首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Sonoporation has not been widely explored as a strategy for the transfection of heterologous genes into notoriously difficult‐to‐transfect mammalian cell lines such as B cells. This technology utilizes ultrasound to create transient pores in the cell membrane, thus allowing the uptake of extraneous DNA into eukaryotic and prokaryotic cells, which is further enhanced by cationic microbubbles. This study investigates the use of sonoporation to deliver a plasmid encoding green fluorescent protein (GFP) into three human B‐cell lines (Ramos, Raji, Daudi). A higher transfection efficiency (TE) of >42% was achieved using sonoporation compared with <3% TE using the conventional lipofectamine method for Ramos cells. Upon further antibiotic selection of the transfected population for two weeks, we successfully enriched a stable population of GFP‐positive Ramos cells (>70%). Using the same strategy, Raji and Daudi B cells were also successfully transfected and enriched to 67 and 99% GFP‐positive cells, respectively. Here, we present sonoporation as a feasible non‐viral strategy for stable and highly efficient heterologous transfection of recalcitrant B‐cell lines. This is the first demonstration of a non‐viral method yielding transfection efficiencies significantly higher (42%) than the best reported values of electroporation (30%) for Ramos B‐cell lines.  相似文献   

2.
Fatty acid transport protein 1 (FATP1) is an approximately 63-kDa plasma membrane protein that facilitates the influx of fatty acids into adipocytes as well as skeletal and cardiac myocytes. Previous studies with FATP1 expressed in COS1 cell extracts suggested that FATP1 exhibits very long chain acyl-CoA synthetase (ACS) activity and that such activity may be linked to fatty acid transport. To address the enzymatic activity of the isolated protein, murine FATP1 and ACS1 were engineered to contain a C-terminal Myc-His tag expressed in COS1 cells via adenoviral-mediated infection and purified to homogeneity using nickel affinity chromatography. Kinetic analysis of the purified enzymes was carried out for long chain palmitic acid (C16:0) and very long chain lignoceric acid (C24:0) as well as for ATP and CoA. FATP1 exhibited similar substrate specificity for fatty acids 16-24 carbons in length, whereas ACS1 was 10-fold more active on long chain fatty acids relative to very long chain fatty acids. The very long chain acyl-CoA synthetase activity of the two enzymes was comparable as were the Km values for both ATP and coenzyme A. Interestingly, FATP1 was insensitive to inhibition by triacsin C, whereas ACS1 was inhibited by micromolar concentrations of the compound. These data represent the first characterization of purified FATP1 and indicate that the enzyme is a broad substrate specificity acyl-CoA synthetase. These findings are consistent with the hypothesis that that fatty acid uptake into cells is linked to their esterification with coenzyme A.  相似文献   

3.
Cobalt-alkyne complexes represent a new class of antiproliferative drugs with high activity on cell lines derived from human solid tumors. These promising results encouraged us to evaluate also their effects against leukemia and lymphoma cells. For this purpose, we selected three cobalt complexes with (2-propyn-1-yl)acetylsalicylate (Co-ASS), 2-propyn-1-ol (Co-Prop) and diphenylacetylene (Co-Diph) ligands and investigated their growth inhibiting properties on the LAMA-84, K-562, SD-1 leukemia and U-937 lymphoma cell lines. The cobalt complexes showed high effects on LAMA-84 cells (IC(50)=7.7-16.8 microM) after 48 and 72 h of incubation, but were inactive (K-562, U-937) or low active (SD-1) on the other cell lines. The proliferation of SD-1 cells was reduced by Co-Prop (IC(50)=18.6 microM) and Co-Diph (IC(50)=7.5 microM) only after a 72 h exposure. The antiproliferative effects did not correlate with the accumulation of the drugs into the tumor cells. The time dependent uptake during 24 h determined by atomic absorption spectroscopy was comparably the same in sensitive LAMA-84 and insensitive K-562 cells.  相似文献   

4.
The zero-trans uptake of uniformly and base-labeled inosine and uridine was measured a 25 degrees C in suspensions of Novikoff rat hepatoma cells, Chinese hamster ovary cells, mouse L cells, mouse S49 lymphoma cells and a purine-nucleoside phosphorylase-deficient subline thereof (NSU-1), and in monolayer culture of mouse 3T3 and L cells. The initial velocities of uptake of both nucleosides were about the same in all cell lines investigated, regardless of the position of the label or of the substrate concentration between 3 and 300 microM or whether or not the cells possessed uridine or purine-nucleoside phosphorylase activity. The kinetic parameters for the facilitated transport of uridine and inosine were also similar in phosphorylase positive and negative cell lines (K = 120--260 microM and V = 6--40 pmol/microliters cell water per s) and the transport activities of the cells exceeded their total phosphorylase activities by at least 10-fold for uridine and 1--2-fold for inosine. Chromatographic fractionation of the intracellular contents and of the culture fluid showed that the free nucleosides appeared intracellularly prior to and more rapidly than their phosphorolysis products. During the initial 20--60 s of uptake of U-14C-labeled nucleosides the rates of intracellular appearance of ribose-1-P and base were about the same. After several minutes of incubation, on the other hand, the main intracellular component was ribose-1-P whereas the base attained a low intracellular steady-state concentration and accumulated in the medium due to exit transport. Other nucleosides, dipyridamole and nitrobenzylthioinosine, specifically inhibited the transport of uridine and inosine, and depressed the intracellular accumulation of ribose-1-P and the formation of base commensurate with that inhibition. The data indicate that the metabolism of inosine and uridine by the various cell lines can be entirely accounted for by the facilitated transport of unmodified nucleoside into the cell followed by intracellular phosphorolysis.  相似文献   

5.
Induction of differentiation in HL-60 and U-937 leukemic cell lines, resulted in 1.5-10-fold increase in 45Ca2+ uptake. The increased 45Ca2+ uptake in the differentiating cells was inhibited by verapamil, cromolyn and amiloride. Elevation in Ca2+ uptake in differentiating cells was also demonstrated using the fluorescent probe, fura-2 acetoxymethyl ester. The increased 45Ca2+ uptake was accompanied by a decrease in ouabain-insensitive and -sensitive 86Rb+ uptake. Furthermore, correlation between the changes in these activities was observed. Modulation of extracellular pH affected differentiation: higher pH increased the extent of differentiation.  相似文献   

6.
The cellular pharmacology of the D- and L-enantiomers of beta-5-o-carboranyl-2'-deoxyuridine (CDU), compounds designed for boron neutron capture therapy (BNCT), were studied using human CEM lymphoblast and U-251 glioblastoma cells, at a physiologically achievable concentration (1 microM). Accumulation of the enantiomers was rapid and indistinguishable, reaching cellular concentrations > 40-fold higher than extracellular levels, with approximately 5% persisting in cells after incubation in fresh medium for more than 2 hr. Uptake was not affected by nucleoside uptake inhibitors, but was inhibited by the purine base uptake inhibitor papaverine.  相似文献   

7.
Fatty acids regulate angiogenesis although no such information is available in first trimester placental trophoblast cells despite the fact that angiogenesis is a critical step involving these cells in early placentation. We investigated effects of different fatty acids on angiogenesis, their uptake and metabolism and expression of lipid metabolic genes in first trimester placental trophoblast cells using HTR-8/SVneo cell line. Fatty acid uptake by these cells exhibited a saturable kinetics. Uptake of AA was consistently greater compared with that of EPA and DHA throughout the incubation period of 180 min. Use of triacsin C, an inhibitor of acyl-CoA synthetase, significantly inhibited fatty acid uptake as well as fatty acid induced cell proliferation in these cells. Angiogenic effect (as measured by tube formation) of these fatty acids was in the following order DHA>EPA>AA>OA. Angiogenic effect of these fatty acids (AA, EPA, OA) was significantly decreased in ANGPTL4 knocked down cells, indicating ANGPTL4 may be involved at least in part in fatty acid induced angiogenesis. In addition, these fatty acids altered expression of several lipid metabolic genes such as ADRP, FABP4, FABP3, and COX-2 those are involved in angiogenesis. All these data suggest that fatty acids regulate angiogenic processes in these cells via different mechanisms.  相似文献   

8.
Channeling carbohydrates and fatty acids to thermogenic tissues, including brown and beige adipocytes, have garnered interest as an approach for the management of obesity-related metabolic disorders. Mitochondrial fatty acid oxidation (β-oxidation) is crucial for the maintenance of thermogenesis. Upon cellular fatty acid uptake or following lipolysis from triglycerides (TG), fatty acids are esterified to coenzyme A (CoA) to form active acyl-CoA molecules. This enzymatic reaction is essential for their utilization in β-oxidation and thermogenesis. The activation and deactivation of fatty acids are regulated by two sets of enzymes called acyl-CoA synthetases (ACS) and acyl-CoA thioesterases (ACOT), respectively. The expression levels of ACS and ACOT family members in thermogenic tissues will determine the substrate availability for β-oxidation, and consequently the thermogenic capacity. Although the role of the majority of ACS and ACOT family members in thermogenesis remains unclear, recent proceedings link the enzymatic activities of ACS and ACOT family members to metabolic disorders and thermogenesis. Elucidating the contributions of specific ACS and ACOT family members to trafficking of fatty acids towards thermogenesis may reveal novel targets for modulating thermogenic capacity and treating metabolic disorders.  相似文献   

9.
The influence of beta-carotene (BC) and its derivatives on differentiation, proliferation and apoptosis in three human acute leukemia cell lines was studied. We investigated: (i) the cellular uptake of BC, (ii) the cytotoxicity, (iii) the effect on cell cycle progression and/or apoptosis. The dose- and time-dependent pattern of cellular BC uptake in all studied cell lines was seen. We did not observe any cytotoxic effect of BC and ATRA in the chosen concentrations. There was only limited effect of BC on gene expression. The microarrray analysis of U-937 cell line exposed to BC for 72 h showed an increased expression of BAX gene. This finding was confirmed by real-time Q-PCR analysis, and supported by a flow cytometry apoptosis tests. We did not observe any influence of studied components on cellular proliferation. The induction of differentiation after incubation with ATRA in HL-60 cells was noted. The induction of cellular apoptosis by BC was seen in all studied cell lines. We demonstrated that BC used in the concentrations achievable in vivo does not affect the proliferation and differentiation process of the studied leukemic cell lines, but can influence and enhance the apoptosis by modulating the expression of the regulatory genes.  相似文献   

10.
The ectoenzyme, gamma-glutamyl transpeptidase (GGT, EC ) cleaves glutathione (GSH) to facilitate the recapture of cysteine for synthesis of intracellular GSH. The impact of GGT expression on cell survival during oxidative stress was investigated using the human B cell lymphoblastoid cell line, Ramos. Ramos cells did not express surface GGT and exhibited no GGT enzyme activity. In contrast, Ramos cells stably transfected with the human GGT cDNA expressed high levels of surface GGT and enzymatic activity. GGT-transfected Ramos cells were protected from apoptosis when cultured in cyst(e)ine-deficient medium. The GGT-expressing cells also had lower levels of intracellular reactive oxygen species (ROS). Homocysteic acid and alanine, inhibitors of cystine and cysteine uptake, respectively, caused increased ROS content and diminished viability of GGT expressing cells. Exogenous GSH increased the viability of the GGT-transfected cells more effectively than that of control cells, whereas the products of GSH metabolism prevented death of both the control and GGT-transfected cells comparably. These data indicate that GGT cleavage of GSH and the subsequent recapture of cysteine and cystine allow cells to maintain low levels of cellular ROS and thereby avoid apoptosis induced by oxidative stress.  相似文献   

11.
Luciferase transfected cell lines are used extensively for cancer models, revealing valuable biological information about disease mechanisms. However, these genetically encoded reporters, while useful for monitoring tumor response in cancer models, can impact cell metabolism. Indeed firefly luciferase and fatty acyl-CoA synthetases differ by a single amino acid, raising the possibility that luciferase activity might alter metabolism and introduce experimental artifacts. Therefore knowledge of the metabolic response to luciferase transfection is of significant importance, especially given the thousands of research studies using luciferase as an in vivo bioluminescence imaging reporter. Untargeted metabolomics experiments were performed to examine three different types of lymphoblastic leukemia cell lines (Ramos, Raji and SUP-T1) commonly used in cancer research, each were analyzed with and without vector transduction. The Raji model was also tested under perturbed starvation conditions to examine potential luciferase-mediated stress responses. The results showed that no significant metabolic differences were observed between parental and luciferase transduced cells for each cell line, and that luciferase overexpression does not alter cell metabolism under basal or perturbed conditions.  相似文献   

12.
The cytotoxic effects of azaguanine and thioguanine have been compared in two wild-type V79 cells. To achieve equitoxic effects in both cell lines a 10–20-fold higher concentration of azaguanine than thioguanine was required. Affinity of HGPRT for azaguanine was 10-fold lower than for hypoxanthine in both cell lines and was similar to that for thioguanine in V79S cells. Affinity for thioguanine differed by a factor of 3 in the two cell lines. The rate of cell kill by azaguanine was markedly slower than by thioguanine in both cell lines. Reduction of whole cell uptake of [14C]hypoxanthine incorporation by unlabelled azaguanine was only demonstrable after prolonged incubation periods as was incorporation of [14C]azaguanine into acid-insoluble material. Experiments with cell-free extracts indicated that hypoxanthine acts as a non-competitive inhibitor of the enzyme. The slow rate of dissociation of the HGPRT—azaguanine complex is reflected in the slow rate of killing of wild-type cells. Clones resistant to the cytotoxic effects of these analogues have been selected from both cell lines and have been shown to possess HGPRT with altered kinetic properties. Our data suggest that azaguanine and thioguanine may select for mutations at different sites on the HGPRT molecule in V79 cells and provide possible explanations for the differences in effectiveness of these two agents reported in other cell lines.  相似文献   

13.
Perchlorate blocks thyroidal iodide transport in a dose-dependent manner. The human sodium/iodide symporter (NIS) has a 30-fold higher affinity for perchlorate than for iodide. However, active transport of perchlorate into thyroid cells has not previously been demonstrated by direct measurement techniques. To demonstrate intracellular perchlorate accumulation, we incubated NIS-expressing FRTL-5 rat thyroid cells in various concentrations of perchlorate, and we used a sensitive ion chromatography tandem mass spectrometry method to measure perchlorate accumulation in the cells. Perchlorate caused a dose-related inhibition of 125-iodide uptake at 1-10 microM. The perchlorate content from cell lysate was analyzed, showing a higher amount of perchlorate in cells that were incubated in medium with higher perchlorate concentration. Thyroid-stimulating hormone increased perchlorate uptake in a dose-related manner, thus supporting the hypothesis that perchlorate is actively transported into thyroid cells. Incubation with nonradiolabeled iodide led to a dose-related reduction of intracellular accumulation of perchlorate. To determine potential toxicity of perchlorate, the cells were incubated in 1 nM to 100 microM perchlorate and cell proliferation was measured. Even the highest concentration of perchlorate (100 microM) did not inhibit cell proliferation after 72 h of incubation. In conclusion, perchlorate is actively transported into thyroid cells and does not inhibit cell proliferation.  相似文献   

14.
Abstract

The cellular pharmacology of the D- and L-enantiomers of β-5-o-carboranyl-2′-deoxyuridine (CDU), compounds designed for boron neutron capture therapy (BNCT), were studied using human CEM lymphoblast and U-251 glioblastoma cells, at a physiologically achievable concentration (1 μM). Accumulation of the enantiomers was rapid and indistinguishable, reaching cellular concentrations > 40-fold higher than extracellular levels, with ~5% persisting in cells after incubation in fresh medium for more than 2 hr. Uptake was not affected by nucleoside uptake inhibitors, but was inhibited by the purine base uptake inhibitor papaverine.  相似文献   

15.
Protein kinase C (PKC) activation has been implicated in cellular proliferation in neoplastic astrocytes. The roles for specific PKC isozymes in regulating this glial response, however, are not well understood. The aim of this study was to characterize the expression of PKC isozymes and the role of PKC-eta expression in regulating cellular proliferation in two well characterized astrocytic tumor cell lines (U-1242 MG and U-251 MG) with different properties of growth in cell culture. Both cell lines expressed an array of conventional (alpha, betaI, betaII, and gamma) and novel (theta and epsilon) PKC isozymes that can be activated by phorbol myristate acetate (PMA). Another novel PKC isozyme, PKC-eta, was only expressed by U-251 MG cells. In contrast, PKC-delta was readily detected in U-1242 MG cells but was present only at low levels in U-251 MG cells. PMA (100 nm) treatment for 24 h increased cell proliferation by over 2-fold in the U-251 MG cells, whereas it decreased the mitogenic response in the U-1242 MG cells by over 90%. When PKC-eta was stably transfected into U-1242 MG cells, PMA increased cell proliferation by 2.2-fold, similar to the response of U-251 MG cells. The cell proliferation induced by PMA in both the U-251 MG and U-1242-PKC-eta cells was blocked by the PKC inhibitor bisindolylmaleimide (0.5 micrometer) and the MEK inhibitor, PD 98059 (50 micrometer). Transient transfection of wild type U-251 with PKC-eta antisense oligonucleotide (1 micrometer) also blocked the PMA-induced increase in [(3)H]thymidine incorporation. The data demonstrate that two glioblastoma lines, with functionally distinct proliferative responses to PMA, express different novel PKC isozymes and that the differential expression of PKC-eta plays a determining role in the different proliferative capacity.  相似文献   

16.
Long chain acyl-CoA synthetases are essential enzymes of lipid metabolism, and have also been implicated in the cellular uptake of fatty acids. It is controversial if some or all of these enzymes have an additional function as fatty acid transporters at the plasma membrane. The most abundant acyl-CoA synthetases in adipocytes are FATP1, ACSVL4/FATP4 and ACSL1. Previous studies have suggested that they increase fatty acid uptake by direct transport across the plasma membrane. Here, we used a gain-of-function approach and established FATP1, ACSVL4/FATP4 and ACSL1 stably expressing 3T3-L1 adipocytes by retroviral transduction. All overexpressing cell lines showed increased acyl-CoA synthetase activity and fatty acid uptake. FATP1 and ACSVL4/FATP4 localized to the endoplasmic reticulum by confocal microscopy and subcellular fractionation whereas ACSL1 was found on mitochondria. Insulin increased fatty acid uptake but without changing the localization of FATP1 or ACSVL4/FATP4. We conclude that overexpressed acyl-CoA synthetases are able to facilitate fatty acid uptake in 3T3-L1 adipocytes. The intracellular localization of FATP1, ACSVL4/FATP4 and ACSL1 indicates that this is an indirect effect. We suggest that metabolic trapping is the mechanism behind the influence of acyl-CoA synthetases on cellular fatty acid uptake.  相似文献   

17.
During neurodevelopment neurons increase phospholipid synthesis to generate additional plasma membrane that makes up the growing neurites. Compared with most cell types, neurons contain a high percentage of the polyunsaturated fatty acids (PUFAs) arachidonic acid (AA) and docosahexaenoic acid (DHA). By utilizing PC12 cell lines as a model neuronal cell line, we examined the internalization rate of AA, DHA, and non-essential oleic acid (OA), as well as their effects on neurite outgrowth. When wild type cells were differentiated, the rate of AA and DHA internalization increased 50% more than the rate of OA internalization. When media were supplemented with AA or DHA, the average neurite length was increased by approximately 40%, but supplementation with the same amount of OA had no effect. We also increased the levels of acyl-CoA synthetase-1 (ACS1) and ACS2 proteins to determine whether they contribute to PUFA internalization or neurite outgrowth. Overexpression of ACS1 increased the rate of OA internalization by 55%, and AA and DHA uptake was increased by 25%, but there was no significant change in neurite outgrowth. In ACS2-overexpressing cells, in contrast, the rate of OA internalization increased by 90%, AA by 115%, and DHA by 70%. The average aggregate neurite length in ACS2-overexpressing cells was increased by approximately 40% when the media were supplemented with PUFAs, but there was no change with OA supplementation. Taken together, these results support the hypotheses that ACSs are rate-limiting for fatty acid internalization and that ACS2 enhances neurite outgrowth by promoting PUFA internalization.  相似文献   

18.
Free fatty acids (FFAs), elevated in metabolic syndrome and diabetes, play a crucial role in the development of atherosclerotic cardiovascular disease, and eicosapentaenoic acid (EPA) counteracts many aspects of FFA-induced vascular pathology. Although vascular calcification is invariably associated with atherosclerosis, the mechanisms involved are not completely elucidated. In this study, we tested the hypothesis that EPA prevents the osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC) induced by palmitic acid (PA), the most abundant long-chain saturated fatty acid in plasma. PA increased and EPA abolished the expression of the genes for bone-related proteins, including bone morphogenetic protein (BMP)-2, Msx2 and osteopontin in human aortic smooth muscle cells (HASMC). Among the long-chain acyl-CoA synthetase (ACSL) subfamily, ACSL3 expression was predominant in HASMC, and PA robustly increased and EPA efficiently inhibited ACSL3 expression. Importantly, PA-induced osteoblastic differentiation was mediated, at least in part, by ACSL3 activation because acyl-CoA synthetase (ACS) inhibitor or siRNA targeted to ACSL3 completely prevented the PA induction of both BMP-2 and Msx2. Conversely, adenovirus-mediated ACSL3 overexpression enhanced PA-induced BMP-2 and Msx2 expression. In addition, EPA, ACSL3 siRNA and ACS inhibitor attenuated calcium deposition and caspase activation induced by PA. Notably, PA induced activation of NF-κB, and NF-κB inhibitor prevented PA-induction of osteoblastic gene expression and calcium deposition. Immunohistochemistry revealed the prominent expression of ACSL3 in VSMC and macrophages in human non-calcifying and calcifying atherosclerotic plaques from the carotid arteries. These results identify ACSL3 and NF-κB as mediators of PA-induced osteoblastic differentiation and calcium deposition in VSMC and suggest that EPA prevents vascular calcification by inhibiting such a new molecular pathway elicited by PA.  相似文献   

19.
Treatment of the myeloid cell lines, U-937 or HL-60, with 10 nM of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), for 24 h increased the rate of incorporation of [3H]glycerol into total chloroform extracts. A proportionally greater labeling of the non-polar lipid (NL) fraction compared to the polar, phospholipid (PL), fraction was observed. Chromatographic analysis showed a 6-fold increase in the labeling of triacylglycerols (TAG), a 2-fold increase in diacylglycerols, and no changes in monoacylglycerols. PL labeling showed a 3-fold increase in phosphatidylcholine (PC). The effect of TPA on TAG labeling was selectively observed in myeloid cell lines. No such a change was found in the lymphoid cell line. MOLT-3, which did respond to TPA with increased PC labeling. Incorporation of [3H]arachidonic acid (AA) into TAG by U-937 cells was selectively increased (2.5-fold) after treatment with TPA for 24 h. Treatment of U-937 cells with TPA in serum-free medium resulted in no increased labeling of TAG. These studies suggest that changes in TAG metabolism may be characteristic of myeloid differentiation and depend on the presence of serum factor(s).  相似文献   

20.
Infective larvae of Angiostrongylus cantonensis may take up and incorporate exogenous arachidonic acid into their lipid pool. By scintillation counting, uptake and incorporation were determined to be time dependent. Arachidonic acid was mainly incorporated into phospholipid (56.8%) and neutral lipid (22.4%) pools. In the neutral lipids, 64.0% was diglyceride and 36.0% triglyceride. Phosphatidylcholine was the predominant fatty acid in the phospholipid pool. In addition to the release of leukotriene B4, the parasite was found to generate radiolabelled CO2 after incubation with [U-14C]arachidonate. Moreover, enzymatic analysis of crude extracts revealed the presence of acyl-CoA dehydrogenase (short and long chain), thiolase, enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. These findings suggest that infective larvae of A. cantonensis not only take up and incorporate exogenous arachidonic acid into their lipid pool, but may also utilize the fatty acid through a functional β-oxidation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号