首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 °C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing “activity gels”. Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being “self-digested”, also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 °C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg2+, and inhibited by Zn2+, Cd2+, EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing “activity gels” or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

2.
Many factors trigger the degradation of proteins, including changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Despite the importance for viability, still very little is known about protein degradation and its regulation. The degradation of the most abundant membrane protein on Earth, the light-harvesting complex of Photosystem II (LHC II), is highly regulated under different environmental conditions, e.g. light stress, to prevent photochemical damage of the reaction center. However, despite major effort to identify the protease/proteases involved in the degradation of the apoproteins of LHC II the molecular details of this important process remain obscure. LHC II belongs to the family of chlorophyll a/b binding proteins (CAB proteins) and is located in the thylakoid membrane of the plant chloroplast. The results of biochemical experiments to isolate and characterize the protease degrading LHC II are summarized here and compared to our own recent finding indicating that a metalloprotease of the FtsH family is involved in this process.  相似文献   

3.
Photosystem II (PSII) is a multisubunit chlorophyll–protein complex that drives electron transfer from water to plastoquinone using energy derived from light. In green plants, the native form of PSII is surrounded by the light-harvesting complex (LHCII complex) and thus it is called the PSII–LHCII supercomplex. Over the past several years, understanding of the structure, function, and assembly of PSII and LHCII complexes has increased considerably. The unicellular green alga Chlamydomonas reinhardtii has been an excellent model organism to study PSII and LHCII complexes, because this organism grows heterotrophically and photoautotrophically and it is amenable to biochemical, genetic, molecular biological and recombinant DNA methodology. Here, the genes encoding and regulating components of the C. reinhardtii PSII–LHCII supercomplex have been thoroughly catalogued: they include 15 chloroplast and 20 nuclear structural genes as well as 13 nuclear genes coding for regulatory factors. This review discusses these molecular genetic data and presents an overview of the structure, function and assembly of PSII and LHCII complexes.  相似文献   

4.
Using non-denaturing isoelectric focusing in polyacrylamide vertical slab gel, we have purified to homogeneity three trimeric subcomplexes of LHC II from Arabidopsis thylakoid membranes. The polypeptide composition of the subcomplexes were studied by immunoblotting. Our results indicate the existence in vivo of LHC II heterotrimers containing Lhcb1, Lhcb2 and Lhcb3 gene products.  相似文献   

5.
The carotenoid species lutein, violaxanthin, and zeaxanthin are crucial in the xanthophyll-dependent nonphotochemical quenching occurring in photosynthetic systems of higher plants, since they are involved in dissipation of excess energy and thus protect the photosynthetic machinery from irreversible inhibition. Nonetheless, important properties of the xanthophyll cycle carotenoids, such as the energy of their S(1) electronic states, are difficult to study and were only recently determined in organic solvents [Polívka, T. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 4914. Frank, H. A. (2000) Biochemistry 39, 2831]. In the present study, we have determined the S(1) energies of three carotenoid species, violaxanthin, lutein, and zeaxanthin, in their LHCII (peripheral light-harvesting complex of photosystem II) protein environment by constructing recombinant Lhcb1 (Lhc = light-harvesting complex) proteins containing single carotenoid species. Within experimental error the S(1) energy is the same for all three carotenoids in the monomeric LHCII, 13,900 +/- 300 cm(-1) (720 +/- 15 nm), thus well below the Q(y)() transitions of chlorophylls. In addition, we have found that, although the S(1) lifetimes of violaxanthin, lutein, and zeaxanthin differ substantially in solution, when incorporated into the LHCII protein, their S(1) states have in fact the same lifetime of about 11 ps. Despite the similar spectroscopic properties of the carotenoids bound to the LHCII, we observed a maximal fluorescence quenching when zeaxanthin was present in the LHCII complex. On the basis of these observations, we suggest that, rather than different photochemical properties of individual carotenoid species, changes in the protein conformation induced by binding of carotenoids with distinct molecular structures are involved in the quenching phenomena associated with Lhc proteins.  相似文献   

6.
Fluorescence emission spectra excited at 514 and 633 nm were measured at ?196 °C on dark-grown bean leaves which had been partially greened by a repetitive series of brief xenon flashes. Excitation at 514 nm resulted in a greater relative enrichment of the 730 nm emission band of Photosystem I than was obtained with 633 nm excitation. The difference spectrum between the 514 nm excited fluorescence and the 633 nm excited fluorescence was taken to be representative of a pure Photosystem I emission spectrum at ?196 °C. It was estimated from an extrapolation of low temperature emission spectra taken from a series of flashed leaves of different chlorophyll content that the emission from Photosystem II at 730 nm was 12% of the peak emission at 694 nm. Using this estimate, the pure Photosystem I emission spectrum was subtracted from the measured emission spectrum of a flashed leaf to give an emission spectrum representative of pure Photosystem II fluorescence at ?196 °C. Emission spectra were also measured on flashed leaves which had been illuminated for several hours in continuous light. Appreciable amounts of the light-harvesting chlorophyll a/b protein, which has a low temperature fluorescence emission maximum at 682 nm, accumulate during greening in continuous light. The emission spectra of Photosystem I and Photosystem II were subtracted from the measured emission spectrum of such a leaf to obtain the emission spectrum of the light-harvesting chlorophyll a/b protein at ?196 °C.  相似文献   

7.
The photochemistry of the isolated Photosystem II reaction-centre core from pea and the green alga Scenedesmus was examined by e.s.r. Two types of triplet spectrum were observed in addition to the spin-polarized reaction-centre triplet previously identified. The additional triplet formed on continuous illumination at 4.2 K was attributed to a monomeric phaeophytin molecule. The second triplet, which was stable in the dark at 4.2 K following illumination, was assigned to the radical pair Donor+I-. This provides evidence that an electron donor to chlorophyll P680 is present on the polypeptide D1-polypeptide D2-cytochrome b-559 core complex.  相似文献   

8.
Strong light (800μmol photons/m^2 per s)-induced bleaching of the pigment in the isolated photosystem Ⅱ reaction center (PSII RC) under aerobic conditions (in the absence of electron donors or acceptors) was studied using high-pressure liquid chromatography (HPLC), absorption spectra, 77K fluorescence spectra and resonance Raman spectra. Changes in pigment composition of the PSII RC as determined by HPLC after light treatment were as follows: with Increasing illumination time chlorophyll (Chl) a and β-carotene (β-car) content decreased. However, decreases in pheophytin (Pheo) could not be observed because of the mixture of the Pheo formed by degraded chlorophyll possibly. On the basis of absorption spectra, it was determined that, with a short time of illuminatlon, the initial bleaching occurred maximally at 680 nm but that with Increasing Illumination time there was a blue shift to 678 nm. It was suggested that P680 was destroyed Initially, followed by the accessory chlorophyll. The activity of P680 was almost lost after 10 mln light treatment. Moreover, the bleaching of Pheo and β-car was observed at the beginning of illumination. After Illumination, the fluorescence emission Intensity changed and the fluorescence maximum blue shifted, showing that energy transfer was disturbed. Resonance Raman spectra of the PSII RC excited at 488.0 and 514.5 nm showed four main bands, peaking at 1 527 cm^-1 (υ101), 1 159 cm^-1 (υ2), 1 006 cm^-1 (υ3), 966 cm^-1 (υ4) for 488.0 nm excitation and 1 525 cm^-1 (υ1), 1 159 cm^-1 (υ2), 1 007 cm^-1 (υ3), 968 cm^-1 (υ4) for 514.5 nm excitation. It was confirmed that two spectroscopically different β-car molecules exist In the PSII RC. After light treatment for 20 mln, band positions and bandwidths were unchanged. This indicates that carotenoid configuration Is not the parameter that regulates photoprotectlon in the PSII RC.  相似文献   

9.
The thylakoid membrane containing photosystem II (PSII membranes) from pea and wheat leaves catalyzed the reaction of CO2 hydration with low rate, which increased after their incubation either with Triton X-100, up to Triton/chlorophyll ratio 1:1, or 1 M CaCl2. The presence of the inhibitor of CAs, p-aminomethylbenzensulfonamide (mafenide), at the start line in the course of electrophoresis of PSII membranes solubilized by n-dodecyl-beta-maltoside (DM) decreased the amount of PSII core complex in the gel. The elution of PSII core complex from the column with immobilized mafenide occurred only either by mafenide or another inhibitor of CAs, ethoxyzolamide. The above results led to a conclusion that membrane-bound CA activity associated with PSII is situated in the core complex.  相似文献   

10.
11.
The presence of 1.0 mol/L glycinebetaine during isolation of D1/D2/Cytb559 reaction centre (RC) complexes from photosystem II (PSII) membrane fragments preserved the photochemical activity, monitored as the light-induced reduction of pheophytin and electron transport from diphenylcarbazide to 2.6-dichlorophenol-indophenol.-Glycinebetaine also protected the D1/D2/Cytb559 complexes against strong light-induced damage to the photochemical reactions and the irreversible bleaching of beta-carotene and chlorophyll. The presence of glycinebetaine also enhanced thermotolerance of the D1/D2/Cytb559 complexes isolated in the presence of 1.0 mol/L betaine with an increase in the temperature for 50% inactivation from 29 degrees C to 35 degrees C. The results indicate an increased supramolecular structural stability in the presence of glycinebetaine.  相似文献   

12.
Effect of a highly efficient inhibitor of Photosystem II (PS II), K-15 (4-[methoxy-bis-(trifluoromethyl)methyl)-2,6-dinitrophenyl hydrazone methyl ketone), was investigated using the D1/D2/cytochrome b559 reaction centre (RC) complex. A novel approach for photoaccumulating reduced pheophytin (Pheo) in the absence of the strong reducing agent, sodium dithionite, was demonstrated which involved illumination in the presence of TMPD (from 5 to 100 M) under anaerobic conditions. The addition of K-15 at concentrations of 0.5 M and 2 M resulted in approx. 50% and near 100%, respectively, inhibition of this photoreaction, while subsequent additions of dithionite eliminated the inhibitory effect of K-15. Methyl viologen induced similar inhibition at much higher concentrations (>1 mM). Moreover, K-15 efficiently quenched the variable part of chlorophyll fluorescence (which is the recombination luminescence of the pair P680 + Pheo). A 50% inhibition was induced by 5 M K-15 and the effect was maximal in the range 20 to 200 M. Photooxidation of P680 in the presence of 0.1 mM silicomolybdate was also efficiently inhibited by K-15 (50% inhibition at 15 M). The data are consistent with the idea put forward earlier (Klimov et al. 1992) that the inhibitory effect of K-15 is based on facilitating a rapid recombination between Pheo and P680 + (or Z+) via its redox properties. The inhibitor can be useful for suppressing PS II reactions in isolated RCs of PS II which are resistant to all traditional inhibitors, like diuron, and probably functions by substituting for QA missing in the preparation.At a concentration of 0.5–50 M K-15 considerably increased both the rate and extent of cytochrome b559 photoreduction in the presence, as well as in the absence, of 5 mM MnCl2. Consequently it is suggested that K-15 also serves as a mediator for electron transfer from Pheo to cytochrome b559.Abbreviations K-15 4-[methoxy-bis-(trifluoromethyl)methyl]-2,6-dinitrophenyl hydrazone methyl ketone - P680 the primary electron donor of PS II - Pheo pheophytin - PS II Photosystem II - QA and QB the primary and the secondary electron acceptor of PS II - RC reaction centre - SiMo silicomolybdate - TMPD N,N,N,,N,-tetramethyl-p-phenylenediamine - Z secondary electron donor of PS II  相似文献   

13.
《BBA》1985,809(3):396-402
Several studies have shown that a subpopulation of the light-harvesting chlorophyll a/b-protein complex of Photosystem II (LHC-II) migrates from the appressed to the stroma-exposed thylakoids upon its phosphorylation. In this study we have analyzed the 27 and 25 kDa apopolypeptides of LHC-II, resolved by two-dimensional electrophoresis, with respect to their relative abundance and phosphorylation in thylakoids and subfractions derived from appressed or stroma-exposed thylakoid regions. The results show that the two polypeptides are heterogeneous with respect to both phosphate incorporation and degree of lateral migration. In intact thylakoids, the specific phosphorylation of the 25 kDa polypeptide exceeded that of the 27 kDa polypeptide by a factor of 3. Following phosphorylation, the 25 kDa polypeptide of the stroma lamellae showed as much as 4–5-times higher specific phosphorylation compared to the 27 kDa polypeptide. Moreover, there was a time-dependent increase in the amount of the 25 kDa polypeptide relative to the 27 kDa polypeptide in the stroma-exposed thylakoids. These results demonstrate a different polypeptide composition of the LHC-II tightly bound to Photosystem II and the free pool of LHC-II able to migrate laterally upon phosphorylation. The mobile pool of LHC-II is estimated to have two 27 kDa polypeptides for every 25 kDa polypeptide, while the ratio in the immobile pool is 4:1.  相似文献   

14.
The light-harvesting complex of photosystem II (LHC II) contains one major (LHC IIb) and at least three minor chlorophyll-protein components. The apoproteins of LHC IIb (LHCP) are encoded by nuclear genes and synthesized in the cytoplasm as a higher molecular weight precursor(s) (pLHCP). Several genes coding for pLHCP have been cloned from various higher plant species. The expression of these genes is dependent upon a variety of factors such as light, the developmental stage of the plastids and the plant. After its synthesis in the cytoplasm, pLHCP is imported into plastids, inserted into thylakoids, processed to its mature form, and assembled into LHC IIb. The pathway of assembly of LHC IIb in the thylakoid membranes is currently being investigated in several laboratories. We present a model that gives some details of the steps in the assembly process. Many of the steps involved in the synthesis and assembly are dependent on light and the stage of plastid development.Abbreviations PS Photosystem - LHC II Light-harvesting complex of PS II - LHCP Apoproteins of LHC IIb - pLHCP Precursor of LHCP - PAGE Polyacrylamide gel electrophoresis  相似文献   

15.
Monospecific antibodies directed against typical domains of type 1, 2, and 3 light-harvesting complex (LHC) II apoproteins have been used (a) to identify these apoproteins on denaturing sodium dodecyl sulfate gels of barley (Hordeum vulgare) thylakoids, (b) to determine their distribution between grana and stroma membranes, and (c) to follow their accumulation during light-induced greening of etioplasts. In addition, we have studied the light-induced assembly of chlorophyll-protein complexes with a native green gel system (K.D. Allen, L.A. Staehelin [1991] Anal Biochem 194: 214-222). Western blot analysis of the three major LHCII apoprotein bands has identified the highest molecular mass band at 27.5 kD as containing the type 2 LHCII apoproteins, the middle band at 26.9 kD as containing the type 1 LHCII apoproteins, and the lowest band at 26.0 kD as containing the type 3 LHCII apoproteins. During light-induced greening of 6-d-old etiolated barley seedlings, the type 1, 2, and 3 LHCII apoproteins accumulate simultaneously and at similar rates but appear somewhat sooner (< 4 h) in thylakoids from apical than from basal (4-8 h) leaf segments. LHCI polypeptides accrue with similar kinetics, whereas the 33-kD oxygen-evolving complex polypeptides can be detected already in the 0-h light samples. During the most rapid phase of thylakoid development (8-24 h), two slightly larger (28.3 and 28.7 kD) type 2 LHCII apoproteins (precursor intermediates?) also accumulate in the thylakoids. No corresponding higher molecular mass forms of type 1 and 3 LHCII apoproteins could be detected. It is interesting that differences are still apparent in the composition of chlorophyll-protein complexes of light-control plants and those of etiolated plants greened for 8 d.  相似文献   

16.
LHC II isolated from carnation leaves has been solubilized and resolved by a newly developed, vertical-bed non-denaturing isoelectric focusing in polyacrylamide slab gels to yield three trimeric subcomplexes focusing at pH 4.52, 4.42 and 4.37 (designated a, b and c, respectively), comprising approximately 38%, 24% and 38% of the chlorophyll. The spectroscopic data demonstrated a close similarity among LHC II subcomplexes concerning their chlorophyll content and organization. The most alkaline and the most acidic subcomplex contained the 27 kDa polypeptide of LHC II while the intermediate pI fraction contained both LHC II polypeptides, i.e. 27 kDa and 26 kDa ones associated at 2:1 stoichiometry. The 27 kDa polypeptide could be resolved by denaturing isoelectrofocusing into 10 pI molecular isoforms covering 5.90–4.20 pH range. Three of the isoforms were found in the subcomplexes a and b and eight in the subcomplex c. The 26 kDa polypeptide comprised the unique pI molecular isoform focusing at pH 5.61.Abbreviations CBB G-250 Coomassie Brilliant Blue G-250 - chl chlorophyll - DM n-dodecyl--d-maltoside - EDTA ethylendiaminotetraacetic acid - IEF isoelectric focusing - LHC II the main light-harvesting chlorophyll a/b-protein complex of Photosystem II - LHCP II apoprotein of the main light-harvesting chlorophyll a/b-protein complex of Photosystem II - NP-40 polyethyleneglycol-p-isooctylphenyl ether - pI isoelectric point - OG octyl--d-glucopyranoside - PS II Photosystem II - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - TCA trichlorooacetic acid  相似文献   

17.
The major light-harvesting complex (LHC-II) of higher plants plays a crucial role in capturing light energy for photosynthesis and in regulating the flow of energy within the photosynthetic apparatus. Native LHC-II isolated from plant tissue consists of three isoforms, Lhcb1, Lhcb2, and Lhcb3, which form homo- and heterotrimers. All three isoforms are highly conserved among different species, suggesting distinct functional roles. We produced the three LHC-II isoforms by heterologous expression of the polypeptide in Escherichia coli and in vitro refolding with purified pigments. Although Lhcb1 and Lhcb2 are very similar in polypeptide sequence and pigment content, Lhcb3 is clearly different because it lacks an N-terminal phosphorylation site and has a higher chlorophyll a/b ratio, suggesting the absence of one chlorophyll b. Low temperature absorption and fluorescence emission spectra of the pure isoforms revealed small but significant differences in pigment organization. The oligomeric state of the pure isoforms and of their permutations was investigated by native gel electrophoresis, sucrose density gradient centrifugation, and SDS-PAGE. Lhcb1 and Lhcb2 formed trimeric complexes by themselves and with one another, but Lhcb3 was able to do so only in combination with one or both of the other isoforms. We conclude that the main role of Lhcb1 and Lhcb2 is in the adaptation of photosynthesis to different light regimes. The most likely role of Lhcb3 is as an intermediary in light energy transfer from the main Lhcb1/Lhcb2 antenna to the photosystem II core.  相似文献   

18.
J P Dekker  H van Roon  E J Boekem 《FEBS letters》1999,449(2-3):211-214
We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of seven trimeric light-harvesting complex II proteins. The complex was readily observed in partially-solubilized Tris-washed photosystem II membranes from spinach but was also found to occur, with a low frequency, in oxygen-evolving photosystem II membranes. The structure reveals six peripheral trimers with the same rotational orientation and a central trimer with the opposite orientation. We conclude that the heptamer represents a naturally occurring aggregation state of part of the light-harvesting complex II trimers in the thylakoid membranes.  相似文献   

19.
The main chlorophyll a/b light-harvesting complex of photosystem II, LHCIIb, has earlier been shown to be capable of undergoing light-induced reversible structural changes and chlorophyll a fluorescence quenching in a way resembling those observed in granal thylakoids when exposed to excess light [Barzda, V., et al. (1996) Biochemistry 35, 8981-8985]. The nature and mechanism of this unexpected structural flexibility has not been elucidated. In this work, by using density gradient centrifugation and nondenaturing green gel electrophoresis, as well as absorbance and circular dichroic spectroscopy, we show that light induces a significant degree of monomerization, which is in contrast with the preferentially trimeric organization of the isolated complexes in the dark. Monomerization is accompanied by a reversible release of Mg ions, most likely from the outer loop of the complexes. These data, as well as the built-in thermal and light instability of the trimeric organization, are explained in terms of a simple theoretical model of thermo-optic mechanism, effect of fast thermal transients (local T-jumps) due to dissipated photon energies in the vicinity of the cation binding sites, which lead to thermally assisted elementary structural transitions. Disruption of trimers to monomers by excess light is not confined to isolated trimers and lamellar aggregates of LHCII but occurs in photosystem II-enriched grana membranes, intact thylakoid membranes, and whole plants. As indicated by differences in the quenching capability of trimers and monomers, the appearance of monomers could facilitate the nonphotochemical quenching of the singlet excited state of chlorophyll a. The light-induced formation of monomers may also be important in regulated proteolytic degradation of the complexes. Structural changes driven by thermo-optic mechanisms may therefore provide plants with a novel mechanism for regulation of light harvesting in excess light.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号