C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme.  相似文献   

14.
DNA polymerase alpha from Drosophila melanogaster embryos is a multisubunit enzyme complex which can exhibit DNA polymerase, 3'----5' exonuclease, and DNA primase activities. Pyridoxal 5'-phosphate (PLP) inhibition of DNA polymerase activity in this complex is time dependent and exhibits saturation kinetics. Inhibition can be reversed by incubation with an excess of a primary amine unless the PLP-enzyme conjugate is first reduced with NaBH4. These results indicate that PLP inhibition occurs via imine formation at a specific site(s) on the enzyme. Results from substrate protection experiments are most consistent with inhibition of DNA polymerase activity by PLP binding to either one of two sites. One site (PLP site 1) can be protected from PLP inhibition by any nucleoside triphosphate in the absence or presence of template-primer, suggesting that PLP site 1 defines a nucleotide-binding site which is important for DNA polymerase activity but which is distinct from the DNA polymerase active site. PLP also inhibits DNA primase activity of the DNA polymerase alpha complex, and primase activity can be protected from PLP inhibition by nucleotide alone, arguing that PLP site 1 lies within the DNA primase active site. The second inhibitory PLP-binding site (PLP site 2) is only protected from PLP inhibition when the enzyme is bound to both template-primer and correct dNTP in a stable ternary complex. Since binding of PLP at site 2 is mutually exclusive with template-directed dNTP binding at the DNA polymerase active site, PLP site 2 appears to define the dNTP binding domain of the active site. Results from initial velocity analysis of PLP inhibition argue that there is a rate-limiting step in the polymerization cycle during product release and/or translocation.  相似文献   

15.
5-Aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate-dependent enzyme, catalyzes the first, and regulatory, step of the heme biosynthetic pathway in nonplant eukaryotes and some bacteria. 5-Aminolevulinate synthase is a dimeric protein having an ordered kinetic mechanism with glycine binding before succinyl-CoA and with aminolevulinate release after CoA and carbon dioxide. Rapid scanning stopped-flow absorption spectrophotometry in conjunction with multiple turnover chemical quenched-flow kinetic analyses and a newly developed CoA detection method were used to examine the ALAS catalytic reaction and identify the rate-determining step. The reaction of glycine with ALAS follows a three-step kinetic process, ascribed to the formation of the Michaelis complex and the pyridoxal 5'-phosphate-glycine aldimine, followed by the abstraction of the glycine pro-R proton from the external aldimine. Significantly, the rate associated with this third step (k(3) = 0.002 s(-1)) is consistent with the rate determined for the ALAS-catalyzed removal of tritium from [2-(3)H(2)]glycine. Succinyl-CoA and acetoacetyl-CoA increased the rate of glycine proton removal approximately 250,000- and 10-fold, respectively, supporting our previous proposal that the physiological substrate, succinyl-CoA, promotes a protein conformational change, which accelerates the conversion of the external aldimine into the initial quinonoid intermediate (Hunter, G. A., and Ferreira, G. C. (1999) J. Biol. Chem. 274, 12222-12228). Rapid scanning stopped-flow and quenched-flow kinetic analyses of the ALAS reaction under single turnover conditions lend evidence for two quinonoid reaction intermediates and a model of the ALAS kinetic mechanism in which product release is at least the partially rate-limiting step. Finally, the carbonyl and carboxylate groups of 5-aminolevulinate play a major protein-interacting role by inducing a conformational change in ALAS and, thus, possibly modulating product release.  相似文献   

16.
Each of the two active sites of thymidylate synthase contains amino acid residues contributed by the other subunit. For example, Arg-178 of one monomer binds the phosphate group of the substrate dUMP in the active site of the other monomer [Hardy et al. (1987) Science 235, 448-455]. Inactive mutants of such residues should combine with subunits of other inactive mutants to form heterodimeric hybrids with one functional active site. In vivo and in vitro approaches were used to test this hypothesis. In vivo complementation was accomplished by cotransforming plasmid mixtures encoding pools of inactive Arg-178 mutants and pools of inactive Cys-198 mutants into a host strain deficient in thymidylate synthase. Individual inactive mutants of Arg-178 were also cotransformed with the C198A mutant. Subunit complementation was detected by selection or screening for transformants which grew in the absence of thymidine, and hence produced active enzyme. Many mutants at each position representing a wide variety of size and charge supported subunit complementation. In vitro complementation was accomplished by reversible dissociation and unfolding of mixtures of purified individual inactive Arg-178 and Cys-198 mutant proteins. With the R178F + C198A heterodimer, the Km values for dUMP and CH2H4folate were similar to those of the wild-type enzyme. By titrating C198A with R178F under unfolding-refolding conditions, we were able to calculate the kcat value for the active heterodimer. The catalytic efficiency of the single wild-type active site of the C198A + R178F heterodimer approaches that of the wild-type enzyme.  相似文献   

17.
5‐Aminolevulinate synthase (ALAS) controls the rate‐limiting step of heme biosynthesis in mammals by catalyzing the condensation of succinyl‐coenzyme A and glycine to produce 5‐aminolevulinate, coenzyme‐A (CoA), and carbon dioxide. ALAS is a member of the α‐oxoamine synthase family of pyridoxal 5′‐phosphate (PLP)‐dependent enzymes and shares high degree of structural similarity and reaction mechanism with the other members of the family. The X‐ray crystal structure of ALAS from Rhodobacter capsulatus reveals that the alkanoate component of succinyl‐CoA is coordinated by a conserved arginine and a threonine. The functions of the corresponding acyl‐CoA‐binding residues in murine erthyroid ALAS (R85 and T430) in relation to acyl‐CoA binding and substrate discrimination were examined using site‐directed mutagenesis and a series of CoA‐derivatives. The catalytic efficiency of the R85L variant with octanoyl‐CoA was 66‐fold higher than that of the wild‐type protein, supporting the proposal of this residue as key in discriminating substrate binding. Substitution of the acyl‐CoA‐binding residues with hydrophobic amino acids caused a ligand‐induced negative dichroic band at 420 nm in the CD spectra, suggesting that these residues affect substrate‐mediated changes to the PLP microenvironment. Transient kinetic analyses of the R85K variant‐catalyzed reactions confirm that this substitution decreases microscopic rates associated with formation and decay of a key reaction intermediate and show that the nature of the acyl‐CoA tail seriously affect product binding. These results show that the bifurcate interaction of the carboxylate moiety of succinyl‐CoA with R85 and T430 is an important determinant in ALAS function and may play a role in substrate specificity.  相似文献   

18.
PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5′-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate.  相似文献   

19.
Pyridoxal 5'-phosphate (PLP) inhibits DNA polymerase activity of the intact multifunctional DNA polymerase alpha complex by binding at either of two sites which can be distinguished on the basis of differential substrate protection. One site (PLP site 1) corresponds to an important nucleotide-binding site which is distinct from the DNA polymerase active site and which appears to correspond to the DNA primase active site while the second site (PLP site 2) corresponds to the dNTP binding domain of the DNA polymerase active site. A method for the enzymatic synthesis of high specific activity [32P]PLP is described and this labeled PLP was used to identify the binding sites described above. PLP inhibition of DNA polymerase alpha activity was shown to involve the binding of only a few (one to two) molecules of PLP/molecule of DNA polymerase alpha, and this label is primarily found on the 148- and 46-kDa subunits although the 63-, 58-, and 49-kDa subunits are labeled to a lesser extent. Labeling of the 46-kDa subunit by [32P]PLP is the only labeling on the enzyme which is blocked or even diminished in the presence of nucleotide alone, and, therefore, this 46-kDa subunit contains PLP site 1. Labeling of the 148-kDa subunit is enhanced in the presence of template-primer, suggesting that this subunit undergoes a conformational change upon binding template-primer. Furthermore, labeling of the 148-kDa subunit is the only labeling on the enzyme which can be specifically blocked only by the binding of both template-primer and the correct dNTP in a stable ternary complex. Therefore, the 148-kDa subunit contains PLP site 2, which corresponds to the dNTP binding domain of the DNA polymerase active site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号