首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The current study presents data indicating that 1α,25-dihydroxyvitamin D3 affects the production of hormones and expression of crucial steroidogenic enzymes in the human adrenocortical cell line NCI-H295R. This cell line is widely used as a model for adrenal steroidogenesis. Treatment of the cells with 1α,25-dihydroxyvitamin D3 suppressed the levels of corticosterone, aldosterone, DHEA, DHEA-sulfate and androstenedione in the culture medium. In order to study the mechanisms behind this suppression of hormone production, we investigated the effects of 1α,25-dihydroxyvitamin D3 on important genes and enzymes controlling the biosynthesis of adrenal hormones. The mRNA levels were decreased for CYP21A2 while they were increased for CYP11A1 and CYP17A1. No significant changes were observed in mRNA for CYP11B1, CYP11B2 or 3β-hydroxysteroid dehydrogenase (3βHSD). In similarity with the effects on mRNA levels, also the endogenous enzyme activity of CYP21A2 decreased after treatment with 1α,25-dihydroxyvitamin D3. Interestingly, the two CYP17A1-mediated activities were influenced reciprocally — the 17α-hydroxylase activity increased whereas the 17,20-lyase activity decreased. The current data indicate that the 1α,25-dihydroxyvitamin D3-mediated decrease in corticosterone and androgen production is due to suppression of the 21-hydroxylase activity by CYP21A2 and the 17,20-lyase activity by CYP17A1, respectively. In conclusion, the current study reports novel findings on 1α,25-dihydroxyvitamin D3-mediated effects on hormone production and regulation of genes and enzymes involved in steroidogenesis in the adrenocortical NCI-H295R cell line, a model for human adrenal cortex.  相似文献   

2.
Despite the significance of glycoproteins for extracellular matrix assembly in cartilage tissue, little is known about the regulation of the chondrocyte glycophenotype under inflammatory conditions. The present study aimed to assess the effect of IL-1β and TNF-α on specific features of the glycophenotype of primary human chondrocytes in vitro. Using LC-MS, we found that both cytokines increased overall sialylation of N- and O-glycans and induced a shift towards α-(2→3)-linked sialic acid residues in chondrocyte glycoproteins. These results were supported by quantitative PCR showing increased expression of α-(2→3) sialyltransferases in treated cells. Moreover, we found that both IL-1β and TNF-α induced a considerable shift from oligomannosidic glycans towards complex-type N-glycans. In contrast, core α-(1→6)-fucosylation of chondrocyte N-glycans was found to be reduced particularly by TNF-α. In summary, inflammatory conditions induce specific alterations of the chondrocyte glycophenotype which might affect cell-matrix interactions or the function of endogenous lectins.  相似文献   

3.
4.
Sparganosis is a tissue invading helminthiasis infecting intermediate hosts, including humans. Strong immune responses are expected to occur in early phases of infection. Thus, we investigated cytokine expressions in splenic dendritic cells and in sera after experimental infection of mice. In splenic dendritic cells, TNF-α and IL-1β expression peaked at week 1 and week 3 post-infection (PI), respectively, and also early phase (week 2 PI) depressed cytokine expression was noticed. Serum IL-1β concentration increased significantly at week 2 PI and peaked at week 6 PI, and that of TNF-α peaked at week 6 PI. These results showed that pro-inflammatory cytokines, TNF-α and IL-1β, are chronologically regulated in mouse sparganosis.  相似文献   

5.
6.
Cytokines are critical messengers that control the differentiation of Th cells. To evaluate their impact on the fate of human naive CD4(+) T cells from cord and adult blood, early T cell differentiation was monitored after T cell activation in the presence of pro- and anti-inflammatory cytokines. Interestingly, the analysis of Th cell lineage-specific molecules revealed that IL-1β on its own mediates differentiation of Th cells that secrete a wide range of proinflammatory cytokines and stably express CD69, STAT1, IFN-γ, and IL-17. Notably, our data suggest that IL-1β induces Th17 cells independent of RORC upregulation. In contrast, TGF-β that triggers RORC prevents Th17 cell development. This suppressive function of TGF-β is characterized by inhibition of STAT1, STAT3, and CD69. However, after repeated anti-CD3 and anti-CD28 stimulation, we observe that TGF-β provokes an increase in Th17 cells that presumably relies on reactivation of a default pathway by preferential inhibition of IFN-γ. Hence, our data extend the view that the principal cytokines for determining Th cell fate are IL-12 for the Th1 lineage, IL-4 for the Th2 lineage, and TGF-β in conjunction with IL-6 for the Th17 lineage. We propose that IL-1β induces a general proinflammatory Th cell precursor that, in the presence of the lineage-specifying cytokines, further differentiates into one of the specific Th cell subpopulations.  相似文献   

7.
Transforming growth factor-β (TGF-β) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-β inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-β receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-β receptor-Smad pathway, thus favoring tumor growth. On the other hand, all human tumors overproduce TGF-β whose autocrine and paracrine actions promote tumor cell invasiveness and metastasis. Accordingly, TGF-β induces epithelial–mesenchymal transition, a differentiation switch that is required for transitory invasiveness of carcinoma cells. Tumor-derived TGF-β acting on stromal fibroblasts remodels the tumor matrix and induces expression of mitogenic signals towards the carcinoma cells, and upon acting on endothelial cells and pericytes, TGF-β regulates angiogenesis. Finally, TGF-β suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural killer cells and macrophages, thus preventing immune surveillance of the developing tumor. Current clinical approaches aim at establishing novel cancer drugs whose mechanisms target the TGF-β pathway. In conclusion, TGF-β signaling is intimately implicated in tumor development and contributes to all cardinal features of tumor cell biology.  相似文献   

8.
9.
Phagocytosis of naturally dying cells usually blocks inflammatory reactions in host cells. We have recently observed that clearance of cells dying through autophagy leads to a pro-inflammatory response in human macrophages. Investigating this response further, we found that during engulfment of MCF-7 or 293T cells undergoing autophagic death, but not apoptotic or anoikic ones, caspase-1 was activated and IL-1β was processed, then secreted in a MyD88-independent manner. Autophagic dying cells were capable of preventing some LPS-induced pro-inflammatory responses, such as TNFα, IL-6 and IL-8 induction, but synergized with LPS for IL-1β production. Caspase-1 inhibition prevented macrophage IL-1β release triggered by the dying cells and also other pro-inflammatory cytokines which were not formed in the presence of IL-1 receptor antagonist anakinra either. IL-1β secretion was also observed using calreticulin knock down or necrostatin treated autophagic MCF-7 cells and it required phagocytosis of the dying cells which led to ATP secretion from macrophages. Blocking K (+) efflux during phagocytosis, the presence of apyrase, adding an antagonist of the P2X7 receptor or silencing the NOD-like receptor protein NALP3 inhibited IL-1β secretion. These data suggest that during phagocytosis of autophagic dying cells ATP, acting through its receptor, initiates K (+) efflux, inflammasome activation and secretion of IL-1β, which initiates further pro-inflammatory events. Thus, autophagic death of malignant cells and their clearance may lead to immunogenic response.  相似文献   

10.
11.
Inflammation of stomach mucosa has been postulated as initiator of gastric carcinogenesis and the presence of pro-inflammatory cytokines can regulate specific genes involved in this process. The cellular expression pattern of glycosyltransferases and Lewis antigens detected in the normal mucosa changed during the neoplassic transformation. The aim of this work was to determine the regulation of specific fucosyltransferases and sialyltransferases by IL-1β and IL-6 pro-inflammatory cytokines in MKN45 gastric cancer cells. IL-1β induced significant increases in the mRNA levels of FUT1, FUT2 and FUT4, and decreases of FUT3 and FUT5. In IL-6 treatments, enhanced FUT1 and lower FUT3 and FUT5 mRNA expression were detected. No substantial changes were observed in the levels of ST3GalIII and ST3GalIV. The activation of FUT1, FUT2 and FUT4 by IL-1β is through the NF-κB pathway and the down-regulation of FUT3 and FUT5 by IL-6 is through the gp130/STAT-3 pathway, since they are inhibited specifically by panepoxydone and AG490, respectively. The levels of Lewis antigens after IL-1β or IL-6 stimulation decreased for sialyl-Lewis x, and no significant differences were found in the rest of the Lewis antigens analyzed, as it was also observed in subcutaneous mice tumors from MKN45 cells treated with IL-1β or IL-6. In addition, in 61 human intestinal-type gastric tumors, sialyl-Lewis x was highly detected in samples from patients that developed metastasis. These results indicate that the expression of the fucosyltransferases involved in the synthesis of Lewis antigens in gastric cancer cells can be specifically modulated by IL-1β and IL-6 inflammatory cytokines.  相似文献   

12.
13.
14.
AimsJoint inflammation leads to bone erosion in rheumatoid arthritis (RA), whereas it induces new bone formation in spondyloarthropathies (SpAs). Our aims were to clarify the effects of tumour necrosis factor α (TNF-α) and interleukin 1β (IL-1β) on osteoblast differentiation and mineralization in human mesenchymal stem cells (MSCs).Main methodsIn MSCs, expression of osteoblast markers was assessed by real-time PCR and ELISA. Activity of tissue-nonspecific alkaline phosphatase (TNAP) and mineralization were determined by the method of Lowry and alizarin red staining respectively. Involvement of RUNX2 in cytokine effects was investigated in osteoblast-like cells transfected with a dominant negative construct.Key findingsTNF-α (from 0.1 to 10 ng/ml) and IL-1β (from 0.1 to 1 ng/ml) stimulated TNAP activity and mineralization in MSCs. Addition of 50 ng/ml of IL-1 receptor antagonist in TNF-α-treated cultures did not reverse TNF-α effects, indicating that IL-1 was not involved in TNF-α-stimulated TNAP activity. Both TNF-α and IL-1β decreased RUNX2 expression and osteocalcin secretion, suggesting that RUNX2 was not involved in mineralization. This hypothesis was confirmed in osteoblast-like cells expressing a dominant negative RUNX2, in which TNAP expression and activity were not reduced. Finally, since mineralization may merely rely on increased TNAP activity in a collagen-rich tissue, we investigated cytokine effects on collagen expression, and observed that cytokines decreased collagen expression in osteoblasts from MSC cultures.SignificanceThe different effects of cytokines on TNAP activity and collagen expression may therefore help explain why inflammation decreases bone formation in RA whereas it induces ectopic ossification from collagen-rich entheses during SpAs.  相似文献   

15.
The immune system has evolved to protect the host from invading pathogens and to maintain tissue homeostasis. Although the inflammatory process involving pathogens is well documented, the intrinsic compounds that initiate sterile inflammation and how its progression is mediated are still not clear. Because tissue injury is usually associated with ischemia and the accompanied hypoxia, the microenvironment of various pathologies involves anaerobic metabolites and products of necrotic cells. In the current study, we assessed in a comparative manner the role of IL-1α and IL-1β in the initiation and propagation of sterile inflammation induced by products of hypoxic cells. We found that following hypoxia, the precursor form of IL-1α, and not IL-1β, is upregulated and subsequently released from dying cells. Using an inflammation-monitoring system consisting of Matrigel mixed with supernatants of hypoxic cells, we noted accumulation of IL-1α in the initial phase, which correlated with the infiltration of neutrophils, and the expression of IL-1β correlated with later migration of macrophages. In addition, we were able to show that IL-1 molecules from cells transfected with either precursor IL-1α or mature IL-1β can recruit neutrophils or macrophages, respectively. Taken together, these data suggest that IL-1α, released from dying cells, initiates sterile inflammation by inducing recruitment of neutrophils, whereas IL-1β promotes the recruitment and retention of macrophages. Overall, our data provide new insight into the biology of IL-1 molecules as well as on the regulation of sterile inflammation.  相似文献   

16.
Tseng CW  Yang JC  Chen CN  Huang HC  Chuang KN  Lin CC  Lai HS  Lee PH  Chang KJ  Juan HF 《Proteomics》2011,11(12):2423-2439
Gastric cancer is the second most common cause of cancer deaths worldwide and due to its poor prognosis, it is important that specific biomarkers are identified to enable its early detection. Through 2-D gel electrophoresis and MALDI-TOF-TOF-based proteomics approaches, we found that 14-3-3β, which was one of the proteins that were differentially expressed by 5-fluorouracil-treated gastric cancer SC-M1 cells, was upregulated in gastric cancer cells. 14-3-3β levels in tissues and serum were further validated in gastric cancer patients and controls. The results showed that 14-3-3β levels were elevated in tumor tissues (n=40) in comparison to normal tissues (n=40; p<0.01), and serum 14-3-3β levels in cancer patients (n=145) were also significantly higher than those in controls (n=63; p<0.0001). Elevated serum 14-3-3β levels highly correlated with the number of lymph node metastases, tumor size and a reduced survival rate. Moreover, overexpression of 14-3-3β enhanced the growth, invasiveness and migratory activities of tumor cells. Twenty-eight proteins involved in anti-apoptosis and tumor progression were also found to be differentially expressed in 14-3-3β-overexpressing gastric cancer cells. Overall, these results highlight the significance of 14-3-3β in gastric cancer cell progression and suggest that it has the potential to be used as a diagnostic and prognostic biomarker in gastric cancer.  相似文献   

17.
Context: Mast cell (MC) activation through H4R releases various inflammatory mediators which are associated with allergic asthma.

Objectives: To investigate the siRNA-mediated gene silencing effect of H4R on human mast cells (HMCs) functions and the activation of stress-activated protein kinases (SAPK)/jun amino-terminal kinases (JNK) signaling pathways for the release of ineterleukin-1β (IL-1β) in HMCs.

Materials and methods: H4R expression was analyzed by RT-PCR and western blotting in human mast cell line-1 (HMC-1) cells and H4RsiRNA transfected cells. The effect of H4RsiRNA and H4R-antagonist on H4R mediated MC functions such as intracellular Ca2+ release, degranulation, IL-6 and IL-1β release, and the activation SAPK/JNK signaling pathways were studied. HMC-1 cells were stimulated with 10?μM of histamine (His) and 4-methylhistamine (4-MH) and pretreated individually with H4R-antagonist JNJ7777120 (JNJ), histamine H1 receptor (H1R)-antagonist mepyramine, and signaling molecule inhibitors SP600125 (SP) and Bay117082.

Results: We found that the HMC-1 cells expressed H4R and H4RsiRNA treatment down regulated the H4R expression in HMC-1 cells. Both His and 4-MH induced the intracellular Ca2+ release and degranulation whereas; H4R siRNA and JNJ inhibited the effect. Furthermore, the activation of H4R caused the phosphorylation of SAPK/JNK pathways. H4R gene silencing and pretreatment with SP and JNJ decreased His and 4-MH induced phosphorylation of SAPK/JNK. We found that the activation of H4R caused the release of IL-1β (124.22?pg/ml) and IL-6 (122.50?pg/ml) on HMC-1 cells. Whereas, SAPK/JNK inhibitor (68.36?pg/ml) inhibited the H4R mediated IL-1β release.

Conclusions: Taken together, the silencing of H4R inhibited the H4R mediated MC functions and SAPK/JNK phosphorylation. Furthermore, the H4R activation utilized SAPK/JNK signaling pathway for IL-1β release in HMC-1 cells.  相似文献   

18.
Transforming growth factors 1 and2 (TGF-1 and2), tested in a clonogenic assay against primary cells from human tumors, suppress proliferation to different extents. In nineteen of twenty-six cell cultures, proliferation was < 50% of control with factor at 0.04 or 0.4 nM. Of these, TGF- 2 was more active than TGF-1 in fourteen; and TGF-1 was more active than TGF-2 in five. In seven of the nineteen, proliferation was 0% with one or the other factor. In contrast, cisplatin was much less effective in inhibiting proliferation of some of the same cells even at 1,000 or more times the molar concentration of the factors. Surprisingly, when TGF- 1 and TGF-2 were combined at equal concentrations, the antiproliferative effect of one was cancelled or markedly inhibited by the other.  相似文献   

19.
The present investigation provides for the first time, unambiguous information on the occurrence of hypoxia-inducible factors (HIF-1 and HIF-1 proteins) in normoxia (Nx) and their interaction with hypoxia (Hx) and intracellular Fe2+ chelation in the rat carotid body (CB) glomus cells. HIF-1 bound to HIF-1 translocated into the nucleus is identified on the basis of immunohistochemistry and immunofluorescence. In Nx, a weak expression of HIF-1 was observed in CB glomus cells. However, exposure of CB and glomus cells to Hx (Po27 Torr) and Nx with ciclopirox olamine (CPX, 5 M) for 1 h showed a significant (P<0.001) increase in HIF-1 protein. The CBs and glomus cells exposed to Nx, Hx, and Nx with CPX showed a constant level of HIF-1 protein expression. HIF-1 subunit is continuously synthesized and degraded under normoxic conditions, while it accumulates rapidly following exposure to low oxygen tensions. Hydroxylation of HIF-1 by prolyl hydroxylase for proteasomal degradation was dependent on iron, 2-oxoglutarate, and oxygen concentration. The intracellular iron that acts as a cofactor for prolyl hydroxylase activity belongs to the labile iron pool and can be easily chelated. Thus, chelation of intracellular labile iron by CPX in Nx significantly increased HIF-1 in CB glomus cells. Thus, the results are consistent with the hypothesis that HIF-1 which is present in the glomus cells translocates to the nucleus during exposure to Hx and to CPX in Nx.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号