首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Glutathione is an intracellular antioxidant that often becomes depleted in pathologies with high oxidative loads. We investigated the provision of cysteine for glutathione synthesis to the human erythrocyte (red blood cell; RBC). Almost all plasma cysteine exists as cystine, its oxidized form. In vitro, extracellular cystine at 1.0 mM sustained glutathione synthesis in glutathione-depleted RBCs, at a rate of 0.206 ± 0.036 μmol (L RBC)?1min?1 only 20% of the maximum rate obtained with cysteine or N-acetylcysteine. In plasma-free solutions, N-acetylcysteine provides cysteine by intracellular deacetylation but to achieve maximum rates of glutathione synthesis by this process in vivo, plasma N-acetylcysteine concentrations would have to exceed 1.0 mM, which is therapeutically unattainable. 1H-NMR experiments demonstrated that redox exchange reactions between NAC and cystine produce NAC-cysteine, NAC-NAC and cysteine. Calculations using a mathematical model based on these results showed that plasma concentrations of N-acetylcysteine as low as 100 μM, that are attainable therapeutically, could potentially react with plasma cystine to produce ~50 μM cysteine, that is sufficient to produce maximal rates of glutathione synthesis. We conclude that the mechanism of action of therapeutically administered N-acetylcysteine is to reduce plasma cystine to cysteine that then enters the RBC and sustains glutathione synthesis.  相似文献   

2.
Rat liver and kidney tissue slices incubated withN-acetyl [3H]mannosamine incorporated radioactivity into free and boundN-acetylneuraminic acid and CMP-N-acetylneuraminic acid (CMP-NeuAc). Liver and kidney also incorporated radioactivity from intravenously injected [3H]ManNAc intoN-acetylneuraminic acid and CMP-NeuAc. From the decrease in the specific radioactivity of CMP-NeuAc after a single injection ofN-acetyl[3H]mannosamine the half-life of CMP-NeuAc was determined. From this half-life and the pool size of CMP-NeuAc a synthesis rate of CMP-NeuAc was calculated, being 1.2 nmol/min/g wet weight of kidney. In previous experiments a value of 1.0 nmol/min/g wet weight was determined for liver [Ferwerdaet al. (1983) Biochem J 216: 87–92]. The synthesis rate of CMP-NeuAcin vivo was in the same range as the synthesis rate calculated from the turnover of boundN-acetylneuraminic acid, which was 2.7 and 0.4 nmol/min/g wet weight for liver and kidney respectively.The assay conditions for UDP-N-acetylglucosamine 2-epimerase andN-acetylmannosamine kinase were adapted to measure low activitiesin vitro. It appeared that the kinase activity detected in kidney can synthesizeN-acetylmannosamine6-phosphate at a rate sufficient for the observed production ofN-acetylneuraminic acidin vivo. Also a low, but measurable activity of UDP-N-acetylglucosamine 2-epimerase was detected in kidneyin vitro, suggesting that the biosynthetic pathway ofN-acetylneuraminic acid in kidney is the same as in liver. The synthesis rate ofN-acetylneuraminic acid in liver determinedin vivo is approximately 12 times slower than the maximal potential rate calculated from the activities of theN-acetylneuraminic acid (precursor-) forming enzymes as detectedin vitro. This indicates that in liverin vivo the enzymes are working far below their maximal capacity.  相似文献   

3.
Long-term intake of aspartame at the acceptable daily dose causes oxidative stress in rodent brain mainly due to the dysregulation of glutathione (GSH) homeostasis. N-Acetylcysteine provides the cysteine that is required for the production of GSH, being effective in treating disorders associated with oxidative stress. We investigated the effects of N-acetylcysteine treatment (150 mg kg?1, i.p.) on oxidative stress biomarkers in rat brain after chronic aspartame administration by gavage (40 mg kg?1). N-Acetylcysteine led to a reduction in the thiobarbituric acid reactive substances, lipid hydroperoxides, and carbonyl protein levels, which were increased due to aspartame administration. N-Acetylcysteine also resulted in an elevation of superoxide dismutase, glutathione peroxidase, glutathione reductase activities, as well as non-protein thiols, and total reactive antioxidant potential levels, which were decreased after aspartame exposure. However, N-acetylcysteine was unable to reduce serum glucose levels, which were increased as a result of aspartame administration. Furthermore, catalase and glutathione S-transferase, whose activities were reduced due to aspartame treatment, remained decreased even after N-acetylcysteine exposure. In conclusion, N-acetylcysteine treatment may exert a protective effect against the oxidative damage in the brain, which was caused by the long-term consumption of the acceptable daily dose of aspartame by rats.  相似文献   

4.
In a study of the role of taurine in the genesis of epilepsy the effects of metrazol-induced convulsions on the uptake and distribution of taurine in the brain were measured.In vivo we found no significant uptake of taurine in the mouse brain; in rabbit brain in most areas significant taurine uptake was found. The physiological levels of taurine were much higher in mouse brain than in rabbit brain.In vivo the regional levels and the uptake of taurine were not significantly changed after generalized convulsions. Uptakein vivo was lowered in slices obtained from mice treated with metrazol. The lack of effect of metrazol convulsions on cerebral taurinein vivo indicates that further studies are needed to clarify the relationship between taurine, a putative inhibitory transmitter, and epilepsy.Supported in part by a grant from the C.N.R., Rome, Italy  相似文献   

5.
In the long-term cultivated callus cultures ofMatricaria recutita L. the identical concentration changes in the biosynthesis of glutathione, glutamate, aspartate, total thiols and proteins were detected within the subculture. The level of oxidized glutathione during the growth of callus culture was low with the highest value 10.66 nmol g-1 on the 13th day of subculture. The ratio GSH/GSSG which significantly influences the redox processes in a cell, and the activity of glutathione reductase increased from the 8th day. Ascorbate formation was detected on the 17th day, although no relation between the ascorbate synthesis and the concentration of glutathione and glutathione reductase was found.  相似文献   

6.
N-Methyl-d-aspartate (NMDA)-receptor stimulation evoked a selective and partly delayed elevated efflux of glutathione, phosphoethanolamine, and taurine from organotypic rat hippocampus slice cultures. The protein kinase inhibitors H9 and staurosporine had no effect on the efflux. The phospholipase A2 inhibitors quinacrine and 4-bromophenacyl bromide, as well as arachidonic acid, a product of phospholipase A2 activity, did not affect the stimulated efflux. Polymyxin B, an antimicrobal agent that inhibits protein kinase C, and quinacrine in high concentration (500 µM), blocked efflux completely. The stimulated efflux after but not during NMDA incubation was attenuated by a calmodulin antagonist (W7) and an anion transport inhibitor (DNDS). Omission of calcium increased the spontaneous efflux with no or small additional effects by NMDA. In conclusion, NMDA receptor stimulation cause an increased selective efflux of glutathione, phosphoethanolamine and taurine in organotypic cultures of rat hippocampus. The efflux may partly be regulated by calmodulin and DNDS sensitive channels.  相似文献   

7.
A high-performance liquid chromatographic method for the determination of free reduced cysteine and N-acetylcysteine in human plasma at the basal state and after oral administration of N-acetylcysteine is described. The method is based on acid-catalysed conversion of plasma thiols to the corresponding S-nitroso derivatives by excess of nitrite and their subsequent cation-pairing RP-HPLC with detection at 333 nm. Recovery rates of cysteine and N-acetylcysteine added to human plasma were 94.6 and 99.6%, respectively. Inter- and intra-day precision were below 6%. In healthy humans (n=5), free reduced cysteine was determined to be (mean±S.E.) 10.0±0.96 μM. No N-acetylcysteine was detected in plasma of these subjects above the limit of detection (e.g. 170 nM). The method was successfully applied to a pharmacokinetic study on orally administered N-acetylcysteine to healthy volunteers.  相似文献   

8.
Taurine and Zinc Modulate Outgrowth from Goldfish Retinal Explants   总被引:1,自引:0,他引:1  
Taurine and zinc, highly concentrated in the retina, possess similar properties in this structure, such as neuro-protection, membrane stabilization, influencing regeneration, and modulating development, maybe by acting in parallel or as interacting agents. We previously demonstrated that there are some correlations between taurine and zinc levels in hippocampus, dentate gyrus and retina of the developing rat. In the present study we evaluate the possible effects of taurine and zinc on outgrowth from goldfish retinal explants. The optic nerve was crushed 10 days before plating and culturing retinal explants in Leibovitz medium with 10% fetal calf serum and gentamicin. Neurites were measured with SigmaScanPro after 5 days in culture. Taurine (HPLC) and zinc (ICP) concentrations were determined in the retina between 1 and 180 days after crushing the optic nerve. Zinc sulfate (0.01–100 μM), N,N, N′,N′-tetrakis (pyridylmethyl) ethylenediamine (TPEN, 0.1–5 nM) and diethylenetriamine penta-acetic acid (DTPA, 10–300 μM), intracellular and extracellular zinc chelators, respectively, were added to the medium. TPEN was also injected intraocular (0.1 nM). Combinations of them were added with taurine (1–16 mM). Taurine concentrations were elevated in the retina 72 h after the crush, but were normalized by 180 days, those of zinc increased at 24 h, preceding the increase of taurine. The axonal transport of [3H]taurine from the optic tectum to the retina was not affected in fish with or without crush of the optic nerve at early periods after the injection, indicating an increase of it post-lesion. Zinc sulfate produced a bell-shaped concentration dependency on in vitro outgrowth, with stimulation at 0.05 μM, and inhibition at higher levels, also increased the effect of 4 mM taurine at 0.02 μM, but diminished it at higher concentrations in the medium. TPEN decreased outgrowth at 1 nM, but not at 0.5 nM, although the simultaneous presence of 4 mM taurine and 0.5 nM TPEN decreased outgrowth respecting the stimulation by taurine alone. The intraocular administration of TPEN decreased outgrowth in vitro, an effect counteracted by the addition of 4 mM taurine to the culture medium. DTPA decreased outgrowth from 10 μM in the medium. The present results indicate that an optimal zinc concentration is necessary for outgrowth of goldfish retinal explants and that, in zinc deficient retina, taurine could stimulate outgrowth. In addition, the observations of variations in tissue concentrations and of the effects of intraocular administration of TPEN indicate that these effects could occur in vivo. Special issue dedicated to Dr. Simo S. Oja  相似文献   

9.
—The inhibition of γ-glutamylcysteine synthetase and its influence on the concentration of intermediates associated with the metabolism of glutathione was studied in mice receiving methionine sulfoximine, a convulsant agent. The activity of the enzyme decreased significantly in the liver and kidney 1-4 h after administration of methionine sulfoximine; the activity of the enzyme in the brain was unchanged after 1 and 2 h but decreased significantly after 4 h. There was a rapid and sharp decrease in the concentration of glutathione in the kidney and a slower decrease in the liver. Brain glutathione concentrations were unaffected. Methionine sulfoximine in vivo, inhibited the synthesis of l -γ-glutamyl-l -α-aminobutyrate after administration of l -α-aminobutyrate, a reaction catalyzed by γ-glutamylcysteine synthetase. The inhibitor also lowered the concentration of pyrrolidone carboxylate in mouse tissues and prevented the accumulation of this intermediate after administration of l -α-aminobutyrate. The results show that methionine sulfoximine in vivo affects the metabolism of glutathione and that this action may contribute to its convulsive properties.  相似文献   

10.
Diabetic retinopathy (DR) is a leading cause of blindness globally and its pathogenesis has still not been completely elucidated. Some studies show a close relation between oxidative stress and DR. This study was aimed to investigate the effects of anti-oxidant in DR and expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1) from retinal blood vessels in diabetic rats. Diabetic rat models were established by intraperitoneal injection of streptozotocin (60 mg/kg) and confirmation of high serum glucose levels in the animals. Antioxidant N-acetylcysteine was given to diabetic rats to elicit antioxidative responses, and rats were sacrificed at 3 and 5 months. Ultrastructures of retinal vascular tissues were observed under transmission electron microscope, and pathology of retinal capillaries was examined using retinal vascular digest preparations. Changes in the expression of VEGF and ICAM-1 were examined by immunofluorescence; and reactive oxygen species contents in the retinas were detected using dichlorofluorescein assay. Compared with normal rats, diabetic rats displayed significant retinopathy both under electronic and light microscopy, accompanied by elevated reactive oxygen species contents in the retinas; N-acetylcysteine treatment alleviated the pathological changes and also decreased reactive oxygen species, most significantly at 5 months. VEGF and ICAM-1 expressions were significantly up-regulated in retinal blood vessels from diabetic rats, and such up-regulation was attenuated by N-acetylcysteine treatment. The expression of both factors returned to basal levels after 5-month treatment with N-acetylcysteine. Long-term N-acetylcysteine treatment exerts protective effects on the diabetic retinas, possibly through its down-regulation of the expression of VEGF and ICAM-1, and reduction of reactive oxygen species content in retinal vascular tissues in diabetic rats.  相似文献   

11.
Summary Effect ofN-acetyl-l-cysteine (NAC) administration on cysteine and glutathione (GSH) contents in rat liver and kidney was studied using intact and diethyl maleate (DEM)-treated rats and perfused rat liver. Cysteine contents increased rapidly, reaching peak at 10 min after intraperitoneal NAC administration. In liver mitochondria it increased slowly, reaching peak at 60 min. GSH content did not change significantly in these tissues. However, in liver and kidney depleted of GSH with DEM, NAC administration restored GSH contents in 60 and 120 min, respectively. Perfusion with 10 mM NAC resulted in 76% increase in liver cysteine content, but not in GSH content. Liver perfusion of DEM-injected rats with 10 mM NAC restored GSH content by 15%. Present findings indicate that NAC is an effective precursor of cysteine in the intact liver and kidney and in the perfused rat liver, and that NAC stimulated GSH synthesis in GSH-depleted tissues.  相似文献   

12.
The role of regenerative processes in the protective effect of N-acetyl-L-cysteine (NAC) against bromoethylamine-induced renal papillary necrosis was assessed in rats given bromoethylamine (BEA) (1.2 mmol/kg), N-acetylcysteine (6 mmol/kg), or N-acetylcysteine plus BEA. Renal papillary slices were dissected after 15 hours of treatment, and 14C-choline incorporation into total phospholipid, lysophosphatidylcholine, sphingomyelin, and phosphatidylcholine was measured. Bromoethylamine elicited an increase in the incorporation of 14C-choline into choline-containing phospholipid, an effect that was abolished when N-acetylcysteine was administered prior to bromoethylamine. These studies indicate that the defensive mechanism of N-acetylcysteine against bromoethylamine-induced renal papillary necrosis is not related to regenerative processes and that N-acetylcysteine abolishes the bromoethylamine-induced choline incorporation into papillary phospholipid. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Lee SY  Kim YC 《Amino acids》2007,33(3):543-546
Summary. Mice were supplemented with β-alanine (3%) in drinking water for one week. β-Alanine intake reduced hepatic taurine levels, but elevated cysteine levels significantly. Hepatotoxicity of CCl4 in mice fed with β-alanine was decreased as determined by changes in serum enzyme activities. Hepatic glutathione and taurine concentrations after CCl4 challenge were increased markedly by β-alanine intake. The enhanced availability of cysteine for synthesis of glutathione and/or taurine appears to account for the hepatoprotective effects of β-alanine against CCl4-induced liver injury.  相似文献   

14.
《Biomarkers》2013,18(2):107-114
Abstract

We have previously reported on the changes in urinary taurine levels in rats following treatment with some hepatotoxic agents and compounds reported to affect protein synthesis. This study follows the time course of the elevation of urinary taurine after treatment of rats with cycloheximide which was maximal 8–12 h alter dosing and was dose related. [3H]-leucine incorporation into proteins was used as an indicator of protein synthesis. There was a significant reduction in [3H]-leucine incorporation into acid precipitable proteins 8 h but not 24 h after dosing. The reduction in incorporation was negatively correlated with the raised levels of both serum and urinary taurine 8 h after dosing. Liver glutathione was raised both 8 and 24 h after dosing rats and liver taurine was significantly reduced at 8 h. It is suggested that measuring urinary taurine in collections made continuously might provide a simple, non-invasive biomarker for monitoring the effects of xenobiotics or other external stimuli on the status of protein synthesis.  相似文献   

15.
《Chronobiology international》2013,30(8):1021-1035
In the laboratory rat, a number of physiological parameters display seasonal changes even under constant conditions of temperature, lighting, and food availability. Since there is evidence that prolactin (PRL) is, among the endocrine signals, a major mediator of seasonal adaptations, the authors aimed to examine whether melatonin administration in drinking water resembling in length the exposure to a winter photoperiod could affect accordingly the 24-h pattern of PRL synthesis and release and some of their anterior pituitary redox state and circadian clock modulatory mechanisms. Melatonin (3?µg/mL drinking water) or vehicle was given for 1 mo, and rats were euthanized at six time intervals during a 24-h cycle. High concentrations of melatonin (>2000 pg/mL) were detected in melatonin-treated rats from beginning of scotophase (at 21:00?h) to early photophase (at 09:00?h) as compared with a considerably narrower high-melatonin phase observed in controls. By cosinor analysis, melatonin-treated rats had significantly decreased MESOR (24-h time-series average) values of anterior pituitary PRL gene expression and circulating PRL, with acrophases (peak time) located in the middle of the scotophase, as in the control group. Melatonin treatment disrupted the 24-h pattern of anterior pituitary gene expression of nitric oxide synthase (NOS)-1 and -2, heme oxygenase-1 and -2, glutathione peroxidase, glutathione reductase, Cu/Zn- and Mn-superoxide dismutase, and catalase by shifting their acrophases to early/middle scotophase or amplifying the maxima. Only the inhibitory effect of melatonin on pituitary NOS-2 gene expression correlated temporally with inhibition of PRL production. Gene expression of metallothionein-1 and -3 showed maxima at early/middle photophase after melatonin treatment. The 24-h pattern of anterior pituitary lipid peroxidation did not vary after treatment. In vehicle-treated rats, Clock and Bmal1 expression peaked in the anterior pituitary at middle scotophase, whereas that of Per1 and Per2 and of Cry1 and Cry2 peaked at the middle and late photophase, respectively. Treatment with melatonin raised mean expression of anterior pituitary Per2, Cry1, and Cry2. In the case of Per1, decreased MESOR was observed, although the single significant difference found between the experimental groups when analyzed at individual time intervals was increase at early scotophase in the anterior pituitary of melatonin-treated rats. Melatonin significantly phase-delayed expression of Per1, Per2, and Cry1, also phase-delayed the plasma corticosterone circadian rhythm, and increased the amplitude of plasma corticosterone and thyrotropin rhythms. The results indicate that under prolonged duration of a daily melatonin signal, rat anterior pituitary PRL synthesis and release are depressed, together with significant changes in the redox and circadian mechanisms controlling them. (Author correspondence: ; )  相似文献   

16.
Taurine and zinc exert neurotrophic effects. Zinc modulates Na+/Cl-dependent transporters. This study examined the effect of zinc (ZnSO4) ex vivo and zinc chelator N,N,N′,N′-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) in vivo on [3H]taurine transport in goldfish retina. The effect of TPEN in vivo on taurine and zinc levels was determined. Isolated cells were incubated in Ringer with zinc (0.1–100 μM). Taurine transport was done with taurine (0.001–1 mM) and 50 nM [3H]taurine. Zinc (100 μM) noncompetitively inhibited taurine transport. TPEN was administered intraocularly and retinas extracted 3, 5 and 10 days later. Taurine was determined by HPLC (nmol/mg protein) and zinc by spectrophotometry ICP (mg/mg protein). Taurine and zinc levels decreased at 3 days and increased at 10 days after TPEN administration. At 10 days after intraocular TPEN, taurine transport affinity increased (K s = 0.018 ± 0.006 vs. 0.028 ± 0.008 mM). Apparently, zinc deficiency affects the taurine–zinc complex and taurine availability. The increased taurine uptake affinity by TPEN was possibly associated with a response to maximize retinal taurine content at low zinc concentration.  相似文献   

17.
Summary The present study was designed to examine which type of adenosine receptors was involved in enhancement of high K+-evoked taurine release fromin vivo rat hippocampus using microdialysis. Perfusion with 0.5 or 5.0 mM adenosine enhanced high K+-evoked taurine release. Perfusion with 2M R(–)-N6-2-phenylisopropyladenosine (PIA), a selective adenosine A1 receptor agonist, did not modulate taurine release. Perfusion with 1M 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective adenosine A1 receptor antagonist, increased taurine release. On the other hand, perfusion with 20M 2-[4-(2-carboxyethyl)phenethylamino]-5-N-ethyl-carboxamideadenosine (CGS21680), a selective adenosine A2A receptor agonist, enhanced taurine release, while perfusion with 1 mM 3,7-dimethyl-propagylxanthine (DMPX), an adenosine A2 receptor antagonist, did not affect taurine release. These results demonstrate that adenosine enhances high K+-evoked taurine release via activation of adenosine A2A receptors from both neurons and glial cells ofin vivo rat hippocampus.  相似文献   

18.
Abstract: The influence of complete and pronounced incomplete cerebral ischemia on cortical concentrations of reduced (GSH) and oxidized (GSSG) glutathione was studied in lightly anaesthetized (70% N2 O) rats. GSH was extracted with HCl-methanol-perchloric acid and GSSG with trichloroacetic acid in the presence of N-ethylmaleimide and measured fluorometrically, giving normal concentrations in cortical tissue of about 2 and 0.01 μmol.g?1 respectively. Reversible complete ischemia was induced by increasing the intracranial pressure to above the systolic blood pressure by infusing mock CSF into the cisterna magna. Reversible pronounced incomplete ischemia was induced by bilateral carotid artery clamping combined with hypovolemic hypotension. Whether complete or incomplete, a 30-min ischemic period caused a similar decrease in cortical GSH concentration (to about 90% of control) without any concomitant accumulation of GSSG in the tissue (or in CSF). Prolongation of the ischemic period (complete ischemia) to maximally 120 min caused an almost linear decrease of the tissue glutathione concentration to 45% of the preischemic value. During subsequent recirculation following a 30 min period of either complete or pronounced incomplete ischemia, there was a further decrease in cortical GSH concentrations without a reciprocal increase in GSSG concentrations. Lipid peroxidation (verified by determination of malondialdehyde production) induced in brain cortical tissue in vitro caused oxidation of tissue GSH with accumulation of GSSG. As the observed decrease in GSH during brain ischemia in vivo was not accompanied by any reciprocal increase in GSSG the results fail to support the hypothesis that peroxidative damage occurs during or following brain ischemia. The finding of an unchanged GSSG concentration does, however, not exclude the possibility of an increased turnover rate in the glutathione reductase reaction. It is concluded that the observed decrease in tissue GSH concentration mainly reflects a decrease in the glutathione pool size, due to an imbalance between breakdown and synthesis secondary to tissue energy failure.  相似文献   

19.
Sensitivity of baker’s yeast to disulfiram (DSF) and hypersensitivity of a mutant devoid of Cu, Zn-superoxide dismutase to this compound is reported, demonstrating that yeast may be a simple convenient eukaryotic model to study the mechanism of DSF toxicity. DSF was found to induce oxidative stress in yeast cells demonstrated by increased superoxide production and decrease of cellular glutathione content. Anoxic atmosphere and hydrophilic antioxidants (ascorbate, glutathione, dithiothreitol, cysteine, and N-acetylcysteine) ameliorated DSF toxicity to yeast indicating that oxidative stress plays a critical role in the cellular action of DSF.  相似文献   

20.
Elevated blood glucose in uncontrolled diabetes is causallycorrelated with diabetic microangiopathy. Hyperglycemia-triggered accelerated endothelial cell apoptosis is a critical event in theprocess of diabetes-associated microvascular disease. The conditionallysemiessential amino acid taurine has been previously shown to protectagainst human endothelial cell apoptosis. Therefore, this study wasdesigned to investigate the role of taurine in the prevention ofhigh-glucose-mediated cell apoptosis in human umbilical veinendothelial cells (HUVEC) and the mechanisms involved. Exposure ofHUVEC to 30 mM glucose for 48 h (short-term) and 14 days (long-term)resulted in a significant increase in apoptosis, compared with normalglucose (5.5 mM; P < 0.05).High-glucose-induced DNA fragmentation preferentially occurred in the Sphase cells. Mannitol (as osmotic control) at 30 mM failed to induceHUVEC apoptosis. Taurine prevented high-glucose-induced HUVECapoptosis, which correlates with taurine attenuation ofhigh-glucose-mediated increased intracellular reactive oxygen species(ROS) formation and elevated intracellularCa2+ concentration([Ca2+]i)level. Antioxidants, DMSO, N-acetylcysteine, and glutathione, only partly attenuated high-glucose-inducedHUVEC apoptosis. Glucose at 30 mM did not cause HUVEC necrosis.However, both glucose and mannitol at 60 mM caused HUVEC necrosis asrepresented by increased lactate dehydrogenase release and cell lysis.Taurine failed to prevent hyperosmolarity-induced cell necrosis. Theseresults demonstrate that taurine attenuates hyperglycemia-induced HUVECapoptosis through ROS inhibition and[Ca2+]istabilization and suggest that taurine may exert a beneficial effect inpreventing diabetes-associated microangiopathy.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号