首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the G2 repair of chromosomal damage in lymphocytes from workers exposed to low levels of X- or gamma-rays was evaluated. Samples of peripheral blood were collected from 15 radiation workers, 20 subjects working in radiodiagnostics, and 30 healthy control donors. Chromosomal aberrations (CA) were evaluated by scoring the presence of chromatid and isochromatid breaks, dicentric and ring chromosomes in lymphocytes with/without 5 mM caffeine plus 3 mM-aminobenzamide (3-AB) treatment during G2. Our results showed that the mean value of basal aberrations in lymphocytes from exposed workers was higher than in control cells (p < 0.001). The chromosomal damage in G2, detected with caffeine plus 3-AB treatment was higher than the basal damage (untreated conditions), both in control and exposed populations (p < 0.05). In the exposed workers group, the mean value of chromosomal abnormalities in G2 was higher than in the control (p < 0.0001). No correlation was found between the frequency of chromosome type of aberrations (basal or in G2), and the absorbed dose. Nevertheless, significant correlation coefficients (p < 0.05) between absorbed dose and basal aberrations yield (r = 0.430) or in G2 (r = 0.448) were detected when chromatid breaks were included in the total aberrations yield. Under this latter condition no significant effect of age, years of employment or smoking habit on the chromosomal aberrations yield was detected. However, analysis of the relationship between basal aberrations yield and the efficiency of G2 repair mechanisms, defined as the percentage of chromosomal lesions repaired in G2, showed a significant correlation coefficient (r = -0.802; p < 0.001). These results suggest that in addition to the absorbed dose, the individual G2 repair efficiency may be another important factor affecting the chromosomal aberrations yield detected in workers exposed to low-level ionizing radiation.  相似文献   

2.
The frequencies of chromatid aberrations produced in roots of Vicia faba by clastogenic (chromosome-damaging) agents were strongly enhanced by exposing the root-tip cells to inhibitors of DNA synthesis during the G2 phase. Chromosome damage produced by both S-dependent (maleic hydrazide, methyl methanesulfonate, thio-TEPA) and S-independent (X-rays, streptonigrin) mechanisms was enhanced by the inhibitor treatments. The types of aberrations affected by the inhibitors were mainly chromatid gaps and breaks and isochromatid breaks of the non-union type. Most effective among the inhibitors tested were hydroxyurea (HU) and 5-fluorodeoxyuridine (FdUrd). Post-treatments with caffeine were effective in enhancing clastogen-induced chromosome damage when given during the S phase. All types of aberrations, exchanges as well as breaks, were enhanced by the post-treatments. When given during the G2 phase, caffeine enhanced only the frequency of chromatid aberrations produced by X-rays. The enhancement was slight and obtained only when the cells were irradiated in the G2 phase and immediately post-treated with caffeine. Clastogen-treated cultures of human lymphocytes responded to post-treatments with inhibitors of DNA synthesis in very much the same way as clastogen-treated root-tip cells of Vicia faba. Thus, the frequencies of chromatid gaps and breaks and isochromatid breaks of the non-union type were strongly enhanced by exposing clastogen-treated lymphocytes to inhibitors of DNA synthesis during the G2 phase. The efficiency of the inhibitors, however, varied considerably in the two materials. On the whole, the number of inhibitors capable of enhancing induced chromosome damage was much larger in lymphocytes than in bean root tips. Only HU was equally effective in both materials. The most striking difference between the two materials was found when caffeine was given as a post-treatment. Thus, in human lymphocytes the frequencies of chromatid aberrations induced by most clastogenic agents were strongly enhanced when caffeine was given during the G2 phase, but little affected by post-treatments with caffeine during the S phase.  相似文献   

3.
We have studied the induction of chromosomal aberrations in human lymphocytes exposed in G0 to X rays or carbon ions. Aberrations were analyzed in G0, G1, G2 or M phase. Analysis during the interphase was performed by chemically induced premature chromosome condensation, which allows scoring of aberrations in G1, G2 and M phase; fusion-induced premature chromosome condensation was used to analyze the damage in G0 cells after incubation for repair; M-phase cells were obtained by conventional Colcemid block. Aberrations were scored by Giemsa staining or fluorescence in situ hybridization (chromosomes 2 and 4). Similar yields of fragments were observed in G1 and G2 phase, but lower yields were scored in metaphase. The frequency of chromosomal exchanges was similar in G0 (after repair), G2 and M phase for cells exposed to X rays, while a lower frequency of exchanges was observed in M phase when lymphocytes were irradiated with high-LET carbon ions. The results suggest that radiation-induced G2-phase block is associated with unrejoined chromosome fragments induced by radiation exposure during G0.  相似文献   

4.
Phosphorylation of BRCA1 tumor suppressor protein is regulated during the cell cycle and in response to DNA damage. Several Ser/Thr kinases have been implicated in BRCA1 phosphorylation, including ATM/ATR, cdk2, and hChk2 kinases. In this study, phospho-Ser-specific antibodies recognizing Ser-988, -1423, -1497, and -1524 residues of BRCA1 were employed to study BRCA1 phosphorylation during the S and G2/M phases under conditions of DNA damage. We observed that IR (ionizing radiation) treatment induced phosphorylation of Ser-988/Ser-1524 during the S phase and of Ser-988/Ser-1423 during the G2/M phase. UV treatment induced phosphorylation of Ser-988 during the S phase and of Ser-1423 during the G2/M phase. Phosphorylation of serines 1423 and -1524 was not induced in HCC1937 breast cancer cells, which contain mutant BRCA1 protein. Confocal microscopy revealed that unphosphorylated BRCA1 localizes on chromosomes from metaphase through telophase, whereas Ser-988-phosphorylated BRCA1 resides in the inner chromosomal structure, centrosome, and the cleavage furrow during prophase through telophase. We also found that Ser-988-phosphorylated BRCA1 relocalizes to the perinuclear region when cells are subjected to IR or UV radiation in the S phase. These results reinforce a model wherein phosphorylation of specific residues of BRCA1 after DNA damage affects its localization and function.  相似文献   

5.
Cells of mouse knockout cell lines for Ku80 (now known as Xrcc5), Ku70 (now known as G22p1), DNA-PKcs (now known as Prkdc) and PARP (now known as Adprt) were synchronized in G1 phase and exposed to very low fluences of alpha particles. The frequency of gross chromosomal aberrations was scored at the first postirradiation metaphase. At the two lowest doses examined, aberrations were induced in 4-9% of wild-type cells and 36-55% of Xrcc5-/- cells, whereas only 2-3% of the nuclei were traversed by an alpha particle and thus received any radiation exposure. G22p1-/- cells responded similarly to Xrcc5-/- cells, whereas Prkdc-/- and Adprt-/- cells showed an intermediate effect. The frequency of aberrations per nuclear traversal increased approximately 30-fold for Xrcc5-/- and G22p1-/- cells at the lowest mean dose examined (0.17 cGy), compared with 10-fold in Prkdc-/- cells and 3-fold in wild-type cells. Based on these and other findings, we hypothesize that the marked sensitization of repair-deficient bystander cells to the induction of chromosomal aberrations is a consequence of unrejoined DNA double-strand breaks occurring as a result of clustered damage arising from opposed oxidative lesions and single-strand breaks.  相似文献   

6.
The clastogenic potential of the intercalating compound ellipticine, an antitumor alkaloid, has been demonstrated in mammalian cells. To characterize the mechanism of action of this drug over the cell cycle, human lymphocyte cultures from 2 healthy donors were treated with 3 micrograms/ml ellipticine in 30-min pulses during different phases of the cell cycle and analyzed for chromosomal aberrations and sister-chromatid exchanges. The G2 phase was most sensitive in terms of induction of aberrations, followed by S and G1. Chromatid-type aberrations were the most common type of chromosomal damage. Induction of SCEs was significantly high only after treatment at G1, when the frequencies of SCEs doubled. The post-treatment effect of lymphocytes with inhibitors of DNA repair, 10(-3) M caffeine and 5 x 10(-6) M 1-beta-D-arabinofuranosylcytosine, was also tested by adding 3 micrograms/ml ellipticine at G2 in 30-min pulses and immediately followed by caffeine and/or ara-C during the last 3 h before harvesting. Three experiments performed on blood from 3 donors showed a moderate potentiation effect on the frequency of chromatid-type aberrations (about 2-3 times) by both inhibitors. Likewise, a 3-fold increase was observed in the frequencies of chromosomal aberrations when caffeine and ara-C were combined. The present data demonstrate that posttreatment with caffeine and ara-C at G2 can modify the response of human lymphocytes treated with ellipticine by increasing the clastogenic action of this compound or by changing the cell-cycle progression.  相似文献   

7.
BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition   总被引:16,自引:0,他引:16  
Aurora-A/BTAK/STK15 localizes to the centrosome in the G(2)-M phase, and its kinase activity regulates the G(2) to M transition of the cell cycle. Previous studies have shown that the BRCA1 breast cancer tumor suppressor also localizes to the centrosome and that BRCA1 inactivation results in loss of the G(2)-M checkpoint. We demonstrate here that Aurora-A physically binds to and phosphorylates BRCA1. Biochemical analysis showed that BRCA1 amino acids 1314-1863 binds to Aurora-A. Site-directed mutagenesis indicated that Ser(308) of BRCA1 is phosphorylated by Aurora-A in vitro. Anti-phospho-specific antibodies against Ser(308) of BRCA1 demonstrated that Ser(308) is phosphorylated in vivo. Phosphorylation of Ser(308) increased in the early M phase when Aurora-A activity also increases; these effects could be abolished by ionizing radiation. Consistent with these observations, acute loss of Aurora-A by small interfering RNA resulted in reduced phosphorylation of BRCA1 Ser(308), and transient infection of adenovirus Aurora-A increased Ser(308) phosphorylation. Mutation of a single phosphorylation site of BRCA1 (S308N), when expressed in BRCA1-deficient mouse embryo fibroblasts, decreased the number of cells in the M phase to a degree similar to that with wild type BRCA1-mediated G(2) arrest induced by DNA damage. We propose that BRCA1 phosphorylation by Aurora-A plays a role in G(2) to M transition of cell cycle.  相似文献   

8.
Cells derived from individuals with ataxia telangiectasia (AT) exhibit increased sensitivity to ionizing radiation and certain drugs (e.g., bleomycin, neocarzinostatin, and etoposide) as evidenced by decreased survival and increased chromosome aberrations at mitosis when compared with normal cell lines. To understand better the basis of this sensitivity, three AT and two normal lymphoblastoid cell lines were fractionated into cell cycle phase-enriched populations by centrifugal elutriation and then examined for their survival and their relative initial levels of DNA damage (neutral DNA filter elution) and chromosome damage (premature chromosome condensation). AT cells exhibited decreased levels of survival in all phases of the cell cycle; however, AT cells in early G1 phase were especially sensitive compared with normal cells in G1 phase. While AT and normal cells exhibited similar levels of initial DNA double-strand breaks in exponential populations as well as throughout the cell cycle, AT cells showed nearly twofold higher initial levels of chromosome damage than normal control cells in G1 and G2 phase. These results suggest that there is a higher rate of conversion of DNA double-strand breaks into chromosome breaks in AT cells, perhaps due to a difference in chromatin organization or stability. Thus one determining component of cellular radiosensitivity might include chromatin structure.  相似文献   

9.
BRCA1 and BRCA2 mutation carriers are predisposed to develop breast and ovarian cancers, but the reasons for this tissue specificity are unknown. Breast epithelial cells are known to contain elevated levels of oxidative DNA damage, triggered by hormonally driven growth and its effect on cell metabolism. BRCA1- or BRCA2-deficient cells were found to be more sensitive to oxidative stress, modeled by treatment with patho-physiologic concentrations of hydrogen peroxide. Hydrogen peroxide exposure leads to oxidative DNA damage induced DNA double strand breaks (DSB) in BRCA-deficient cells causing them to accumulate in S-phase. In addition, after hydrogen peroxide treatment, BRCA deficient cells showed impaired Rad51 foci which are dependent on an intact BRCA1–BRCA2 pathway. These DSB resulted in an increase in chromatid-type aberrations, which are characteristic for BRCA1 and BRCA2-deficient cells. The most common result of oxidative DNA damage induced processing of S-phase DSB is an interstitial chromatid deletion, but insertions and exchanges were also seen in BRCA deficient cells. Thus, BRCA1 and BRCA2 are essential for the repair of oxidative DNA damage repair intermediates that persist into S-phase and produce DSB. The implication is that oxidative stress plays a role in the etiology of hereditary breast cancer.  相似文献   

10.
There are two types of chromosome instability, structural and numerical, and these are important in cancer. Many structural abnormalities are likely to involve double-strand DNA (dsDNA) breaks. Nonhomologous DNA end joining (NHEJ) and homologous recombination are the major pathways for repairing dsDNA breaks. NHEJ is the primary pathway for repairing dsDNA breaks throughout the G0, G1 and early S phases of the cell cycle [1]. Ku86 and DNA ligase IV are two major proteins in the NHEJ pathway. We examined primary dermal fibroblasts from mice (wild type, Ku86(+/-), Ku86(-/-), and DNA ligase IV(+/-)) for chromosome breaks. Fibroblasts from Ku86(+/-) or DNA ligase IV(+/-) mice have elevated frequencies of chromosome breaks compared with those from wild-type mice. Fibroblasts from Ku86(-/-) mice have even higher levels of chromosome breaks. Primary pre-B cells from the same animals did not show significant accumulation of chromosome breaks. Rather the pre-B cells showed increased cell death. These studies demonstrate that chromosome breaks arise frequently and that NHEJ is required to repair this constant spontaneous damage.  相似文献   

11.
The pulmonary ionizing radiation sensitivity of C57BL/6 Sod2(+/-) mice heterozygous for MnSOD deficiency was compared to that Sod2(+/+) control littermates. Embryo fibroblast cell lines from Sod2(-/-) (neonatal lethal) or Sod2(+/-) mice produced less biochemically active MnSOD and demonstrated a significantly greater in vitro radiosensitivity. No G(2)/M-phase cell cycle arrest after 5 Gy was observed in Sod2(-/-) cells compared to the Sod2(+/-) or Sod2(+/+) lines. Subclonal Sod2(-/-) or Sod2(+/-) embryo fibroblast lines expressing the human SOD2 transgene showed increased biochemical activity of MnSOD and radioresistance. Sod2(+/-) mice receiving 18 Gy whole-lung irradiation died sooner and had an increased percentage of lung with organizing alveolitis between 100 and 160 days compared to Sod2(+/+) wild-type littermates. Both Sod2(+/-) and Sod2(+/+) littermates injected intratracheally with human manganese superoxide dismutase-plasmid/liposome (SOD2-PL) complex 24 h prior to whole-lung irradiation showed decreased DNA strand breaks and improved survival with decreased organizing alveolitis. Thus underexpression of MnSOD in the lungs of heterozygous Sod2(+/-) knockout mice is associated with increased pulmonary radiation sensitivity and parallels increased radiation sensitivity of embryo fibroblast cell lines in vitro. The restoration of cellular radioresistance in vitro and in lungs in vivo by SOD2-PL transgene expression supports a potential role for SOD2-PL gene therapy in organ-specific radioprotection.  相似文献   

12.
The fission yeast Schizosaccharomyces pombe rad9 gene promotes cell survival through activation of cell cycle checkpoints induced by DNA damage. Mouse embryonic stem cells with a targeted deletion of Mrad9, the mouse ortholog of this gene, were created to evaluate its function in mammals. Mrad9(-/-) cells demonstrated a marked increase in spontaneous chromosome aberrations and HPRT mutations, indicating a role in the maintenance of genomic integrity. These cells were also extremely sensitive to UV light, gamma rays, and hydroxyurea, and heterozygotes were somewhat sensitive to the last two agents relative to Mrad9(+/+) controls. Mrad9(-/-) cells could initiate but not maintain gamma-ray-induced G(2) delay and retained the ability to delay DNA synthesis rapidly after UV irradiation, suggesting that checkpoint abnormalities contribute little to the radiosensitivity observed. Ectopic expression of Mrad9 or human HRAD9 complemented Mrad9(-/-) cell defects, indicating that the gene has radioresponse and genomic maintenance functions that are evolutionarily conserved. Mrad9(+/-) mice were generated, but heterozygous intercrosses failed to yield Mrad9(-/-) pups, since embryos died at midgestation. Furthermore, Mrad9(-/-) mouse embryo fibroblasts were not viable. These investigations establish Mrad9 as a key mammalian genetic element of pathways that regulate the cellular response to DNA damage, maintenance of genomic integrity, and proper embryonic development.  相似文献   

13.
Skin fibroblasts from Gardner syndrome (GS) compared with those from normal donors showed a significantly higher incidence of chromatid gaps and breaks following exposure to low-intensity, cool-white fluorescent light during G2 phase of the cell cycle. Considerable evidence supports the concept that chromatid gaps and breaks seen directly after exposure to DNA-damaging agents represent unrepaired DNA single- and double-strand breaks respectively. The changes in incidence of chromatid aberrations with time after light exposure are consistent with the sequence of events known to follow DNA damage and repair. Initially, the incidence of light-induced chromatid gaps was equivalent in GS and normal fibroblasts. In the normal cells, the chromatid gaps disappeared by 1 h post-exposure, presumably as a result of efficient repair of DNA single-strand breaks. In contrast, the incidence of gaps increased in GS cells by 0.5 h followed by a decrease at 1 h and concomitant increase in chromatid breaks. It appears from these findings that the increased incidence of chromatid damage in GS fibroblasts results from deficient repair of DNA single-strand breaks which arise from incomplete nucleotide excision of DNA damage during G2 phase.  相似文献   

14.
In order to understand the relationship between the chromosomal damage detectable at the first mitosis after mutagen treatment and the induced mitotic delay we studied the time pattern of both mitotic indices and chromosomal aberration frequencies in human lymphocytes treated in G1 with mitomycin C (2.5 microM) and cultured in vitro in the presence of 5-bromo-2'-deoxyuridine. Mitotic delay was observed in treated cells cultured for 81 h. At this point an increase in the frequency of chromosomal aberrations is evident and a higher proportion of abnormal cells enters mitosis, the long delay being due to the extensiveness of DNA damage. The importance of cell cycle progression for the detection of the maximal amount of induced chromosomal damage is discussed.  相似文献   

15.
Telomeres are complexes of repetitive DNA sequences and proteins constituting the ends of linear eukaryotic chromosomes. While these structures are thought to be associated with the nuclear matrix, they appear to be released from this matrix at the time when the cells exit from G(2) and enter M phase. Checkpoints maintain the order and fidelity of the eukaryotic cell cycle, and defects in checkpoints contribute to genetic instability and cancer. The 14-3-3sigma gene has been reported to be a checkpoint control gene, since it promotes G(2) arrest following DNA damage. Here we demonstrate that inactivation of this gene influences genome integrity and cell survival. Analyses of chromosomes at metaphase showed frequent losses of telomeric repeat sequences, enhanced frequencies of chromosome end-to-end associations, and terminal nonreciprocal translocations in 14-3-3sigma(-/-) cells. These phenotypes correlated with a reduction in the amount of G-strand overhangs at the telomeres and an altered nuclear matrix association of telomeres in these cells. Since the p53-mediated G(1) checkpoint is operative in these cells, the chromosomal aberrations observed occurred preferentially in G(2) after irradiation with gamma rays, corroborating the role of the 14-3-3sigma protein in G(2)/M progression. The results also indicate that even in untreated cycling cells, occasional chromosomal breaks or telomere-telomere fusions trigger a G(2) checkpoint arrest followed by repair of these aberrant chromosome structures before entering M phase. Since 14-3-3sigma(-/-) cells are defective in maintaining G(2) arrest, they enter M phase without repair of the aberrant chromosome structures and undergo cell death during mitosis. Thus, our studies provide evidence for the correlation among a dysfunctional G(2)/M checkpoint control, genomic instability, and loss of telomeres in mammalian cells.  相似文献   

16.
Extracellular signal-regulated kinase activity is essential for mediating cell cycle progression from G(1) phase to S phase (DNA synthesis). In contrast, the role of extracellular signal-regulated kinase during G(2) phase and mitosis (M phase) is largely undefined. Previous studies have suggested that inhibition of basal extracellular signal-regulated kinase activity delays G(2)- and M-phase progression. In the current investigation, we have examined the consequence of activating the extracellular signal-regulated kinase pathway during G(2) phase on subsequent progression through mitosis. Using synchronized HeLa cells, we show that activation of the extracellular signal-regulated kinase pathway with phorbol 12-myristate 13-acetate or epidermal growth factor during G(2) phase causes a rapid cell cycle arrest in G(2) as measured by flow cytometry, mitotic indices and cyclin B1 expression. This G(2)-phase arrest was reversed by pre-treatment with bisindolylmaleimide or U0126, which are selective inhibitors of protein kinase C proteins or the extracellular signal-regulated kinase activators, MEK1/2, respectively. The extracellular signal-regulated kinase-mediated delay in M-phase entry appeared to involve de novo synthesis of the cyclin-dependent kinase inhibitor, p21(CIP1), during G(2) through a p53-independent mechanism. To establish a function for the increased expression of p21(CIP1) and delayed cell cycle progression, we show that extracellular signal-regulated kinase activation in G(2)-phase cells results in an increased number of cells containing chromosome aberrations characteristic of genomic instability. The presence of chromosome aberrations following extracellular signal-regulated kinase activation during G(2)-phase was further augmented in cells lacking p21(CIP1). These findings suggest that p21(CIP1) mediated inhibition of cell cycle progression during G(2)/M phase protects against inappropriate activation of signalling pathways, which may cause excessive chromosome damage and be detrimental to cell survival.  相似文献   

17.
18.
Baseline frequencies of chromosomal aberrations were analysed in human peripheral lymphocytes and the influence of age, sex and smoking habits was considered. From 53 healthy subjects (29 males, 24 females) 54,689 exclusively first division cells (M1) were scored. The frequencies of chromosome aberrations per 1000 cells were 1.15 +/- 0.15 dicentrics (dic), 2.6 +/- 0.3 excess acentric fragments (ace) and 7.0 +/- 0.6 chromatid breaks (crb). An age dependency could only be established for ace. Between males and females no differences in any of the aberration types were observed. For heavy smokers (> 30 cigarettes per day) a significant increase was only found for dic (2.5 +/- 0.6 per 1000 cells). Dicentric frequency was compared with background levels of other studies in which results were reported also from exclusively M1 cells. Despite cell cycle control, differences between laboratories can be observed which may be partly influenced by environmental conditions. But on the other hand the mean frequency of dic (excluding heavy smokers) of 0.95 per 1000 cells reported here is consistent for more than one decade. Since such a consistency of the mean frequency of dic is reported also from another laboratory, the conclusion is drawn that especially for the detection of low-level exposures, each laboratory should establish its own base line data, otherwise, the interpretation of the findings is dependent on the selected background level from the literature.  相似文献   

19.
C Nowak  G Obe 《Mutation research》1985,149(3):469-474
Human peripheral lymphocytes and Chinese hamster ovary cells were treated in the G1 phase of the cell cycle with the trifunctional alkylating agent trenimon (TRN) and post-treated with a single-strand specific endonuclease from Neurospora crassa (NE). TRN induces chromosomal aberrations of the chromatid type (CA) and sister-chromatid exchanges (SCE). NE post-treatment leads to an elevation of the frequencies of CA but not of SCEs. This indicates that TRN induced CA are the result of DNA double-strand breaks and that the SCEs originate from other types of lesions, most probably base damage.  相似文献   

20.
We have studied two X-ray-sensitive mutants xrs 5 and xrs 6 (derived from the CHO-K1 cell line), known to be defective in repair of double-strand breaks, for cell killing and frequency of the chromosomal aberrations induced by X-irradiation. The survival experiments showed that mutants are very sensitive to X-rays, the D0, for the wild-type CHO-K1 was 6-fold higher than D0 value for the mutants. The modal number of chromosomes (2 n = 23) and the frequency of spontaneously occurring chromosomal aberrations were similar in all 3 cell lines. X-Irradiation of synchronized mutant cells in G1-phase significantly induced both chromosome- and chromatid-type of aberrations. The frequency of aberrations in xrs mutants was 12-fold more than in the wild-type CHO-K1 cells. X-Irradiation of G2-phase cells also yielded higher frequency of aberrations in the mutants, namely 7-8-fold in xrs 5 and about 3.5-fold in xrs 6 compared to the wild-type CHO-K1 cells. There was a good correlation between relative inability to repair of DNA double-strand breaks and induction of aberrations. The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase on the frequency of X-ray-induced chromosomal aberrations in these 3 cell lines was also studied. 3AB potentiated the frequency of aberrations in G1 and G2 in all the cell types. In the mutants, 3AB had a potentiating effect on the frequency of X-ray-induced chromosomal aberrations only at low doses. X-Ray-induced G2 arrest and its release by caffeine was studied by cytofluorometric methods. The relative speed with which irradiated S-G2 cells progressed into mitosis in the presence of caffeine was CHO-K1 greater than xrs 5 greater than xrs 6. Caffeine could counteract G2 delay induced by X-rays in CHO-K1 and xrs 5 but not in xrs 6. Large differences in potentiation by caffeine were observed among these cells subjected to X-rays and caffeine post-treatment for different durations. These responses and possible reasons for the increased radiosensitivity of xrs mutants are discussed and compared to ataxia telangiectasia (A-T) cells and a radiosensitive mutant mouse lymphoma cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号