首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The nucleotide sequence of a fragment of the promoter region of pro-SmAMP1 gene, having a length of 1257 bp and encoding antifungal peptides, was determined in chickweed (Stellaria media (L.) Vill.). Computer analysis of the nucleotide sequence revealed a number of cis-elements that are typical strong plant promoters. Five 5′-deletion variants were created taking into account the distribution of cis-elements:–1235,–771,–714,–603, and–481 bp of pro-SmAMP1 gene promoter, which were fused to the coding region of the uidA reporter gene in pCambia1381Z plant expression vector. The efficacy of pro-SmAMP1 promoter deletion variants was determined by transient expression in plants of Nicotiana benthamiana and using sequential generations of transgenic Nicotiana tabacum plants. It was found that the levels of GUS reporter protein activity in the extracts from transgenic and agroinfiltrated plants using all deletion variants of pro-SmAMP1 gene promoter were 3–5 times higher than those of 35S CaMV viral promoter. The highest activity of GUS protein was observed in the leaves of transgenic tobacco plants and closely correlated with the mRNA level of encoding gene. The levels of GUS activity did not differ significantly among 11 independent homozygous lines of T2 generation of N. tabacum plants with different deletion variants of pro-SmAMP1 promoter. The results give reason to assume that all deletion variants of pro-SmAMP1 promoter provide stable and high level of expression of controlled genes. The shortest deletion variant–481 bp of pro-SmAMP1 promoter should be viewed as a potentially strong plant promoter for the genetic engineering of plants.  相似文献   

3.

Background/Aim

To investigate the roles of mutations in pre-S and S regions of hepatitis B virus (HBV) on the progression of hepatocellular carcinoma (HCC) in Qidong, China.

Methods

We conducted an age matched case-control study within a cohort of 2387 male HBV carriers who were recruited from August, 1996. The HBV DNA sequence in pre-S/S regions was successfully determined in 96 HCC cases and 97 control subjects. In addition, a consecutive series of samples from 11 HCC cases were employed to evaluate the pre-S deletion patterns before and after the occurrence of HCC.

Results

After adjustment for age, history of cigarette smoking and alcohol consumption, HBeAg positivity, pre-S deletions, pre-S2 start codon mutations, and T53C mutation were significantly associated with HCC, showing adjusted odds ratios (ORs) from 1.914 to 3.199. HCC patients also had a lower frequency of T31C mutation in pre-S2 gene, compared with control subjects (0.524; 95% CI 0.280-0.982). HBV pre-S deletions were clustered mainly in the 5′ end of pre-S2 region. Multivariate analysis showed that pre-S deletions and pre-S2 start codon mutations were independent risk factors for HCC. The OR (95% CI) were 2.434 (1.063–5.573) and 3.065 (1.099–8.547), respectively. The longitudinal observation indicated that the pre-S deletion mutations were not acquired at the beginning of HBV infection, but that the mutations occurred during the long course of liver disease.

Conclusion

Pre-S deletions and pre-S2 start codon mutations were independently associated with the development of HCC. The results also provided direct evidence that pre-S deletion mutations were not acquired from the beginning of infection but arose de novo during the progression of liver disease.  相似文献   

4.
Comparative results of the studied effectiveness of two new promoters, pro-SmAMP1 and pro- SmAMP2, from chickweed (Stellaria media L.) in various types of cultivated plants with transient expression and in stable transformants are given. The effectiveness of the promoters was evaluated through the expression of the reporter uidA gene by measuring the activity of its GUS protein product. It was found that the deletion variant (442 bp) of the pro-SmAMP1 promoter was significantly stronger in plants of Nicotiana benthamiana (Domin) with transient expression than the deletion variant (455 bp) of the pro-SmAMP2 promoter. The effectiveness of these short deletion variants of both promoters under transient expression in the plants of rapeseed (Brassica napus L.) and sugar beet (Beta vulgaris L.) was comparable with that of the viral CaMV35S promoter. The functionality of the pro-SmAMP2 promoter in the calluses of common flax plants (Linum usitatissimum L.) was shown. In the homozygous lines of transgenic tobacco plants (Nicotiana tabacum L.), all deletion variants of the pro-SmAMP1 promoter and the shortest version of pro-SmAMP2 were twice as strong as the CaMV35S viral promoter. The effectiveness of short variants of both promoters from the chickweed in controlling the gene encoding neomycin phosphotransferase II in the transgenic plants of tobacco and arabidopsis (Arabidopsis thaliana L.) growing on media supplemented with recommended concentrations of kanamycin are not inferior to the duplicated 2хCaMV35S viral promoter. The obtained experimental data show that short deletion variants of pro-SmAMP1 (442 bp) and pro-SmAMP2 (455 bp) promoters may be recommended as strong constitutive promoters for use in the biotechnology of crop plants.  相似文献   

5.
6.
The COG database: an updated version includes eukaryotes   总被引:4,自引:0,他引:4  

Background

The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies.

Results

We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted) proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs) include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens), one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe), and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the KOG set is much greater than the ubiquitous portion of the COG set (~1% of the COGs). In part, this difference is probably due to the small number of included eukaryotic genomes, but it could also reflect the relative compactness of eukaryotes as a clade and the greater evolutionary stability of eukaryotic genomes.

Conclusion

The updated collection of orthologous protein sets for prokaryotes and eukaryotes is expected to be a useful platform for functional annotation of newly sequenced genomes, including those of complex eukaryotes, and genome-wide evolutionary studies.  相似文献   

7.

Background

Isg15 covalently modifies murine endometrial proteins in response to early pregnancy. Isg15 can also be severed from targeted proteins by a specific protease called Ubp43 (Usp18). Mice lacking Ubp43 (null) form increased conjugated Isg15 in response to interferon. The Isg15 system has not been examined in chorioallantoic placenta (CP) or mesometrial (MM) components of implantation sites beyond 9.5 days post coitum (dpc). It was hypothesized that deletion of Ubp43 would cause disregulation of Isg15 in implantation sites, and that this would affect pregnancy rates.

Methods

Heterozygous (het) Ubp43 mice were mated and MM and CP implantation sites were collected on 12.5 and 17.5 days post-coitum (dpc).

Results

Free and conjugated Isg15 were greater on 12.5 versus 17.5 dpc in MM. Free and conjugated Isg15 were also present in CP, but did not differ due to genotype on 12.5 dpc. However, null CP had greater free and conjugated Isg15 when compared to het/wt on 17.5 dpc. Null progeny died in utero with fetal genotype ratios (wt:het:null) of 2:5:1 on 12.5 and 2:2:1 on 17.5 dpc. Implantation sites were disrupted within the junctional zone and spongiotrophoblast, contained less vasculature based on lectin B4 staining and contained greater Isg15 mRNA and VEGF protein in Ubp43 null when compared to wt placenta.

Conclusion

It is concluded that Isg15 and its conjugates are present in implantation sites during mid to late gestation and that deletion of Ubp43 causes an increase in free and conjugated Isg15 at the feto-maternal interface. Also, under mixed genetic background, deletion of Ubp43 results in fetal death.  相似文献   

8.

Background

With the development of sequencing technologies, more and more sequence variants are available for investigation. Different classes of variants in the human genome have been identified, including single nucleotide substitutions, insertion and deletion, and large structural variations such as duplications and deletions. Insertion and deletion (indel) variants comprise a major proportion of human genetic variation. However, little is known about their effects on humans. The absence of understanding is largely due to the lack of both biological data and computational resources.

Results

This paper presents a new indel functional prediction method HMMvar based on HMM profiles, which capture the conservation information in sequences. The results demonstrate that a scoring strategy based on HMM profiles can achieve good performance in identifying deleterious or neutral variants for different data sets, and can predict the protein functional effects of both single and multiple mutations.

Conclusions

This paper proposed a quantitative prediction method, HMMvar, to predict the effect of genetic variation using hidden Markov models. The HMM based pipeline program implementing the method HMMvar is freely available at https://bioinformatics.cs.vt.edu/zhanglab/hmm.  相似文献   

9.

Background

Accurate catalogs of structural variants (SVs) in mammalian genomes are necessary to elucidate the potential mechanisms that drive SV formation and to assess their functional impact. Next generation sequencing methods for SV detection are an advance on array-based methods, but are almost exclusively limited to four basic types: deletions, insertions, inversions and copy number gains.

Results

By visual inspection of 100 Mbp of genome to which next generation sequence data from 17 inbred mouse strains had been aligned, we identify and interpret 21 paired-end mapping patterns, which we validate by PCR. These paired-end mapping patterns reveal a greater diversity and complexity in SVs than previously recognized. In addition, Sanger-based sequence analysis of 4,176 breakpoints at 261 SV sites reveal additional complexity at approximately a quarter of structural variants analyzed. We find micro-deletions and micro-insertions at SV breakpoints, ranging from 1 to 107 bp, and SNPs that extend breakpoint micro-homology and may catalyze SV formation.

Conclusions

An integrative approach using experimental analyses to train computational SV calling is essential for the accurate resolution of the architecture of SVs. We find considerable complexity in SV formation; about a quarter of SVs in the mouse are composed of a complex mixture of deletion, insertion, inversion and copy number gain. Computational methods can be adapted to identify most paired-end mapping patterns.  相似文献   

10.

Background

The distribution of chromatin-associated proteins plays a key role in directing nuclear function. Previously, we developed an image-based method to quantify the nuclear distributions of proteins and showed that these distributions depended on the phenotype of human mammary epithelial cells. Here we describe a method that creates a hierarchical tree of the given cell phenotypes and calculates the statistical significance between them, based on the clustering analysis of nuclear protein distributions.

Results

Nuclear distributions of nuclear mitotic apparatus protein were previously obtained for non-neoplastic S1 and malignant T4-2 human mammary epithelial cells cultured for up to 12 days. Cell phenotype was defined as S1 or T4-2 and the number of days in cultured. A probabilistic ensemble approach was used to define a set of consensus clusters from the results of multiple traditional cluster analysis techniques applied to the nuclear distribution data. Cluster histograms were constructed to show how cells in any one phenotype were distributed across the consensus clusters. Grouping various phenotypes allowed us to build phenotype trees and calculate the statistical difference between each group. The results showed that non-neoplastic S1 cells could be distinguished from malignant T4-2 cells with 94.19% accuracy; that proliferating S1 cells could be distinguished from differentiated S1 cells with 92.86% accuracy; and showed no significant difference between the various phenotypes of T4-2 cells corresponding to increasing tumor sizes.

Conclusion

This work presents a cluster analysis method that can identify significant cell phenotypes, based on the nuclear distribution of specific proteins, with high accuracy.
  相似文献   

11.

Background

Catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, has recently been implicated in the modulation of pain. Specifically, low COMT activity is associated with heightened pain perception and development of musculoskeletal pain in humans as well as increased experimental pain sensitivity in rodents.

Results

We report that the proinflammatory cytokine tumor necrosis factor α (TNFα) downregulates COMT mRNA and protein in astrocytes. Examination of the distal COMT promoter (P2-COMT) reveals a putative binding site for nuclear factor κB (NF-κB), the pivotal regulator of inflammation and the target of TNFα. Cell culture assays and functional deletion analyses of the cloned P2-COMT promoter demonstrate that TNFα inhibits P2-COMT activity in astrocytes by inducing NF-κB complex recruitment to the specific κB binding site.

Conclusion

Collectively, our findings provide the first evidence for NF-κB-mediated inhibition of COMT expression in the central nervous system, suggesting that COMT contributes to the pathogenesis of inflammatory pain states.  相似文献   

12.

Background

The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied.

Results

We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe.

Conclusions

Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.  相似文献   

13.
Zhang W  Shao J  Liu G  Tang F  Lu Y  Zhai Z  Wang Y  Wu Z  Yao H  Lu C 《Proteome science》2011,9(1):32-11

Background

Actinobacillus pleuropneumoniae (APP) is one of the most important swine pathogens worldwide. Identification and characterization of novel antigenic APP vaccine candidates are underway. In the present study, we use an immunoproteomic approach to identify APP protein antigens that may elicit an immune response in serotype 1 naturally infected swine and serotype 1 virulent strain S259-immunized rabbits.

Results

Proteins from total cell lysates of serotype 1 APP were separated by two-dimensional electrophoresis (2DE). Western blot analysis revealed 21 immunoreactive protein spots separated in the pH 4-7 range and 4 spots in the pH 7-11 range with the convalescent sera from swine; we found 5 immunoreactive protein spots that separated in the pH 4-7 range and 2 in the pH 7-11 range with hyperimmune sera from S259-immunized rabbits. The proteins included the known antigens ApxIIA, protective surface antigen D15, outer membrane proteins P5, subunit NqrA. The remaining antigens are being reported as immunoreactive proteins in APP for the first time, to our knowledge.

Conclusions

We identified a total of 42 immunoreactive proteins of the APP serotype 1 virulent strain S259 which represented 32 different proteins, including some novel immunoreactive factors which could be researched as vaccine candidates.  相似文献   

14.
15.

Aims

Type 2 diabetes is characterised by increased plasma concentrations of pro-inflammatory cytokines [such as tumour necrosis factor – alpha; TNF-α] and soluble forms of adhesion molecules involved in leukocyte – endothelial interactions. These molecules are synthesised as transmembrane proteins and the plasma soluble forms are generated by ectodomain cleavage from the cell surface by members of the ADAM [a disintegrin and metalloproteinase] proteinase family. We hypothesised that plasma low density lipoprotein [LDL] from subjects with Type 2 diabetes would influence in vitro monocytic ADAM and matrix metalloproteinase [MMP] gene expression differently compared to control LDL.

Methods

We examined relative mRNA expression by real time PCR in a monocytic cell line [THP-1] cultured for 4, 8 and 24 hrs with human plasma LDL derived from subjects with [n = 5] or without [n = 4] Type 2 diabetes. Gene expression for MMP-1 and 9, and ADAM – 8, 15, 17 and 28 was studied.

Results

Type 2 diabetes LDL significantly increased gene expression of MMP – 1 [p < 0.01] MMP – 9 [p < 0.001], and ADAM 17 [p < 0.05], – 28 [p < 0.01] and – 15 [p < 0.01] compared to control LDL. Type 2 diabetes LDL had disparate effects on inhibitors of MMP.

Conclusion

These data suggest that Type 2 diabetes LDL could lead to increased adhesion molecule and TNF alpha cell surface shedding, and vascular plaque instability, by promoting increased expression of ADAM and MMP genes.  相似文献   

16.
17.
18.

Background/Aim

To investigate the roles of biomedical factors, hepatitis B virus (HBV) DNA levels, genotypes, and specific viral mutation patterns on the progression of hepatocellular carcinoma (HCC) patients below 40 years of age in Qidong, China.

Methods

We conducted a case-control study within a cohort of 2387 male HBV carriers who were recruited from August, 1996. The HBV DNA sequence was determined in 49 HCC and 90 chronic hepatitis (CH) patients below 40 years of age. Mutation exchanges during follow-up in 32 cases were compared with 65 controls with paired serum samples. In addition, a consecutive series of samples from 14 HCC cases were employed to compare the sequences before and after the occurrence of HCC.

Results

After adjustment for age, history of cigarette smoking and alcohol consumption, HBeAg positive, HBV DNA levels ≥4.00 log10 copies/mL, pre-S deletion, T1762/A1764 double mutations, and T1766 and/or A1768 mutations were associated with risk of young age HCC. Moreover, the presence of an increasing number of HCC-related mutations (pre-S deletion, T1762/A1764, and T1766 and/or A1768 mutations) was associated with an increased risk of young age HCC. Paired samples analysis indicated that the increased HCC risk for at-risk sequence mutations were attributable to the persistence of these mutations, but not a single time point mutation. The longitudinal observation demonstrated a gradual combination of pre-S deletion, T1762/A1764 double mutations, and T1766 and/or A1768 mutations during the development of HCC.

Conclusion

High HBV DNA levels and pre-S deletion were independent risk factors of young age HCC. Combination of pre-S deletion and core promoter mutations increased the risk and persistence of at-risk sequence mutations is critical for HCC development.  相似文献   

19.
Xia  Fei  Dou  Yong  Lei  Guoqing  Tan  Yusong 《BMC bioinformatics》2011,12(1):1-9

Background

Orthology analysis is an important part of data analysis in many areas of bioinformatics such as comparative genomics and molecular phylogenetics. The ever-increasing flood of sequence data, and hence the rapidly increasing number of genomes that can be compared simultaneously, calls for efficient software tools as brute-force approaches with quadratic memory requirements become infeasible in practise. The rapid pace at which new data become available, furthermore, makes it desirable to compute genome-wide orthology relations for a given dataset rather than relying on relations listed in databases.

Results

The program Proteinortho described here is a stand-alone tool that is geared towards large datasets and makes use of distributed computing techniques when run on multi-core hardware. It implements an extended version of the reciprocal best alignment heuristic. We apply Proteinortho to compute orthologous proteins in the complete set of all 717 eubacterial genomes available at NCBI at the beginning of 2009. We identified thirty proteins present in 99% of all bacterial proteomes.

Conclusions

Proteinortho significantly reduces the required amount of memory for orthology analysis compared to existing tools, allowing such computations to be performed on off-the-shelf hardware.  相似文献   

20.

Background

Recent research has suggested that oxytocin receptor gene (OXTR) variants may account for individual differences in social behavior, the effects of stress and parenting styles. Little is known, however, on a putative role of the gene in heritable temperamental traits.

Methods

We addressed effects of two common OXTR variants, rs237900 and rs237902, on personality dimensions in 99 healthy subjects using the Temperament and Character Inventory.

Results

When sex was controlled for and an OXTR genotype*sex interaction term was included in the regression model, 11% of the variance in Harm Avoidance could be explained (uncorrected p????0.01). Female carriers of the minor alleles scored highest, and a novel A217T mutation emerged in the most harm avoidant male participant.

Conclusions

Findings lend support to a modulatory effect of common OXTR variants on Harm Avoidance in healthy caucasian women and invite resequencing of the gene in anxiety phenotypes to identify more explanatory functional variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号