首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
It had been previously demonstrated that the oleate activation of synaptosomal membrane phospholipase D liberated choline which was available for acetylcholine formation. The present investigations were undertaken to determine if oleate might have an effect on choline uptake by synaptosomes. It was observed that oleate interfered with choline uptake when incubations were carried out at 37°C but uptake was stimulated at 3°C. Oleate was the most effective fatty acid of several tested. Preliminary observations suggest the presence of a membranous form of choline acetyltransferase.  相似文献   

2.
Hydrolysis of phosphatidylcholine by phospholipase A2 of synaptic membranes i n Tris-CHl buffer was stimulated by cyclic AMP, cyclic GMP, cyclic CMP, cyclic UMP and adenosine (0.1 mm). In the presence of 1 mm-NaF and cofactors, the same cyclic nucleotides and adenosine (10 mm) stimulated the incorporation of added oleate into the choline glycerophospholipids of synaptic membranes. Cyclic AMP and noradrenaline stimulated the incorporation of added oleate into position 2 of choline glycerophospholipid. Stimulation of net acylation was increased by preincubation in conditions which stimulated hydrolysis of phosphatidylcholine. Cyclic AMP only slightly stimulated the transfer of oleate from oleoyl-CoA into choline glycerophospholipid. The optimum concentration of CaCl2 for the stimulation of hydrolysis by phospholipase A2 by cyclic AMP was 1 mum. Stimulation of the incorporation of added oleate was maximal in the CaCl2 concentration range 1 mum-1mm. MgCl2 also enhanced stimulations, maximum effects being obtained with concentrations of 10 mum and 0.5 mm for hydrolysis by phospholipase A2 and incorporation of added oleate respectively. ATP enhanced the stimulation of incorporation of oleate but had no effect on the cyclic nucleotide stimulation of hydrolysis of added phosphatidylcholine by phospholipase A2. Adenosine, guanosine, ADP and 5'-AMP (all at 1 mm) inhibited the stimulation of incorporation of oleate by cyclic nucleotides and inhibited the transfer of oleate from oleoyl-CoA to phospholipid. They did not inhibit the stimulation of hydrolysis of added phosphatidylcholine (by phospholipase A2) by cyclic nucleotides, but inhibited the stimulation by noradrenaline, acetylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine) and histamine. Preincubation of synaptic membranes in the water or buffer increased the net activity of phospholipase A2. Preincubation with a mixture of ATP and MgCl2 increased the initial rate of acylation of membrane lipid.  相似文献   

3.
Although it is well-established that inositol-containing lipids serve as precursors of intracellular second messenger molecules in chromaffin cells, we describe some findings that show the formation of diacylglycerol from phosphatidylcholine in response to agonist-mediated stimulation. Stimulation of chromaffin cells by acetylcholine produced a high turnover of phosphatidylcholine, as suggested by the release of [3H]choline derived from [3H]-phosphatidylcholine in experiments performed with [3H]choline chloride-prelabeled cells. An enhanced breakdown of phosphatidylcholine was also inferred from the finding of an increased formation of [3H]diacylglycerol in chromaffin cells prelabeled with [3H]glycerol. The diacylglycerol mass that accumulated after stimulation showed a distinct temporal course and seemed to exceed the mass that has been reported to be derived from phosphatidylinositol. In keeping with the purported origin from phosphatidylcholine, diacylglycerol showed a high content in [3H]oleate molecular species. Phospholipase D activity measurements and experiments performed in the presence of propranolol (an inhibitor of phosphatidic acid:phosphohydrolase) suggested that phosphatidylcholine is hydrolyzed by a phospholipase D activity, producing phosphatidic acid, which is subsequently degraded to diacylglycerol, rather than by a phospholipase C. Incubation of chromaffin cells in the presence of atropine before addition of acetylcholine showed complete inhibition of the increased formation of [3H]-diacylglycerol, whereas d-tubocurarine failed to do so. Taken together, these results suggest that acetylcholine activates phosphatidylcholine breakdown and diacylglycerol formation in chromaffin cells via a muscarinic-type receptor.  相似文献   

4.
Hydrolysis of exogenous phosphatidylcholine (PtdCho) to 1,2-diacylglycerol by rat liver plasma membranes was stimulated by oleate concentrations as low as 0.1 mM. In the presence of 75 mM ethanol, the fatty acid also enhanced phosphatidylethanol (PtdEtOH) formation from PtdCho. These effects were also observed with linoleate and arachidonate, but not with saturated fatty acids or detergents, and were minimal in microsomes or mitochondria. Release of [3H]choline from exogenous Ptd[3H]Cho was stimulated by oleate, whereas phosphoryl[3H]choline formation was inhibited. Oleate and other unsaturated, but not saturated, fatty acids also stimulated the conversion of exogenous [14C]phosphatidic acid to [14C]diacylglycerol. These data are consistent with stimulatory effects of these fatty acids on both phospholipase D and phosphatidate phosphohydrolase in liver plasma membranes. The stimulatory effect of guanosine 5'-O-[3-thio]triphosphate) (20 microM) on PtdEtOH and diacylglycerol formation from PtdCho was enhanced by low concentrations of oleate. Phospholipase A2 also stimulated PtdEtOH and diacylglycerol formation from exogenous PtdCho. It is proposed that unsaturated fatty acids may play a physiological role in the regulation of diacylglycerol production through activation of phospholipase D and phosphatidate phosphohydrolase.  相似文献   

5.
Phospholipase D Activity of Rat Brain Neuronal Nuclei   总被引:2,自引:0,他引:2  
Abstract: Phospholipase D activity of rat brain neuronal nuclei, measured with exogenous phosphatidylcholine as substrate, was characterized. The measured activity of neuronal nuclei was at least 36-fold greater than the activity in glia nuclei. The pH optimum was 6.5, and unsaturated but not saturated fatty acids stimulated the enzyme. The optimal concentration of sodium oleate for stimulation of the enzyme activity was 1.2 m M in the presence of 0.75 m M phosphatidylcholine. This phospholipase D activity was cation independent. In the absence of NaF, used as a phosphatidic acid phosphatase inhibitor, the principal product was diglyceride; whereas in the presence of NaF, the principal product was phosphatidic acid. The phospholipase D, in addition to having hydrolytic activity, was able to catalyze a transphosphatidylation reaction. Maximum phosphatidylethanol formation was seen with 0.2–0.3 M ethanol. GTPγS, ATPγS, BeF2, AIF3, phosphatidic acid, and phosphatidylethanol inhibited the neuronal nuclei phospholipase D activity. The addition of the cytosolic fraction of brain, liver, kidney, spleen, and heart to the incubation mixtures resulted in inhibition of the phospholipase D activity. Phospholipase D activity was detectable in nuclei prepared from rat kidney, spleen, heart, and liver.  相似文献   

6.
Noradrenaline stimulated the incorporation of oleate into choline glycerophospholipids of guinea-pig brain synaptic membranes incubated in sodium phosphate buffer. In the presence of 1 mm-NaF, noradrenaline stimulated the incorporation of oleate into the choline glycerophospholipids, phosphatidylinositol, ethanolamine glycerophospholipids, phosphatidylserine and phosphatidic acid of synaptic membranes incubated in 10 mm-Tris-HCl buffer. In Tris-CHl containing 1 mm-NaF, stimulation of incorporation of oleate into choline glycerophospholipids by noradrenaline was enhanced by ATP, CaCl2, MgCl2 and CoA plus dithiothreitol. The optimum concentration of CaCl2 for stimulation by 10 mum-noradrenaline was 10 mum. In the presence of CaCl2, the optimum concentration of ATP-2MgCl2 was in the range 0.1-1 mm. Acetylcholine, carbamoylcholine, 5-hydroxytryptamine, dopamine, histamine and gamma-aminobutyric acid also stimulated the incorporation of oleate into choline glycerophospholipids of synaptic membranes. Sigmoidal dose-response curves were obtained, similar to those obtained previously for stimulation by the same agonists of the hydrolysis of phosphatidylcholine by phospholipase A2 (Gullis & Rowe, 1975a). The initial rate of transfer of oleate from oleoyl-CoA to choline glycerophospholipid was similar to the initial rate of transfer from oleate-albumin, stimulated by noradrenaline. Transfer of oleate from oleoyl-CoA was not appreciably stimulated by noradrenaline, but was stimulated by ATP and MgCl2.  相似文献   

7.
A radiochemical method for the estimation of choline acetyltransferase   总被引:11,自引:8,他引:3  
1. A radiochemical method for the estimation of choline acetyltransferase (choline acetylase) has been devised which involves the formation of labelled acetylcholine from labelled acetate. 2. [1-(14)C]Acetate and coenzyme A are pre-incubated in the presence of non-rate-limiting concentrations of acetyl-coenzyme A synthetase to give [1-(14)C]acetyl-coenzyme A, which then reacts with choline in the presence of the acetyltransferase to give [(14)C]acetylcholine. 3. Any [(14)C]-acetyl-coenzyme A remaining at the end of the reaction is destroyed by the addition of excess of hydroxylamine, and [(14)C]acetylcholine is freed from other labelled compounds by precipitation with sodium tetraphenylborate (Kalignost). 4. The washed precipitate is dissolved in acetonitrile-benzyl alcohol and estimated by scintillation counting. 5. Advantages over other methods are discussed.  相似文献   

8.
The hydrolytic activity of phosphatidylcholine phospholipase D in the synaptosomes from canine brain was examined using a radiochemical assay with 1,2-dipalmitoyl-sn-glycerol-3-phosphoryl[3H]choline as the exogenous substrate. The involvement of G protein(s) in regulation of this enzyme was demonstrated by a 2- to 3-fold stimulation of the basal activity (4.81 +/- 0.44 nmol choline released/mg protein/h) with guanosine 5'-(3-O-thiol)triphosphate (GTP gamma S), guanyl-5'-yl-(beta, gamma-methylene)diphosphonate, aluminum fluoride, or cholera toxin. The stimulation of phospholipase D hydrolytic activity by GTP gamma S was inhibited by 2 mM guanosine 5'-(2-O-thiol)diphosphate. GTP gamma S at the maximum stimulatory concentration (10 microM) had an additive effect on the maximum cholera toxin stimulation of phospholipase D activity. However, the reverse was not true, thus indicating the possibility that more than one G protein may be involved. Furthermore, cholinergic agonists, including acetylcholine, carbachol, and muscarine, were able to increase the phospholipase D hydrolytic activity at low but not maximally stimulatory concentrations of guanine nucleotide. These cholinergic stimulations were antagonized by atropine, a muscarinic blocker. In addition, O-tetradecanoylphorbol 13-acetate, a protein kinase C activator, was able to stimulate the hydrolytic activity of phospholipase D more than 300% in the presence of 0.2 microM GTP gamma S. However, in the absence of GTP gamma S, stimulation was less than 60%. Our results not only indicate that the receptor-G protein-regulated phospholipase D may be directly responsible for the rapid accumulation of choline and phosphatidic acid in the central nervous system but also reveal that muscarinic acetylcholine receptor-G protein-regulated phospholipase D is a novel signal transduction process coupling the neuronal muscarinic receptor to cellular responses.  相似文献   

9.
After 24 h exposure to 0.1 mM oleate or 0.1 mM palmitate there was a 2- and 1.7-fold increase, respectively, in the incorporation of choline into the lipids of type II pneumocytes. Palmitate increased the labeling of disaturated phosphatidylcholine (PC) from 23.0% of total labeled PC in control cultures to 56.6% and oleate decreased labeling of disaturated PC to 9.4%. The percentage of total cellular radioactivity found in the lipid fraction was also markedly higher in the fatty acid-treated cells (83.3% for oleate and 78.7% for palmitate) than in control cultures (64.0%). Radioactivity in water-soluble choline metabolites was correspondingly lower, with phosphocholine representing more than 95% of the label in both control and experimental cultures. After a 3 h pulse-chase period, oleate and palmitate significantly increased the percentage of total cellular radioactivity in PC and decreased the percentage in phosphocholine. Similar results were obtained by adding melittin (1–2 μg/ml) or phospholipase C (0.05 U/ml) to the culture medium. The stimulation of PC synthesis by fatty acids was demonstrated as early as 1 h after exposure to oleate or palmitate and at all concentrations from 0.025 to 0.25 mM. Cytidylyltransferase activity in total cell homogenates was also enhanced by long-term exposure to fatty acids and short-term addition of fatty acids or phospholipase C and melittin to the culture medium. A similar increase in Cytidylyltransferase activity was found in the 100 000 × g particulate fraction of type II cells exposed to fatty acids, whereas no differences were found between the cytosolic fractions of control and treated cells. These results support the concept that an increase in intracellular level of fatty acids either from an exogenous source or following the activation of endogenous phospholipases regulates PC synthesis in fetal type II pneumocytes.  相似文献   

10.
In neonatal rat islet cells prelabelled with [14C-methyl] choline, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate rapidly activated a phospholipase D-like mechanism as suggested by the accumulation in cells and medium of choline (but not of phosphorylcholine or glycerophosphorylcholine, markers for phospholipase C and phospholipase A2 action on phosphatidylcholine). This finding was confirmed by a rise in phosphatidic acid (but not diglyceride or arachidonic acid) in fatty acid-labelled cells. Phospholipase D was also activated by ionomycin or sodium fluoride; however, this was accompanied by parallel increases in diglyceride, monoacylglycerol and arachidonic acid in the absence of phosphorylcholine generation, suggesting that these agents also activated a phospholipase C-diglyceride lipase pathway acting on non-choline-containing phosphoglycerides (presumably phosphoinositides). In conjunction with our recent demonstration of insulinotropic effects of phosphatidic acid (M. Dunlop and R. Larkins, Diabetes, in press), our findings suggest for the first time a possible role for phospholipase D activation in the stimulation of insulin release and may imply a novel site of action for phorbol esters in the regulation of exocytosis.  相似文献   

11.
Abstract— β-Bungarotoxin, a presynaptic neurotoxin isolated from the venom of Bungarus multicinctus , has been shown to initially cause an increase in the frequency of miniature endplate potentials and subsequently block neuromuscular transmission by inhibiting nerve impulse induced release of acetylcholine. In rat brain synaptosomes it causes a Ca2+-dependent release of acetylcholine together, with a strong inhibition of the high affinity choline uptake system. In this report we demonstrate that β-bungarotoxin acts as a phospholipase A2 (phosphatide 2-acyl hydrolase, EC 3.1.1.4), liberating fatty acids from synaptic membrane phospholipids. It also exhibits a striking similarity in a number of neurochemical properties with that of a purified phospholipase A2 from Naja naja siamensis. In addition, both agents produce a marked depolarization of synaptosomal preparations as measured by a fluorescent dye. We propose that disruption of the membrane phospholipids by phospholipase activity can lead to depolarization of the synaptosomal preparation which promotes both transmitter release and inhibition of the energy-dependent high affinity choline uptake system. With this decreased supply of choline, the acetylcholine content of the cell would be gradually depleted leading to a decrease in transmission.  相似文献   

12.
It has recently been shown that the activation of protein kinase C (PKC) induces protein tyrosine phosphorylation in osteoblast-like MC3T3-E1 cells. We previously reported that the activation of PKC stimulates phosphatidylcholine-hydrolyzing phospholipase D in these cells. In this study, we examined whether protein tyrosine kinase is involved in the PKC-induced activation of phospholipase D in MC3T3-E1 cells. Genistein, an inhibitor of protein tyrosine kinases, which by itself had little effect on choline formation, significantly suppressed the formation of choline induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, in a dose-dependent manner. Tyrphostin, an inhibitor of protein tyrosine kinases chemically distinct from genistein, also dose-dependently suppressed the TPA-induced formation of choline. Sodium orthovandate, an inhibitor of protein tyrosine phosphatases, significantly enhanced the TPA-induced formation of choline in a dose-dependent manner. These results strongly suggest that protein tyrosine kinase regulates phospholipase D activity at a point downstream from PKC in osteoblast-like cells.  相似文献   

13.
We studied the dependence of the activity of cabbage phospholipase A on the substrate (phosphatidylcholine) the aggregated state of which is regulated by addition of either anionic (sodium dodecyl sulfate, cholate or oleate) or cationic (cetyl-trimethylammonium bromide) surfactants. Activation of the enzyme induced by anionic surfactants was shown to correlate with the size of their polar groups. The phospholipase hydrolase activity correlated with the transformation of multilayer liposomes into micelles. The relationship between the processes was of a complex character. The dependence of the amount of enzymically released choline on the calcium concentration passed through a sharp maximum in the presence of the anionic detergents and monotonically increased in the presence of the cationic detergent. In the former case, the sharp increase in the enzyme activity was suggested to be caused by precipitation of phospholipase D with the anionic detergent calcium salt, which can be considered as a specific type of immobilization.  相似文献   

14.
Abstract: The hydrolytic and transphosphatidylation activities of rat brain microsomal phospholipase D were highly latent in the absence of an appropriate activator. The most suitable surfactants for this activation were oleate and palmitoleate. Besides the bile acids and unsaturated fatty acids, other naturally occurring surfactants, such as lysophospholipids, acidic phospholipids, acyl-CoA's, and gangliosides, were inactive. Taurodeoxycholate, at optimal concentration, produced a profound inhibition of oleate activation. Phospholipase D activity was detectable in all rat tissues investigated. The optimal incubation temperature for phospholipase D was 30°C, with a break point at 16.1°C in an Arrhenius plot.  相似文献   

15.
Phospholipase A2 activity was measured in homogenized and acid-extracted human polymorphonuclear leukocytes using [1-14C]oleate-labelled autoclaved Escherichia coli as substrate. In whole homogenate and in the supernatant and particular fractions separated by centrifugation at 150,000 X g, phospholipase activity was barely detectable (1-4 pmol/h per 10(6) cell equivalents). By contrast, acid extracts of these fractions contained over 10-times as much phospholipase activity in the dialyzed supernatants (20-300 pmol/h per 10(6) cell equivalents), whereas phospholipase inhibitor(s) were found in the sediment. The acid-solubilized phospholipase A2 activity was absolutely Ca2+-dependent and optimal at pH 7.0-7.5 with 1.0 mM added Ca2+. Addition of the resuspended sediment of the acid extract dose-dependently suppressed phospholipase activity in the supernatant; less than equivalent amounts were sufficient to inhibit 95%. Suppressor activity was lipid-extractable. After thin layer chromatography of lipid extracts, the bulk of inhibitory activity was recovered from the free fatty acid region. Analysis of the fatty acids by gas liquid chromatography showed that 63% were unsaturated. All unsaturated fatty acids tested were potent inhibitors of phospholipase A2 activity (IC50 3-10 microM). Oleoyl-CoA, hydroxyeicosatetraenoic acids and leukotriene D4 were also inhibitory, while methyl oleate, saturated fatty acids and the prostaglandins E2 and F2 alpha had no effect. These in vitro data indicate that neutral-active and calcium-dependent phospholipase A2 in human polymorphonuclear leukocytes is largely suppressed by endogenous inhibitors and suggest that unsaturated fatty acids and some of their metabolites may partly account for this suppressor activity.  相似文献   

16.
Electrical potential changes in pure synaptic vesicles from Torpedo californica were monitored with the fluorescent dye 3,3'-dipropylthiadicarbocyanine iodide. Vesicles resuspended in variable external sodium ion in the presence of gramicidin established sodium ion membrane diffusion potentials. Vesicles resuspended in choline or acetylcholine chloride became hyperpolarized upon addition of gramicidin. Hyperpolarization was subsequently partially reversed spontaneously by choline or acetylcholine influx, which was confirmed by gel filtration, to yield a new, less negative, stable membrane potential. Thus, acetylcholine and choline are taken up electrogenically by synaptic vesicles.  相似文献   

17.
Abstract: The Ewing's sarcoma cell line ICB 112 was examined in detail for a cholinergic phenotype. Choline acetyltransferase activity (12.3 ± 2.9 nmol/h/mg of protein) was associated with the presence of multiple mRNA species labeled with a human choline acetyltransferase riboprobe. Choline was taken up by the cells by a high-affinity, hemicholinium-3-sensitive transporter that was partially inhibited when lithium replaced sodium in the incubation medium; the choline taken up was quickly incorporated into both acetylcholine and phosphorylcholine. High-affinity binding sites for vesamicol, an inhibitor of vesicular acetylcholine transport, were also present. The mRNAs for synaptotagmin (p65) and the 15-kDa proteolipid were readily detected and were identical in size to those observed in cholinergic regions of the human brain. Cumulative acetylcholine efflux was increased by raising the extracellular potassium level or the addition of a calcium ionophore, but the time course of stimulated efflux was slow and persistent. These results show that this morphologically undifferentiated cell line is capable of acetylcholine synthesis and expresses markers for synaptic vesicles as well as proteins implicated in calcium-dependent release but lacks an organized release mechanism.  相似文献   

18.
We examined the effect of thrombin on phosphatidylcholine-hydrolyzing phospholipase D activity in osteoblast-like MC3T3-E1 cells. Thrombin stimulated the formation of choline dose dependently in the range between 0.01 and 1 U/ml, but not the phosphocholine formation. Diisopropylfluorophosphate (DFP)-inactivated thrombin had little effect on the choline formation. The combined effects of thrombin and 12-O-tetradecanoylphorbol-13-acetate, a protein kinase C-activating phorbol ester, on the choline formation were additive. Staurosporine, an inhibitor of protein kinases, had little effect on the thrombin-induced formation of choline. Combined addition of thrombin and NaF, an activator of heterotrimeric GTP-binding protein, did not stimulate the formation of choline further. Pertussis toxin had little effect on the thrombin-induced formation of choline. Thrombin stimulated Ca2+ influx from extracellular space time and dose dependently. The depletion of extracellular Ca2+ by EGTA exclusively reduced the thrombin-induced choline formation. Thrombin had only a slight effect on phosphoinositide-hydrolyzing phospholipase C activity. Thrombin induced diacylglycerol formation and DNA synthesis, and increased the number of MC3T3-E1 cells, but DFP-inactivated thrombin did not. Thrombin suppressed both basal and fetal calf serum-induced alkaline phosphatase activity in these cells. Propranolol, an inhibitor of phosphatidic acid phosphohydrolase, inhibited both the thrombin-induced diacylglycerol formation and DNA synthesis. These results suggest that thrombin stimulates phosphatidylcholine-hydrolyzing phospholipase D due to self-induced Ca2+ influx independently of protein kinase C activation in osteoblast-like cells and that its proliferative effect depends on phospholipase D activation. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Acetylcholine mustard aziridinium ion inhibited the transport of [3H]choline into human erythrocytes. Treatment of the erythrocytes with 1 X 10(-4) M tetraethylpyrophosphate prevented the inhibition of [3H]choline transport by acetylcholine mustard aziridinium ion. Hydrolyzed acetylcholine mustard aziridinium ion inhibited choline transport both in the presence and absence of 1 X 10(-4) M tetraethylpyrophosphate. The product of hydrolysis was equipotent with acetylcholine mustard in its ability to inhibit choline transport; incubation of this product with sodium thiosulfate prevented inhibition of choline transport thereby indicating the presence of an aziridinium ion. The hydrolysis product is likely to be choline mustard aziridinium ion. Results on the efflux of [3H]choline from erythrocytes in the presence of the proposed choline mustard aziridinium ion showed that the mustard moiety was transported into the red cells on the choline carrier. The rate of efflux of [3H]choline produced by choline mustard aziridinium ion was 55% of that produced by the same concentration of choline. It is concluded that acetylcholinesterase (EC 3.1.1.7) of red cells rapidly hydrolyzes acetylcholine mustard aziridinium ion to acetate and choline mustard aziridinium and the latter compound can act as a potent inhibitor of choline transport. This finding would indicate that the hemicholinium-like toxicity of acetylcholine mustard in the mouse is due to the formation of choline mustard aziridinium ion.  相似文献   

20.
Phospholipid base exchange activity using choline as substrate was detected in plasma membranes (PM) and other subcellular fractions of rat liver, with microsomes (MS) showing the highest specific activity. In contrast, phospholipase D activity was only detected in PM. In PM, choline exchanged for phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS), whereas ethanolamine exchanged for PE and PS, and serine exchanged for PS. Ca2+ (10 microM or higher) stimulated choline incorporation into PC in MS and PM, whereas Mg2+ (10 microM or higher) stimulated it only in PM. Ethanolamine and serine incorporation into PM phospholipids was also stimulated by Ca2+, and inositol incorporation by Mn2+. Phospholipase D activity was substantial in the presence of EGTA and was slightly stimulated by Ca2+ concentrations less than 500 microM. It was undetectable without Mg2+. Low concentrations of oleate (1 mM or less) stimulated phospholipase D activity. These concentrations inhibited choline base exchange activity, whereas higher concentrations (3-8 mM) were stimulatory. Comparison of the subcellular distribution and Ca2+, Mg2+, and oleate effects on choline base exchange and phospholipase D activities supports the view that they are catalyzed by different enzymes. The incorporation of choline, but not ethanolamine or serine, into the phospholipids of PM, but not MS, was stimulated by micromolar concentrations of guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) and other slowly hydrolyzable analogues of GTP. GDP, GMP, and other nucleoside triphosphates and their analogues were ineffective. GTP gamma S stimulation of base exchange activity was dependent upon Mg2+ and was inhibited by high concentrations of guanosine 5'-O-2-(thio)diphosphate. In the presence of low concentrations of GTP gamma S, ATP and its slowly hydrolyzable analogues stimulated base exchange activity. Dose-response curves for these nucleotides revealed a potency order consistent with mediation by purinergic receptors of the P2Y type. Base exchange activity stimulated by ATP plus GTP gamma S or GTP gamma S alone was not altered by treatment with pertussis or cholera toxins. These results suggest that the choline base exchange activity of liver PM is regulated by a pertussis toxin-insensitive G-protein linked to P2Y purinergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号