首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta-amyloid (Abeta) is the major peptide constituent of neuritic plaques in Alzheimer's disease (AD) and its aggregation is believed to play a central role in the pathogenesis of the disease. Naturally occurring mutations resulting in changes in the Abeta sequence (pos. 21-23) are associated with familial AD-like diseases with extensive cerebrovascular pathology. It was proved that the mutations alter the aggregation ability of Abeta and its neurotoxicity. Among five mutations at positions 21-23 there are two mutations with distinct clinical characteristics and potentially distinct pathogenic mechanism-the Italian (E22K) and the Flemish (A21G) mutations. In our studies we have examined the structures of the 11-28 fragment of the Italian and Flemish Abeta variants. The fragment was chosen because it has been shown to be the most important for amyloid fibril formation. The detailed structure of both variants Abeta(11-28) was determined using CD, 2D NMR, and molecular dynamics techniques under water-SDS micelle conditions. The NMR analysis revealed two distinct sets of proton resonances for the peptides. The studies of both peptides pointed out the existence of well-defined alpha-helical conformation in the Italian mutant, whereas the Flemish was found to be unstructured with the possibility of a bent structure in the central part of the peptide.  相似文献   

2.
Aggregation of Abeta peptides is a seminal event in Alzheimer's disease. Detailed understanding of Abeta assembly would facilitate the targeting and design of fibrillogenesis inhibitors. Here comparative conformational and aggregation studies using CD spectroscopy and thioflavine T fluorescence assay are presented. As a model peptide, the 11-28 fragment of Abeta was used. This model peptide is known to contain the core region responsible for Abeta aggregation. The structural and aggregational behaviour of the peptide was compared with the properties of its variants corresponding to natural, clinically relevant mutants at positions 21-23 (A21G, E22K, E22G, E22Q and D23N). In HFIP (hexafluoro-2-propanol), a strong alpha-helix inducer, the CD spectra revealed an unexpectedly high amount of beta-sheet conformation. The aggregation process of Abeta(11-28) variants provoked by water addition to HFIP was found to be consistent with a model of an alpha-helix-containing intermediate. The aggregation propensity of all Abeta(11-28) variants was also compared and discussed.  相似文献   

3.
A new early-onset form of Alzheimer's disease (AD) was described recently where a point mutation was discovered in codon 693 of the beta-amyloid (Abeta) precursor protein gene, the Arctic mutation. The mutation translates into a single amino acid substitution, glutamic acid-->glycine, in position 22 of the Abeta peptide. The mutation carriers have lower plasma levels of Abeta than normal, while in vitro studies show that Abeta1-40E22G protofibril formation is significantly enhanced. We have explored the nature of the Abeta1-40E22G peptide in more detail, in particular the protofibrils. Using size-exclusion chromatography (SEC) and circular dichroism spectroscopy (CD) kinetic and secondary structural characteristics were compared with other Abeta1-40 peptides and the Abeta12-28 fragment, all having single amino acid substitutions in position 22. We have found that Abeta1-40E22G protofibrils are a group of comparatively stabile beta-sheet-containing oligomers with a heterogeneous size distribution, ranging from >100 kDa to >3000 kDa. Small Abeta1-40E22G protofibrils are generated about 400 times faster than large ones. Salt promotes their formation, which significantly exceeds all the other peptides studied here, including the Dutch mutation Abeta1-40E22Q. Position 22 substitutions had significant effects on aggregation kinetics of Abeta1-40 and in Abeta12-28, although the qualitative aspects of the effects differed between the native peptide and the fragment, as no protofibrils were formed by the fragments. The rank order of protofibril formation of Abeta1-40 and its variants was the same as the rank order of the length of the nucleation/lag phase of the Abeta12-28 fragments, E22V>E22A?E22G>E22Q?E22, and correlated with the degree of hydrophobicity of the position 22 substituent. The molecular mass of peptide monomers and protofibrils were estimated better in SEC studies using linear rather than globular calibration standards. The characteristics of the Abeta1-40E22G suggest an important role for the peptide in the neuropathogenesis in the Arctic form of AD.  相似文献   

4.
Pathogenic effects of D23N Iowa mutant amyloid beta -protein.   总被引:4,自引:0,他引:4  
Cerebral amyloid beta-protein angiopathy (CAA) is a key pathological feature of patients with Alzheimer's disease and certain related disorders. In these conditions the CAA is characterized by the deposition of Abeta within the cerebral vessel wall and, in severe cases, hemorrhagic stroke. Several mutations have been identified within the Abeta region of the Abeta protein precursor (AbetaPP) gene that appear to enhance the severity of CAA. We recently described a new mutation within the Abeta region (D23N) of AbetaPP that is associated with severe CAA in an Iowa kindred (Grabowski, T. J., Cho, H. S., Vonsattel, J. P. G., Rebeck, G. W., and Greenberg, S. M. (2001) Ann. Neurol. 49, 697-705). In the present study, we investigated the effect of this new D23N mutation on the processing of AbetaPP and the pathogenic properties of Abeta. Neither the D23N Iowa mutation nor the E22Q Dutch mutation affected the amyloidogenic processing of AbetaPP expressed in H4 cells. The A21G Flemish mutation, in contrast, resulted in a 2.3-fold increase in secreted Abeta peptide. We also tested synthetic wild-type and mutant Abeta40 peptides for fibrillogenesis and toxicity toward cultured human cerebrovascular smooth muscle (HCSM) cells. The E22Q Dutch, D23N Iowa, and E22Q,D23N Dutch/Iowa double mutant Abeta40 peptides rapidly assembled in solution to form fibrils, whereas wild-type and A21G Flemish Abeta40 peptides exhibited little fibril formation. Similarly, the E22Q Dutch and D23N Iowa Abeta40 peptides were found to induce robust pathologic responses in cultured HCSM cells, including elevated levels of cell-associated AbetaPP, proteolytic breakdown of smooth muscle cell alpha-actin, and cell death. Double mutant E22Q,D23N Dutch/Iowa Abeta40 was more potent than either single mutant form of Abeta in causing pathologic responses in HCSM cells. These data suggest that the different CAA mutations in AbetaPP may exert their pathogenic effects through different mechanisms. Whereas the A21G Flemish mutation appears to enhance Abeta production, the E22Q Dutch and D23N Iowa mutations enhance fibrillogenesis and the pathogenicity of Abeta toward HCSM cells.  相似文献   

5.
Structure of the 21-30 fragment of amyloid beta-protein   总被引:1,自引:0,他引:1  
Folding and self-assembly of the 42-residue amyloid beta-protein (Abeta) are linked to Alzheimer's disease (AD). The 21-30 region of Abeta, Abeta(21-30), is resistant to proteolysis and is believed to nucleate the folding of full-length Abeta. The conformational space accessible to the Abeta(21-30) peptide is investigated by using replica exchange molecular dynamics simulations in explicit solvent. Conformations belonging to the global free energy minimum (the "native" state) from simulation are in good agreement with reported NMR structures. These conformations possess a bend motif spanning the central residues V24-K28. This bend is stabilized by a network of hydrogen bonds involving the side chain of residue D23 and the amide hydrogens of adjacent residues G25, S26, N27, and K28, as well as by a salt bridge formed between side chains of K28 and E22. The non-native states of this peptide are compact and retain a native-like bend topology. The persistence of structure in the denatured state may account for the resistance of this peptide to protease degradation and aggregation, even at elevated temperatures.  相似文献   

6.
The effect of single amino acid substitutions associated with the Italian (E22K), Arctic (E22G), Dutch (E22Q) and Iowa (D23N) familial forms of Alzheimer's disease and cerebral amyloid angiopathy on the structure of the 21-30 fragment of the Alzheimer amyloid β-protein (Aβ) is investigated by replica-exchange molecular dynamics simulations. The 21-30 segment has been shown in our earlier work to adopt a bend structure in solution that may serve as the folding nucleation site for Aβ. Our simulations reveal that the 24-28 bend motif is retained in all E22 mutants, suggesting that mutations involving residue E22 may not affect the structure of the folding nucleation site of Aβ. Enhanced aggregation in Aβ with familial Alzheimer's disease substitutions may result from the depletion of the E22-K28 salt bridge, which destabilizes the bend structure. Alternately, the E22 mutations may affect longer-range interactions outside the 21-30 segment that can impact the aggregation of Aβ. Substituting at residue D23, on the other hand, leads to the formation of a turn rather than a bend motif, implying that in contrast to E22 mutants, the D23N mutant may affect monomer Aβ folding and subsequent aggregation. Our simulations suggest that the mechanisms by which E22 and D23 mutations affect the folding and aggregation of Aβ are fundamentally different.  相似文献   

7.
Aggregation of Aβ peptides is a seminal event in Alzheimer's disease. Detailed understanding of the Aβ assembly process would facilitate the targeting and design of fibrillogenesis inhibitors. Here, conformational studies using FTIR spectroscopy are presented. As a model peptide, the 11–28 fragment of Aβ was used. This model peptide is known to contain the core region responsible for Aβ aggregation. The structural behavior of the peptide during aggregation provoked by the addition of water to Aβ(11–28) solution in hexafluoroisopropanol was compared with the properties of its variants corresponding to natural, clinically relevant mutants at positions 21–23 (A21G, E22K, E22G, E22Q and D23N). The results showed that the aggregation of the peptides proceeds via a helical intermediate, and it is possible that the formation of α‐helical structures is preceded by creation of 310‐helix/310‐turn structures. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Cerebral amyloid angiopathy (CAA) due to beta-amyloid (Abeta) is one of the specific pathological features of familial Alzheimer's disease. Abeta mainly consisting of 40- and 42-mer peptides (Abeta40 and Abeta42) exhibits neurotoxicity and aggregative abilities. All of the variants of Abeta40 and Abeta42 found in CAA were synthesized in a highly pure form and examined for neurotoxicity in PC12 cells and aggregative ability. All of the Abeta40 mutants at positions 22 and 23 showed stronger neurotoxicity than wild-type Abeta40. Similar tendency was observed for Abeta42 mutants at positions 22 and 23 whose neurotoxicity was 50-200 times stronger than that of the corresponding Abeta40 mutants, suggesting that these Abeta42 mutants are mainly involved in the pathogenesis of CAA. Although the aggregation of E22G-Abeta42 and D23N-Abeta42 was similar to that of wild-type Abeta42, E22Q-Abeta42 and E22K-Abeta42 aggregated extensively, supporting the clinical evidence that Dutch and Italian patients are diagnosed as hereditary cerebral hemorrhage with amyloidosis. In contrast, A21G mutation needs alternative explanation with the exception of physicochemical properties of Abeta mutants. Attenuated total reflection-Fourier transform infrared spectroscopy spectra suggested that beta-sheet content of the Abeta mutants correlates with their aggregation. However, beta-turn is also a critical secondary structure because residues at positions 22 and 23 that preferably form two-residue beta-turn significantly enhanced the aggregative ability.  相似文献   

9.
In a previous study, Hughes et al. [Proc. Natl. Acad. Sci. USA 93 (1996) 2065-2070] demonstrated that the amyloid peptide is able to interact with itself in a two-hybrid system and that interaction is specific. They further supported that the method could be used to define the sequences that might be important in nucleation-dependent aggregation. The sequence of the amyloid peptide can be split into four clusters, two hydrophilic (1-16 and 22-28) and two hydrophobic (17-21 and 29-42). We designed by molecular modeling and tested by the two-hybrid approach, series of mutations spread all over the sequence and changing the distribution of hydrophobicity and/or the spatial hindrance. In the two-hybrid assay, interaction of native Abeta is reproduced. Screening of mutations demonstrates that the C-domain (residues 29-40 (42)), the median domain (residues 17-22) and the N-domain (1-16) are all crucial for interaction. This demonstrates that almost all fragments of the amyloid peptide but a loop (residues 23-28) and the C-term amino acid are important for the native interaction. We support that the folded three-dimensional (3D) structure is the Abeta-Abeta interacting species, that the whole sequence is involved in that 3D fold which has a low secondary structure propensity and a high susceptibility to mutations and thus should have a low stability. The native fold of Abeta could be stabilized in Abeta-Abeta complexes which could in other circumstances facilitate the nucleation event of aggregation that leads to the formation of stable senile plaques.  相似文献   

10.
Cerebral amyloid angiopathy is commonly associated with normal aging and Alzheimer's disease and it is also the principal feature of hereditary cerebral hemorrhage with amyloidosis Dutch type, a familial condition associated to a point mutation G to C at codon 693 of the amyloid beta (Abeta) precursor protein gene resulting in a Glu to Gln substitution at position 22 of the Abeta (E22Q). The patients carrying the AbetaE22Q variant usually present with lobar cerebral hemorrhages before 50 years of age. A different mutation described in several members of three Italian kindred who presented with recurrent hemorrhagic strokes late in life, between 60 and 70 years of age, also associated with extensive cerebrovascular amyloid deposition has been found at the same position 22, this time resulting in a Glu to Lys substitution (E22K). We have compared the secondary structure, aggregation, and fibrillization properties of the two Abeta40 variants and the wild type peptide. Using flow cytometry analysis after staining with propidium iodide and annexin V, we also evaluated the cytotoxic effects of the peptides on human cerebral endothelial cells in culture. Under the conditions tested, the E22Q peptide exhibited the highest content of beta-sheet conformation and the fastest aggregation/fibrillization properties. The Dutch variant also induced apoptosis of cerebral endothelial cells at a concentration of 25 micrometer, whereas the wild type Abeta and the E22K mutant had no effect. The data suggest that different amino acids at position 22 confer distinct structural properties to the peptides that appear to influence the onset and aggressiveness of the disease rather than the phenotype.  相似文献   

11.
Amyloid Abeta1-42 peptide (Abeta1-42) and its isomers with an isoaspartyl residue at position 7 or 23 [Abeta1-42(isoAsp7) and Abeta1-42(isoAsp23)] were synthesized in high purity by the Fmoc-solid phase technique, followed by HPLC on a silica-based reversed-phase column under the basic conditions. Importantly, Abeta1-42(isoAsp23) aggregated more strongly than native Abeta1-42 and showed significant neurotoxicity, while the aggregation ability and neurotoxicity of Abeta1-42(isoAsp7) was weak. This suggests that the isomerization of the aspartyl residues plays an important role in fibril formation in Alzheimer's disease.  相似文献   

12.
The aggregation of 42-mer amyloid beta (Abeta42) plays a central role in the pathogenesis of Alzheimer's disease. Our recent research on proline mutagenesis of Abeta42 suggested that the formation of a turn structure at positions 22 and 23 could play a crucial role in its aggregative ability and neurotoxicity. Since E22K-Abeta42 (Italian mutation) aggregated more rapidly and with more potent neurotoxicity than wild-type Abeta42, the tertiary structure at positions 21-24 of E22K-Abeta42 fibrils was analyzed by solid-state NMR using dipolar-assisted rotational resonance (DARR) to identify the 'malignant' conformation of Abeta42. Two sets of chemical shifts for Asp-23 were observed in a ratio of about 2.6:1. The 2D DARR spectra at the mixing time of 500 ms suggested that the side chains of Asp-23 and Val-24 in the major conformer, and those of Lys-22 and Asp-23 in the minor conformer could be located on the same side, respectively. These data support the presence of a turn structure at positions 22 and 23 in E22K-Abeta42 fibrils. The formation of a salt bridge between Lys-22 and Asp-23 in the minor conformer might be a reason why E22K-Abeta42 is more pathogenic than wild-type Abeta42.  相似文献   

13.
Alzheimer's disease is a progressive neurodegenerative disorder characterized by the deposit of amyloid fibrils in the brain that result from the self-aggregative polymerization of the beta-amyloid peptide (Abeta). Evidence of a direct correlation between the ability of Abeta to form stable aggregates in aqueous solution and its neurotoxicity has been reported. The cytotoxic effects of Abeta have been attributed to the aggregation properties of a domain corresponding to the peptide fragment Abeta25-35. In an effort to generate novel inhibitors of Abeta neurotoxicity and/or aggregation, a mixture-based synthetic combinatorial library composed of 23 375 imidazopyridoindoles was generated and screened for inhibition of Abeta25-35 neurotoxicity toward the rat pheochromocytoma PC-12 cell line. The effect of the identified lead compounds on Abeta25-35 aggregation was then evaluated by means of circular dichroism (CD) and thioflavin-T fluorescence spectroscopy. Their activity against Abeta1-42 neurotoxicity toward the PC-12 cell line was also determined. The most active imidazopyridoindoles inhibited both Abeta25-35 and Abeta1-42 neurotoxicity in the low- to mid-micromolar range. Furthermore, inhibition of the random coil to beta-sheet transition and self-aggregation of Abeta25-35 was observed by CD and fluorescence spectroscopy, supporting the relationship between inhibition of the Abeta aggregation process and neurotoxicity.  相似文献   

14.
The accumulation of amyloid beta (Abeta) in the walls of small vessels in the cerebral cortex is associated with diseases characterized by dementia or stroke. These include Alzheimer's disease, Down syndrome, and sporadic and hereditary cerebral amyloid angiopathies (CAAs) related to mutations within the Abeta sequence. A higher tendency of Abeta to aggregate, a defective clearance to the systemic circulation, and insufficient proteolytic removal have been proposed as mechanisms that lead to Abeta accumulation in the brain. By using immunoprecipitation and mass spectrometry, we show that insulin-degrading enzyme (IDE) from isolated human brain microvessels was capable of degrading (125)I-insulin and cleaved Abeta-(1-40) wild type and the genetic variants Abeta A21G (Flemish), Abeta E22Q (Dutch), and Abeta E22K (Italian) at the predicted sites. In microvessels from Alzheimer's disease cases with CAA, IDE protein levels showed a 44% increase as determined by sandwich enzyme-linked immunosorbent assay and Western blot. However, the activity of IDE upon radiolabeled insulin was significantly reduced in CAA as compared with age-matched controls. These results support the notion that a defect in Abeta proteolysis by IDE contributes to the accumulation of this peptide in the cortical microvasculature. Moreover they raise the possibility that IDE inhibition or inactivation is a pathogenic mechanism that may open novel strategies for the treatment of cerebrovascular Abeta amyloidoses.  相似文献   

15.
Cerebral amyloid angiopathy (CAA) due to amyloid beta (A beta) deposition is a key pathological feature of Alzheimer's disease (AD), especially in some form of familial Alzheimer's disease (FAD) including hereditary cerebral hemorrhage with amyloidosis-Dutch type. A beta mainly consists of 40- and 42-mer peptides (Abeta 1-40 and A beta 1-42), which accumulate in senile plaques of AD brains and show neurotoxicity for cultured nerve cells. We synthesized all variant forms of A beta 1-42 associated with reported FAD, such as A21G (Flemish), E22Q (Dutch), E22K (Italian), E22G (Arctic), and D23N (Iowa) along with three potential mutants by one point missense mutation (E22A, E22D, and E22V) in a highly pure form, and examined their ability to aggregate and their neurotoxicity in PC12 cells. The mutants at positions 22 and 23 showed potent aggregative ability and neurotoxicity whereas the potential mutants did not, indicating that A beta 1-42 mutants at positions 22 and 23 play a critical role in FAD of Dutch-, Italian-, Arctic-, and Iowa-types. However, Flemish-type FAD needs alternative explanation except the aggregation and neurotoxicity of the corresponding A beta 1-42 mutant.  相似文献   

16.
Han W  Wu YD 《Proteins》2007,66(3):575-587
To study the early stage of amyloid-beta peptide (Abeta) aggregation, hexamers of the wild-type (WT) Abeta(16-35) and its mutants with amyloid-like conformations have been studied by molecular dynamics simulations in explicit water for a total time of 1.7 micros. We found that the amyloid-like structures in the WT oligomers are destabilized by the solvation of ionic D23/K28 residues, which are buried in the fibrils. This means that the desolvation of D23/K28 residues may contribute to the kinetic barrier of aggregation in the early stage. In the E22Q/D23N, D23N/K28Q, and E22Q/D23N/K28Q mutants, hydration becomes much less significant because the mutated residues have neutral amide side-chains. These amide side-chains can form linear cross-strand hydrogen bond chains, or "polar zippers", if dehydrated. These "polar zippers" increase the stability of the amyloid-like conformation, reducing the barrier for the early-stage oligomerization. This is in accord with experimental observations that both the D23/K28 lactamization and the E22Q/D23N mutation promote aggregation. We also found that the E22Q/D23N mutant prefers an amyloid-like conformation that differs from the one found for WT Abeta. This suggests that different amyloid structures may be formed under different conditions.  相似文献   

17.
Abeta(1-42) peptide, found as aggregated species in Alzheimer's disease brain, is linked to the onset of Alzheimer's disease. Many reports have linked metals to inducing Abeta aggregation and amyloid plaque formation. Abeta(25-35), a fragment from the C-terminal end of Abeta(1-42), lacks the metal coordinating sites found in the full-length peptide and is neurotoxic to cortical cortex cell cultures. We report solid-state NMR studies of Abeta(25-35) in model lipid membrane systems of anionic phospholipids and cholesterol, and compare structural changes to those of Abeta(1-42). When added after vesicle formation, Abeta(25-35) was found to interact with the lipid headgroups and slightly perturb the lipid acyl-chain region; when Abeta(25-35) was included during vesicle formation, it inserted deeper into the bilayer. While Abeta(25-35) retained the same beta-sheet structure irrespective of the mode of addition, the longer Abeta(1-42) appeared to have an increase in beta-sheet structure at the C-terminus when added to phospholipid liposomes after vesicle formation. Since the Abeta(25-35) fragment is also neurotoxic, the full-length peptide may have more than one pathway for toxicity.  相似文献   

18.
Inherited amino acid substitutions at position 21, 22, or 23 of amyloid beta (Abeta) lead to presenile dementia or stroke. Insulin-degrading enzyme (IDE) can hydrolyze Abeta wild type, yet whether IDE is capable of degrading Abeta bearing pathogenic substitutions is not known. We studied the degradation of all of the published Abeta genetic variants by recombinant rat IDE (rIDE). Monomeric Abeta wild type, Flemish (A21G), Italian (E22K), and Iowa (D23N) variants were readily degraded by rIDE with a similar efficiency. However, proteolysis of Abeta Dutch (E22Q) and Arctic (E22G) was significantly lower as compared with Abeta wild type and the rest of the mutant peptides. In the case of Abeta Dutch, inefficient proteolysis was related to a high content of beta structure as assessed by circular dichroism. All of the Abeta variants were cleaved at Glu3-Phe4 and Phe4-Arg5 in addition to the previously described major sites within positions 13-15 and 18-21. SDS-stable Abeta dimers were highly resistant to proteolysis by rIDE regardless of the variant, suggesting that IDE recognizes a conformation that is available for interaction only in monomeric Abeta. These results raise the possibility that upregulation of IDE may promote the clearance of soluble Abeta in hereditary forms of Abeta diseases.  相似文献   

19.
On the nucleation of amyloid beta-protein monomer folding   总被引:1,自引:0,他引:1  
Neurotoxic assemblies of the amyloid beta-protein (Abeta) have been linked strongly to the pathogenesis of Alzheimer's disease (AD). Here, we sought to monitor the earliest step in Abeta assembly, the creation of a folding nucleus, from which oligomeric and fibrillar assemblies emanate. To do so, limited proteolysis/mass spectrometry was used to identify protease-resistant segments within monomeric Abeta(1-40) and Abeta(1-42). The results revealed a 10-residue, protease-resistant segment, Ala21-Ala30, in both peptides. Remarkably, the homologous decapeptide, Abeta(21-30), displayed identical protease resistance, making it amenable to detailed structural study using solution-state NMR. Structure calculations revealed a turn formed by residues Val24-Lys28. Three factors contribute to the stability of the turn, the intrinsic propensities of the Val-Gly-Ser-Asn and Gly-Ser-Asn-Lys sequences to form a beta-turn, long-range Coulombic interactions between Lys28 and either Glu22 or Asp23, and hydrophobic interaction between the isopropyl and butyl side chains of Val24 and Lys28, respectively. We postulate that turn formation within the Val24-Lys28 region of Abeta nucleates the intramolecular folding of Abeta monomer, and from this step, subsequent assembly proceeds. This model provides a mechanistic basis for the pathologic effects of amino acid substitutions at Glu22 and Asp23 that are linked to familial forms of AD or cerebral amyloid angiopathy. Our studies also revealed that common C-terminal peptide segments within Abeta(1-40) and Abeta(1-42) have distinct structures, an observation of relevance for understanding the strong disease association of increased Abeta(1-42) production. Our results suggest that therapeutic approaches targeting the Val24-Lys28 turn or the Abeta(1-42)-specific C-terminal fold may hold promise.  相似文献   

20.
NMRsolution structures are reported for two mutants (K16E, K16F) of the soluble amyloid beta peptide Abeta(1-28). The structural effects of these mutations of a positively charged residue to anionic and hydrophobic residues at the alpha-secretase cleavage site (Lys16-Leu17) were examined in the membrane-simulating solvent aqueous SDS micelles. Overall the three-dimensional structures were similar to that for the native Abeta(1-28) sequence in that they contained an unstructured N-terminus and a helical C-terminus. These structural elements are similar to those seen in the corresponding regions of full-length Abeta peptides Abeta(1-40) and Abeta(1-42), showing that the shorter peptides are valid model systems. The K16E mutation, which might be expected to stabilize the macrodipole of the helix, slightly increased the helix length (residues 13-24) relative to the K16F mutation, which shortened the helix to between residues 16 and 24. The observed sequence-dependent control over conformation in this region provides an insight into possible conformational switching roles of mutations in the amyloid precursor protein from which Abeta peptides are derived. In addition, if conformational transitions from helix to random coil to sheet precede aggregation of Abeta peptides in vivo, as they do in vitro, the conformation-inducing effects of mutations at Lys16 may also influence aggregation and fibril formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号