首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elderly reportedly have a significantly higher % of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in plasma and red cell lipids. However, these observations are from a few small studies and the health status of the elderly in these studies is for the most part unclear. Since the elderly are susceptible to cardiovascular and neurological illnesses that seem to be related in part to lower intake of n-3 fatty acids it seems paradoxical that their blood levels of EPA and DHA would be higher than in young adults. We report here plasma fatty acid profiles and their response to supplementation with two types of fish oils from several of our recent studies in the moderately healthy elderly. We define the moderately healthy elderly as those who were in good physical condition, had no cognitive decline and, if present, in whom hypothyroidism, hyperlipidemia and/or hypertension were well-controlled. As shown previously, we confirm the higher % EPA and % total n-3 fatty acids (but not DHA) in fasting plasma and extend these findings to include higher plasma concentrations (mg/L) of n-3 fatty acids as well. The EPA-predominant supplement raised DHA only in the young, whereas the DHA-predominant supplement raised EPA more in the young than in the elderly. The moderately healthy elderly clearly have higher plasma n-3 fatty acids but whether this reflects differences in intake versus aging-related changes in n-3 fatty acid metabolism remains to be elucidated.  相似文献   

2.
Dietary intake of omega-3 fatty acids has been positively correlated with cardiovascular and neuropsychiatric health in several studies. The high seafood intake by the Japanese and Greenland Inuit has resulted in low ratios of the omega-6 fatty acid arachidonic acid (AA, 20:4n-6) to eicosapentaenoic acid (EPA, 20:5n-3), with the Japanese showing AA:EPA ratios of approximately 1.7 and the Greenland Eskimos showing ratios of approximately 0.14. It was the objective of this study to determine the effect of supplementation with high doses (60 g) of flax and fish oils on the blood phospholipid (PL) fatty acid status, and AA/EPA ratio of individuals with Attention Deficit Hyperactivity Disorder (ADHD), commonly associated with decreased blood omega-3 fatty acid levels. Thirty adults with ADHD were randomized to 12 weeks of supplementation with olive oil (< 1% omega-3 fatty acids), flax oil (source of alpha-linolenic acid; 18:3n-3; alpha-LNA) or fish oil (source of EPA and docosahexaenoic acid; 22:6n-3; DHA). Serum PL fatty acid levels were determined at baseline and at 12 weeks. Flax oil supplementation resulted in an increase in alpha-LNA and a slight decrease in the ratio of AA/EPA, while fish oil supplementation resulted in increases in EPA, DHA and total omega-3 fatty acids and a decrease in the AA/EPA ratio to values seen in the Japanese population. These data suggest that in order to increase levels of EPA and DHA in adults with ADHD, and decrease the AA/EPA ratio to levels seen in high fish consuming populations, high dose fish oil may be preferable to high dose flax oil. Future study is warranted to determine whether correction of low levels of long-chain omega-3 fatty acids is of therapeutic benefit in this population.  相似文献   

3.
Familial hypercholesterolemia (FH) carries an increased vascular risk due to lifelong elevation of the number of circulating low-density lipoprotein (LDL) particles, but also to alterations in triglyceride and high-density lipoprotein (HDL) metabolism. Supplementation with eicosapentaenoic (EPA) or docosahexaenoic (DHA) acids reduced LDL particle number and/or increased LDL size in different populations, but studies in FH are scarce. We investigated cross-sectionally whether intake of EPA and DHA in the usual diet is associated with a less atherogenic lipoprotein profile in subjects with FH (n=215). Lipoprotein particle number and size distributions were assessed with nuclear magnetic resonance spectroscopy. EPA and DHA proportions in serum phosphatidylcholine, a biomarker of fish intake, were determined by gas chromatography. After adjusting for cardiovascular risk factors, including fasting triglycerides, serum phosphatidylcholine EPA (but not DHA) related inversely to medium VLDL, total LDL particle number and very small LDL, resulting in a net direct association with LDL size. Additionally, EPA was directly associated with concentrations of large HDL. We conclude that increased serum phosphatidylcholine EPA derived from seafood intake with the usual diet is associated with a less atherogenic lipoprotein profile in subjects with FH. Increased fish intake and/or EPA supplements might contribute to reduce the residual risk of statin-treated FH subjects.  相似文献   

4.
The cardiovascular consequences of eicosapentaenoic acid (EPA)- and docosahexaenoic acid (DHA)-specific intake were evaluated in vivo in a hyperinsulinemia (HI) model induced by dietary fructose intake. Wistar rats were fed a diet containing (or not for control) either EPA or DHA. The rise in blood pressure (BP), heart rate, and ECG were continuously monitored using an intra-abdominal telemetry system. The myocardial phospholipid fatty acid profile was significantly affected by DHA intake but less by EPA intake. The data indicated a reduced rise in BP in both DHA and EPA HI groups compared with controls. This result was confirmed by tail-cuff measurement after 5 wk [133.3 +/- 1.67 and 142.5 +/- 1.12 mmHg in n-3 polyunsaturated fatty acid (PUFA) and control groups, respectively], whereas n-3 PUFA did not affect BP in non-HI rats (116.3 +/- 3.33 mmHg). The heart rate was lower in the HI DHA group than in the other two dietary HI groups. Moreover, DHA induced a significantly shorter QT interval. It is concluded that the cardioactive component of fish oils is DHA through a mechanism that may involve the cardiac adrenergic system.  相似文献   

5.
Cardiovascular disease prevention and treatment   总被引:1,自引:1,他引:0  
The incidence of fatal and non-fatal cardiovascular disease (sudden cardiac death (SCD), myocardial infarction, others) varies, depending on conventional risk factors. However, in Western countries, like the US or Germany, incidences of fatal and non-fatal cardiovascular disease are far higher than in countries like Japan. In the present article, these differences are discussed and related to eicosapentaenoic acid (C20:5omega-3 or C20:5n-3; EPA) and docosahexaenoic acid (C22:6omega-3; DHA). Dietary intake of EPA and DHA and a number of other factors determine levels of EPA and DHA in an individual—best assessed as the omega-3 index, defined as the percentage of EPA and DHA in red cells, and analyzed in a standardized fashion. A review of the literature, expanded by measurements of the omega-3 index, indicates that the risk of sudden cardiac death correlates inversely with the omega-3 index. For persons with an omega-3 index <4%, risk is tenfold, as compared to persons with an omega-3 index >8%. A similar, less-pronounced, correlation exists for non-fatal cardiovascular disease. EPA and DHA have anti-arrhythmic and anti-atherosclerotic mechanisms of action. In large-scale intervention studies, intake of EPA and DHA has been demonstrated to reduce SCD and non-fatal cardiovascular events. Assessing or recommending dietary intake of EPA and DHA does not predict the resulting omega-3 index. Taken together, the omega-3 index is a biomarker to assess a person's content of omega-3 fatty acids, and thus the risk for sudden cardiac death, as well as non-fatal cardiovascular events. EPA and DHA prevent fatal and non-fatal cardiovascular disease and complications of congestive heart failure.  相似文献   

6.
Omega-3 fatty acids from fish oils and cardiovascular disease   总被引:10,自引:0,他引:10  
Fish and fish oils contain the omega-3 fatty acids known as eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Epidemiological studies have shown an inverse relation between the dietary consumption of fish containing EPA/DHA and mortality from coronary heart disease. These relationships have been substantiated from blood measures of omega-3 fatty acids including DHA as a physiological biomarker for omega-3 fatty acid status. Controlled intervention trials with fish oil supplements enriched in EPA/DHA have shown their potential to reduce mortality in post-myocardial infarction patients with a substantial reduction in the risk of sudden cardiac death. The cardioprotective effects of EPA/DHA are widespread, appear to act independently of blood cholesterol reduction, and are mediated by diverse mechanisms. Their overall effects include anti-arrhythmic, blood triglyceride-lowering, anti-thrombotic, anti-inflammatory, endothelial relaxation, plus others. Current dietary intakes of EPA/DHA in North America and elsewhere are well below those recommended by the American Heart Association for the management of patients with coronary heart disease. (Mol Cell Biochem 263: 217–225, 2004)  相似文献   

7.
Epidemiological studies in Greenland Eskimos led to the hypothesis that marine oils rich in n-3 fatty acids (also referred to as omega (omega)-3 fatty acids) are hypolipidemic and ultimately antiatherogenic. Metabolically controlled trials in which large amounts of fish oil were fed to normal volunteers and hyperlipidemic patients showed that these fatty acids (FAs) are effective at lowering plasma cholesterol and triglyceride levels. Although more recent trials using smaller, more practical doses of fish oil supplements have confirmed the hypotriglyceridemic effect, they have shown little effect on total cholesterol levels; hypertriglyceridemic patients have even experienced increases in low density lipoprotein cholesterol (LDL-C) levels of 10-20% while taking n-3 FA supplements. Discrepancies among fish oil studies regarding the effects of n-3 FAs on LDL-C levels may be understood by noting that, in the majority of studies reporting reductions in LDL-C levels, saturated fat intake was lowered when switching from the control diet to the fish oil diet. When fish oil is fed and saturated fat intake is constant, LDL-C levels either do not change or may increase. Levels of high density lipoprotein cholesterol have been found to increase slightly (about 5-10%) with fish oil intake. Plasma apolipoprotein levels change in concert with their associated lipoprotein cholesterol levels. Although the decrease in triglyceride levels appears to result from an inhibition in hepatic triglyceride synthesis, the mechanisms leading to the increases in LDL and HDL have not been determined. Finally, fatty fish or linolenic acid may serve as alternative sources of long-chain n-3 FAs, but further studies will be needed to document their hypolipidemic and/or antiatherogenic effects.  相似文献   

8.
B J Holub 《CMAJ》1988,139(5):377-381
Recent epidemiologic studies have shown that rates of cardiovascular disease are lower in populations such as the Greenland Eskimos than in those that do not eat seafood, even though the levels of dietary fat intake are often similar. Dietary fish oils are rich in eicosapentaenoic acid (EPA), a polyunsaturated fatty acid of the omega-3 series. EPA has been shown to prolong bleeding time and to decrease platelet aggregation and blood viscosity. EPA inhibits the production of prostaglandins from endogenous arachidonic acid, which is associated with the formation of thromboxane A2 and may also dampen cyclo-oxygenase and lipoxygenase metabolites involved in mediating endothelial cell proliferation. Dietary fish oils are now available in the form of EPA-enriched capsules. Short-term trials in humans have shown that EPA significantly reduces the levels of plasma triglycerides and may increase the levels of high-density lipoproteins; however, no consistent effect on serum cholesterol levels has been shown. The results of evaluations of EPA''s use in patients with renal disorders, mild hypertension, inflammatory disorders or hyperlipidemia have been promising. On the basis of the epidemiologic and biologic evidence dietary fish oils warrant further study in extensive clinical trials.  相似文献   

9.
Fish intake, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and in some cases alpha-linolenic acid (ALA) have been associated with reduced risk of cardiovascular events and death. The association between n-3 fatty acids in plasma lipids and the progression of coronary artery atherosclerosis was assessed among women with established coronary artery disease (CAD). A prospective cohort study involved postmenopausal women (n = 228) participating in the Estrogen Replacement and Atherosclerosis Trial. Quantitative coronary angiography was performed at baseline and after 3.2 +/- 0.6 (mean +/- SD) years. Women with plasma phospholipid (PL) DHA levels above the median, compared with below, exhibited less atherosclerosis progression, as expressed by decline in minimum coronary artery diameter (-0.04 +/- 0.02 and -0.10 +/- 0.02 mm, respectively; P = 0.007) or increase in percentage stenosis (1.34 +/- 0.76% and 3.75 +/- 0.74%, respectively; P = 0.006), and had fewer new lesions [2.0% (0.5-3.5%) of measured segments (95% confidence interval) and 4.2% (2.8-5.6%), respectively; P = 0.009] after adjustments for cardiovascular risk factors. Similar results were observed for DHA in the triglycerides (TGs). EPA and ALA in plasma lipids were not significantly associated with atherosclerosis progression. Consistent with higher reported fish intake, higher levels of plasma TG and PL DHA are associated with less progression of coronary atherosclerosis in postmenopausal women with CAD.  相似文献   

10.
Thromboxane A2 (TXA2) released from aggregating platelets and injured vessel wall stimulates smooth muscle cell proliferation, which may contribute to the development of vascular lesion formation after percutaneous transluminal coronary angioplasty. Polyunsaturated fatty acids (n-3) present in the fish oils have been shown to have anti-atherosclerotic effects. In view of this, we examined the effect of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the active ingredients of fish oils on TXA2 induced smooth muscle cell proliferation. To find out the specificity of these fatty acids we used gamma-linolenic acid (n-6) and oleic acid (n-9) as controls. It was found that TXA2 failed to stimulate proliferation of smooth muscle cells preloaded with EPA or DHA but not with gamma-linolenic acid or oleic acid. Further, when smooth muscle cells were preloaded with both EPA and DHA, they acted together in preventing the TXA2 induced smooth muscle cell proliferation. These results demonstrate that one of the mechanisms by which fish oils may prevent neointima formation is by making smooth muscle cells less responsive to TXA2 induced proliferation of smooth muscle cells.  相似文献   

11.
Long chain n-3 PUFA docosahexaenoic acid (DHA) is important for heart and brain function. Investigations of biologically plausible mechanisms using animal models associate cardioprotection with DHA incorporation into myocardial membranes that are largely derived from supra-physiological fish oil (FO) intake. We measured the incorporation of DHA into myocardial membranes of rats from low dietary FO intake within human dietary range and quantitatively assessed the influence of dietary n-6 PUFA. With rats fed diets containing 0.16%–5% FO, equal to 0.12%–8.7% energy (%en) as eicosapentaenoic acid (EPA) and DHA (EPA+DHA), and either 1.5%en or 7.5%en n-6 PUFA (linoleic acid) for four weeks, dietary n-6:n-3 PUFA ratios ranged from 74 to 0.3. Myocardial DHA concentration increased in a log-linear fashion with a dietary threshold of 0.019%en as EPA+DHA and half maximal dietary [EPA+DHA] equal to 0.29%en (95% CI, 0.23–0.35). Dietary linoleic acid intake did not influence myocardial DHA. Myocardial membranes are sensitive to absolute dietary intake of long chain n-3 PUFA at low %en in the rat, equivalent to a human intake of one meal of fatty fish per week or less. The dietary ratio of n-6:n-3 PUFA has no influence on long chain n-3 PUFA cellular incorporation from dietary fish oil.  相似文献   

12.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) lower risk of cardiovascular disease. The primary source of EPA and DHA is fatty fish. Plant-derived alpha linolenic acid (ALA) and stearidonic acid (SDA) could provide sustainable land-based alternatives, but their functionality is underexplored. Omega-3 fatty acids (n-3 FAs) may influence atherogenic processes through changing endothelial cell (EC) function and lowering inflammation. This study compared effects of marine- and plant-derived n-3 FAs on EC inflammatory responses. EA.hy926 cells were exposed to ALA, SDA, EPA or DHA prior to stimulation with tumor necrosis factor (TNF)-α. All FAs were shown to be incorporated into ECs in a dose-dependent manner. SDA (50 μM) decreased both production and cell-surface expression of intercellular adhesion molecule (ICAM)-1; however EPA and DHA resulted in greater reduction of ICAM-1 production and expression. EPA and DHA also significantly lowered production of monocyte chemoattractant protein 1, interleukin (IL)-6 and IL-8. ALA, SDA and DHA (50 μM) all reduced adhesion of THP-1 monocytes to EA.hy926 cells. DHA significantly decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)p105 gene expression and phosphorylated NFκBp65 protein. Both EPA and DHA (50 μM) significantly decreased cyclooxygenase (COX)-2 protein. Thus, both marine-derived n-3 FAs, particularly DHA, had potent anti-inflammatory effects in this EC model. Of the plant-derived n-3 FAs, SDA showed the greatest inhibition of inflammation. Although neither ALA nor SDA reproduced the anti-inflammatory effects of EPA and DHA in this model, there is some potential for SDA to be a sustainable anti-inflammatory alternative to the marine n-3 FAs.  相似文献   

13.
Our aim was to examine the docosahexaenoic acid (DHA; 22:6n-3) status of pregnant African-American women reporting to the antenatal clinic at Wayne State University in a longitudinal study design. Fatty acid compositions of plasma and erythrocyte total lipid extracts were determined and food frequency surveys were administered at 24 weeks of gestation, delivery, and 3 months postpartum for participants (n = 157). DHA (mean +/- SD) in the estimated total circulating plasma was similar at gestation (384 +/- 162 mg) and delivery (372 +/- 155 mg) but was significantly lower at 3 months postpartum (178 +/- 81 mg). The relative weight percentage of DHA and docosapentaenoic acid n-6 (DPAn-6; 22:5n-6) decreased postpartum, whereas their respective metabolic precursors, eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (AA; 20:4n-6), increased. Similar results were found in erythrocytes. Dietary intake of DHA throughout the study was estimated at 68 +/- 75 mg/day. The relative amounts of circulating DHA and DPAn-6 were increased during pregnancy compared with 3 months postpartum, possibly via increased synthesis from EPA and AA. The low dietary intake and blood levels of DHA in this population compared with others may not support optimal fetal DHA accretion and subsequent neural development.  相似文献   

14.
Epidemiological evidence suggests that dietary consumption of the long chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), commonly found in fish or fish oil, may modify the risk for certain neuropsychiatric disorders. As evidence, decreased blood levels of omega-3 fatty acids have been associated with several neuropsychiatric conditions, including Attention Deficit (Hyperactivity) Disorder, Alzheimer's Disease, Schizophrenia and Depression. Supplementation studies, using individual or combination omega-3 fatty acids, suggest the possibility for decreased symptoms associated with some of these conditions. Thus far, however, the benefits of supplementation, in terms of decreasing disease risk and/or aiding in symptom management, are not clear and more research is needed. The reasons for blood fatty acid alterations in these disorders are not known, nor are the potential mechanisms by which omega-3 fatty acids may function in normal neuronal activity and neuropsychiatric disease prevention and/or treatment. It is clear, however, that DHA is the predominant n-3 fatty acid found in the brain and that EPA plays an important role as an anti-inflammatory precursor. Both DHA and EPA can be linked with many aspects of neural function, including neurotransmission, membrane fluidity, ion channel and enzyme regulation and gene expression. This review summarizes the knowledge in terms of dietary omega-3 fatty acid intake and metabolism, as well as evidence pointing to potential mechanisms of omega-3 fatty acids in normal brain functioning, development of neuropsychiatric disorders and efficacy of omega-3 fatty acid supplementation in terms of symptom management.  相似文献   

15.
Seven-week old female rats fed restricted foods including the fish oils Docosahesaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA) and perilla oil with food intake decreased by 50%, had increases of fracture force and bone mineral density (BMD) and decreases in levels of Deoxypiridinoline (Dpd) and Calcium (Ca) in the urine, compared with those of rats with osteoporosis due to restricted soy bean oil food intake. Therefore, the fish oils DHA and EPA and perilla oil depressed excretion of urinary Ca and inhibited osteoporosis due to restricted food intake.  相似文献   

16.
Fish is the primary source of dietary omega-3 poly-unsaturated fatty acids EPA and DHA, which have been reported to reduce depressive symptoms in clinical trials. We assessed the association between fish consumption and depressive symptoms in a nationally representative sample of 10,480 adults from the 2005-2008 National Health and Nutrition Examination Survey. Depressive symptoms were classified by severity using the Patient Health Questionnaire. Fish meal consumption reported in 30-day food frequency questionnaires, and EPA+DHA intake computed from 24-h dietary recalls were evaluated in relation to depressive symptoms using multivariable ordinal logistic regression. Consumption of breaded fish showed an increased risk of greater depressive symptom severity, while all fish, non-breaded fish, and shell fish were not associated. Any EPA+DHA intake was significantly associated with fewer depressive symptoms. Exposure-response analyses revealed no clear patterns for any intake measures. Inconsistent patterns of associations in our study may be partially explained by exposure misclassification.  相似文献   

17.
The effect of dietary polyunsaturated fatty acids and alpha-tocopherol supplementation on erythrocyte lipid peroxidation and immunocompetent cells in mice was studied comparatively using seven dietary oils (15% oil/diet, w/w) including fish oil rich in eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3). A 43% increase in spleen weight, about twice as many spleen cells and no change in the subpopulations of spleen cells, as well as a significant depression of mitogen-induced blastogenesis of both T and B cells in the spleen were observed in mice fed fish oil for 30 days in comparison with soybean oil diet-fed mice. In the fish oil diet-fed mice, membranous lipid hydroperoxide (hydroperoxides of phosphatidylcholine and phosphatidylethanolamine) accumulation as a marker of oxidative senescence in red blood cells (RBC) was 2.7-3.5 times higher than that in mice fed soybean oil, although there was no difference in the plasma phosphatidylcholine hydroperoxide concentration. In spite of the supplementation of alpha-tocopherol to up to 10 times the level in the basal diet, the degeneration of spleen cells and the stimulated oxidative senescence of RBC found by the fish oil feeding could not be prevented. The results suggest that oral intake of excess polyunsaturated fatty acids, i.e. EPA and DHA, in a fish oil diet can lead to acceleration of membrane lipid peroxidation resulting in RBC senescence linked to the lowering of immune response of spleen cells, and that supplementation of alpha-tocopherol as antioxidant does not always effectively prevent such oxidative degeneration as observed in spleen cells and RBC in vivo.  相似文献   

18.
Epidemiological data and clinical trials suggest that n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have preventive and therapeutic effects on depression; however, the underlying mechanism remains elusive. The present study aimed to examine the behavioral effects and antidepressant mechanism of n-3 PUFA using a forced swimming test. Eleven-week-old male Sprague-Dawley rats were fed an American Institute of Nutrition-93M diet containing 0%, 0.5% or 1% EPA and DHA relative to the total energy intake in their diet for 12 weeks (n=8 per group). Total dietary intake, body weight and hippocampus weights were not significantly different among groups. The groups administered 0.5% and 1% EPA+DHA diets had significantly higher levels of n-3 PUFA in their brain phospholipids compared to those in the control group. The immobility time was significantly decreased and the climbing time was significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Plasma serotonin concentration and hippocampus c-AMP response element binding protein (CREB) expression were significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Conversely, interleukin (IL)-6 expression was significantly reduced in the 0.5% and 1% EPA+DHA groups compared with that in the 0% EPA+DHA group. However, there were no dose-dependent effects of n-3 PUFA and no significant differences in expressions of IL-1β, tumor necrosis factor-α, brain-derived neurotrophic factor or phosphorylated CREB. In conclusion, long-term intake of EPA+DHA induced antidepressant-like effects in rats and overexpression of CREB via decreased IL-6 expression.  相似文献   

19.
Epidemiological evidence from Greenland Eskimos and Japanese fishing villages suggests that eating fish oil and marine animals can prevent coronary heart disease. Dietary studies from various laboratories have similarly indicated that regular fish oil intake affects several humoral and cellular factors involved in atherogenesis and may prevent atherosclerosis, arrhythmia, thrombosis, cardiac hypertrophy and sudden cardiac death. The beneficial effects of fish oil are attributed to their n-3 polyunsaturated fatty acid (PUFA; also known as omega-3 fatty acids) content, particularly eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3). Dietary supplementation of DHA and EPA influences the fatty acid composition of plasma phospholipids that, in turn, may affect cardiac cell functions in vivo. Recent studies have demonstrated that long-chain omega-3 fatty acids may exert beneficial effects by affecting a wide variety of cellular signaling mechanisms. Pathways involved in calcium homeostasis in the heart may be of particular importance. L-type calcium channels, the Na+-Ca2+ exchanger and mobilization of calcium from intracellular stores are the most obvious key signaling pathways affecting the cardiovascular system; however, recent studies now suggest that other signaling pathways involving activation of phospholipases, synthesis of eicosanoids, regulation of receptor-associated enzymes and protein kinases also play very important roles in mediating n-3 PUFA effects on cardiovascular health. This review is therefore focused on the molecular targets and signaling pathways that are regulated by n-3 PUFAs in relation to their cardioprotective effects.  相似文献   

20.
研究不同ALA含量油脂对高脂模型大鼠组织脂肪酸代谢的影响.60只雄性Wistar大鼠分为正常组、高脂组、花生油组、13%、27%和55% ALA含量油脂组,除正常组和高脂组外,其余各组在饲喂高脂饲料的同时采用灌胃方式连续给予2 mL/kg.bw剂量的受试油.试验6周后分别测定大鼠各组织脂肪酸组成.结果表明,高脂饮食能够降低大鼠各组织n-3脂肪酸含量,但摄入不同ALA油脂可显著增加组织n-3脂肪酸含量,并具有一定的剂量效应关系;但ALA及其代谢产物EPA、DPA和DHA的累积具有组织特异性,其中肾和心组织中ALA累积高于血浆、脑及肝组织,肝和脑组织中EPA和DPA含量增加较显著,而肾和心组织中EPA含量不变,各组织DHA含量增加不显著.不同ALA油脂组C18:3(n-6)和C20:3 (n-6)差异不显著,但与花生油组相比,其血浆、脑和肾组织C20:4含量显著降低.因此,富含ALA含量的油脂能够增加组织中ALA及其代谢产物在组织中的含量,提高其在脑组织中的分布比例,这可能是ALA具有心血管保护作用和促进脑生长发育的作用机制之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号