首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tenascin-C (TNC), a matricellular protein, is upregulated in brain parenchyma after experimental subarachnoid hemorrhage (SAH). Recent studies emphasize that early brain injury (EBI) should be overcome to improve post-SAH outcomes. The aim of this study was to investigate effects of TNC knockout (TNKO) on neuronal apoptosis and neuroinflammation, both of which are important constituents of EBI after SAH. C57BL/6 wild-type (WT) mice or TNKO mice underwent sham or filament perforation SAH modeling. Twenty-five WT mice and 25 TNKO mice were randomly divided into sham+WT (n?=?10), sham+TNKO (n?=?8), SAH+WT (n?=?15), and SAH+TNKO (n?=?17) groups. Beam balance test, neurological score, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining, immunostaining of Toll-like receptor 4 (TLR4), and Western blotting were performed to evaluate neurobehavioral impairments, neuronal apoptosis, and neuroinflammation at 24 h post-SAH. Deficiency of TNC significantly alleviated post-SAH neurobehavioral impairments and neuronal apoptosis. The protective effects of TNKO on neurons were associated with the inhibition of a caspase-dependent apoptotic pathway, which was at least partly mediated by TLR4/nuclear factor-κB/interleukin-1β and interleukin-6 signaling cascades. This study first provided the direct evidence that TNC causes post-SAH neuronal apoptosis and neuroinflammation, potentially leading to the development of a new molecular targeted therapy against EBI.  相似文献   

2.
Cystatin C (CysC) is a cysteine protease inhibitor and previous studies have demonstrated that increasing endogenous CysC expression has therapeutic implications on brain ischemia, Alzheimer’s disease, and other neurodegenerative disorders. Our previous reports have demonstrated that the autophagy pathway was activated in the brain after experimental subarachnoid hemorrhage (SAH), and it may play a beneficial role in early brain injury (EBI). This study investigated the effects of exogenous CysC on EBI, cognitive dysfunction, and the autophagy pathway following experimental SAH. All SAH animals were subjected to injections of 0.3 ml fresh arterial, nonheparinized blood into the prechiasmatic cistern in 20 s. As a result, treatment with CysC with low and medial concentrations significantly ameliorated the degree of EBI when compared with vehicle-treated SAH rats. Microtubule-associated protein light chain-3 (LC3), a biomarker of autophagosomes, and beclin-1, a Bcl-2-interacting protein required for autophagy, were significantly increased in the cortex 48 h after SAH and were further up-regulated after CysC therapy. By ultrastructural observation, there was a marked increase in autophagosomes and autolysosomes in neurons of CysC-treated rats. Learning deficits induced by SAH were markedly alleviated after CysC treatment with medial doses. In conclusion, pre-SAH CysC administration may attenuate EBI and neurobehavioral dysfunction in this SAH model, possibly through activating autophagy pathway.  相似文献   

3.
Early brain injury (EBI) after subarachnoid hemorrhage (SAH) generally causes significant and lasting damage. Pentoxifylline (PTX), a nonselective phosphodiesterase inhibitor, has shown anti-inflammatory and neuroprotective properties in several brain injury models, but the role of PTX with respect to EBI following SAH remains uncertain. The purpose of this study was to investigate the effects of PTX on EBI after SAH in rats. Adult male Sprauge–Dawley rats were randomly assigned to the sham and SAH groups. PTX (30 or 60 mg/kg) or an equal volume of the administration vehicle (normal saline) was administrated at 30 min intervals following SAH. Neurological scores, brain edema, and neural cell apoptosis were evaluated. In order to explore other mechanisms, changes in the toll-like receptor 4 (TLR4) and the nuclear factor-κB (NF-κB) signaling pathway, in terms of the levels of apoptosis-associated proteins, were also investigated. We found that administration of PTX (60 mg/kg) notably improved neurological function and decreased brain edema at both 24 and 72 h following SAH. Treatment with PTX (60 mg/kg) significantly inhibited the protein expressions of TLR4, NF-κB, MyD88 and the downstream pro-inflammatory cytokines, such as the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). PTX also significantly reduced neural cell death and BBB permeability. Our observations may be the first time that PTX has been shown to play a neuroprotective role in EBI after SAH, potentially by suppressing the TLR4/NF-κB inflammation-related pathway in the rat brain.  相似文献   

4.
Neuronal apoptosis is a potentially fatal pathological process that occurs in early brain injury (EBI) after subarachnoid hemorrhage (SAH). There is an urgent need to identify effective therapeutics to alleviate neuronal apoptosis. Tetramethylpyrazine (TMP), as an important component of the Chinese traditional medicinal herb Ligusticum wallichii, has been widely used in China to treat cerebral ischemic injury and confer neuroprotection. In the present work, we investigate whether TMP can reduce EBI following SAH in rats, specifically via inactivating the PERK/Akt signaling cascade. One hundred twenty-five male Sprague–Dawley rats were used in the present study. TMP was administered by intravenous (i.v.) injection, and the Akt inhibitor MK2206 was injected intracerebroventricularly (i.c.v.). SAH grade, neurological scores, and brain water content were measured 24 h after SAH. Neuronal apoptosis was visualized by Fluoro-Jade C (FJC) staining. Western blotting was used to measure the levels of PERK, p-PERK, eIF2α, p-eIF2α, Akt, p-Akt, Bcl-2, Bax, and cleaved caspase-3. Our results showed that TMP effectively reduced neuronal apoptosis and improved neurobehavioral deficits 24 h after SAH. Administration of TMP reduced the abundance of p-PERK and p-eIF2α. In addition, TMP increased the p-Akt level and the Bcl-2/Bax ratio and decreased the level of cleaved caspase-3. The selective Akt inhibitor MK2206 abolished the anti-apoptotic effect of TMP at 24 h after SAH. Collectively, these results indicate that Akt-related anti-apoptosis through the PERK pathway is a major, potent mechanism of EBI. Further investigation of this pathway may provide a basis for the development of TMP as a clinical treatment.  相似文献   

5.
Early brain injury (EBI) is the primary cause of poor outcome in subarachnoid hemorrhage (SAH) patients. Rolipram, a specific phosphodiesterase-4 inhibitor which is traditionally used as an anti-depressant drug, has been recently proven to exert neuroprotective effects in several central nervous system insults. However, the role of rolipram in SAH remains uncertain. The current study was aimed to investigate the role of rolipram in EBI after SAH and explore the potential mechanism. Adult male Sprague–Dawley rats were subjected to an endovascular perforation process to produce an SAH model. Rolipram was injected intraperitoneally at 2 h after SAH with a dose of 10 mg/kg. We found that rolipram significantly ameliorated brain edema and alleviated neurological dysfunction after SAH. Rolipram treatment remarkably promoted the expression of Sirtuin 1 (SIRT1) while inhibited NF-κB activation. Moreover, rolipram significantly inhibited the activation of microglia as well as down-regulated the expression of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6. In addition, rolipram increased the expression of protective cytokine IL-10. Furthermore, rolipram significantly alleviated neuronal death after SAH. In conclusion, these data suggested that rolipram exerts neuroprotective effects against EBI after SAH via suppressing neuroinflammation and reducing neuronal loss. The neuroprotective effects of rolipram were associated with regulating the SIRT1/NF-κB pathway. Rolipram could be a novel and promising therapeutic agent for SAH treatment.  相似文献   

6.
Pterostilbene (PTE), one of the polyphenols present in plants such as blueberries and grapes, has been suggested to have various effects, such as anti-oxidation, anti-apoptosis, and anti-cancer effects. Subarachnoid hemorrhage (SAH) is a severe neurological event known for its high morbidity and mortality. Recently, early brain injury (EBI) has been reported to play a significant role in the prognosis of patients with SAH. The present study aimed to investigate whether PTE could attenuate EBI after SAH was induced in C57BL/6 J mice. We also studied possible underlying mechanisms. After PTE treatment, the neurological score and brain water content of the mice were assessed. Oxidative stress and neuronal injury were also evaluated. Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activity was assessed using western blot analysis. Our results indicated that PTE treatment reduces the SAH grade, neurological score, and brain water content following SAH. PTE treatment also reduced NLRP3 inflammasome activation. PTE alleviated the oxidative stress following SAH as evidenced by the dihydroethidium staining, superoxide dismutase activity, malondialdehyde content, 3-nitrotyrosie and 8-hydroxy-2-deoxyguanosine levels, and gp91phox and 4-hydroxynonenal expression levels. Additionally, PTE treatment reduced neuronal apoptosis. In conclusion, our study suggests that PTE attenuates EBI following SAH possibly via the inhibition of NLRP3 inflammasome and Nox2-related oxidative stress.  相似文献   

7.
Curcumin and nano-curcumin both exhibit neuroprotective effects in early brain injury (EBI) after experimental subarachnoid hemorrhage (SAH). However, the mechanism that whether curcumin and its nanoparticles affect the blood–brain barrier (BBB) following SAH remains unclear. This study investigated the effect of curcumin and the poly(lactide-co-glycolide) (PLGA)-encapsulated curcumin nanoparticles (Cur-NPs) on BBB disruption and evaluated the possible mechanism underlying BBB dysfunction in EBI using the endovascular perforation rat SAH model. The results indicated that Cur-NPs showed enhanced therapeutic effects than that of curcumin in improving neurological function, reducing brain water content, and Evans blue dye extravasation after SAH. Mechanically, Cur-NPs attenuated BBB dysfunction after SAH by preventing the disruption of tight junction protein (ZO-1, occludin, and claudin-5). Cur-NPs also up-regulated glutamate transporter-1 and attenuated glutamate concentration of cerebrospinal fluid following SAH. Moreover, inhibition of inflammatory response and microglia activation both contributed to Cur-NPs’ protective effects. Additionally, Cur-NPs markedly suppressed SAH-mediated oxidative stress and eventually reversed SAH-induced cell apoptosis in rats. Our findings revealed that the strategy of using Cur-NPs could be a promising way in improving neurological function in EBI after experimental rat SAH.  相似文献   

8.
Mitochondrial dysfunction is considered a crucial therapeutic target for early brain injury following subarachnoid hemorrhage (SAH). Emerging evidence indicates that docosahexaenoic acid (DHA), an essential omega-3 fatty acid, protects mitochondria in various chronic diseases. This study aimed to investigate the neuroprotective effects of DHA on mitochondrial dynamic dysfunction after EBI using in vivo and in vitro approaches. For in vivo experiments, the rat endovascular perforation SAH model was performed, whereby DHA was administered intravenously 1 h after induction of SAH. Primary cultured neurons treated with oxyhemoglobin (OxyHb) for 24 h were used to mimic SAH in vitro. Our results demonstrated that DHA improved neurological deficits and reduced brain edema in rats with SAH, and attenuated OxyHb-induced neuronal death in primary cultured cells. DHA reduced the amount of reactive oxygen species-positive cells and improved cell viability when compared to the SAH?+?vehicle group in vitro. DHA attenuated malondialdehyde levels and superoxide dismutase stress, increased Bcl2 and Bcl-xl, and decreased Bax and cleaved caspase-3 in vivo. Additionally, DHA ameliorated mitochondrial dysfunction, upregulated the mitochondrial fusion-related protein Optic Atrophy 1, and downregulated the mitochondrial fission-related protein Dynamin-Related-Protein 1 (Drp1) and Serine 616 phosphorylated Drp1 after SAH both in vitro and in vivo. Taken together, our current study demonstrates that DHA might prevent oxidative stress-based apoptosis after SAH. The characterization of the underlying molecular mechanisms may further improve mitochondrial dynamics-related signaling pathways.  相似文献   

9.
Accumulating evidence suggests that activation of mitogen-activated protein kinases (MAPKs) and nuclear factor NF-κB exacerbates early brain injury (EBI) following subarachnoid hemorrhage (SAH) by provoking proapoptotic and proinflammatory cellular signaling. Here we evaluate the role of TGFβ-activated kinase 1 (TAK1), a critical regulator of the NF-κB and MAPK pathways, in early brain injury following SAH. Although the expression level of TAK1 did not present significant alternation in the basal temporal lobe after SAH, the expression of phosphorylated TAK1 (Thr-187, p-TAK1) showed a substantial increase 24 h post-SAH. Intracerebroventricular injection of a selective TAK1 inhibitor (10 min post-SAH), 5Z-7-oxozeaenol (OZ), significantly reduced the levels of TAK1 and p-TAK1 at 24 h post-SAH. Involvement of MAPKs and NF-κB signaling pathways was revealed that OZ inhibited SAH-induced phosphorylation of p38 and JNK, the nuclear translocation of NF-κB p65, and degradation of IκBα. Furthermore, OZ administration diminished the SAH-induced apoptosis and EBI. As a result, neurological deficits caused by SAH were reversed. Our findings suggest that TAK1 inhibition confers marked neuroprotection against EBI following SAH. Therefore, TAK1 might be a promising new molecular target for the treatment of SAH.  相似文献   

10.
Melatonin (Mel) has been reported to alleviate early brain injury (EBI) following subarachnoid hemorrhage (SAH). The activation of silent information regulator 1 (Sirt1), a histone deacetylase, has been suggested to be beneficial in SAH. However, the precise role of Sirt1 in Mel-mediated protection against EBI following SAH has not been elucidated. The present study aims to evaluate the role of melatonin receptor/Sirt1/nuclear factor-kappa B (NF-κB) in this process. The endovascular perforation SAH model was used in male C57BL/6J mice, and melatonin was administrated intraperitoneally (150 mg/kg). The mortality, SAH grade, neurological score, brain water content, and neuronal apoptosis were evaluated. The expression of Sirt1, acetylated-NF-κB (Ac-NF-κB), Bcl-2, and Bax were detected by western blot. To study the underlying mechanisms, melatonin receptor (MR) antagonist luzindole and Sirt1 small interfering RNA (siRNA) were administrated to different groups. The results suggest that Mel improved the neurological deficits and reduced the brain water content and neuronal apoptosis. In addition, Mel enhanced the expression of Sirt1 and Bcl-2 and decreased the expression of Ac-NF-κB and Bax. However, the protective effects of Mel were abolished by luzindole or Sirt1 siRNA. In conclusion, our results demonstrate that Mel attenuates EBI following SAH via the MR/Sirt1/NF-κB signaling pathway.  相似文献   

11.
Neuronal apoptosis has an important role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). TRAF3 was reported as a promising therapeutic target for stroke management, which covered several neuronal apoptosis signaling cascades. Hence, the present study is aimed to determine whether downregulation of TRAF3 could be neuroprotective in SAH-induced EBI. An in vivo SAH model in mice was established by endovascular perforation. Meanwhile, primary cultured cortical neurons of mice treated with oxygen hemoglobin were applied to mimic SAH in vitro. Our results demonstrated that TRAF3 protein expression increased and expressed in neurons both in vivo and in vitro SAH models. TRAF3 siRNA reversed neuronal loss and improved neurological deficits in SAH mice, and reduced cell death in SAH primary neurons. Mechanistically, we found that TRAF3 directly binds to TAK1 and potentiates phosphorylation and activation of TAK1, which further enhances the activation of NF-κB and MAPKs pathways to induce neuronal apoptosis. Importantly, TRAF3 expression was elevated following SAH in human brain tissue and was mainly expressed in neurons. Taken together, our study demonstrates that TRAF3 is an upstream regulator of MAPKs and NF-κB pathways in SAH-induced EBI via its interaction with and activation of TAK1. Furthermore, the TRAF3 may serve as a novel therapeutic target in SAH-induced EBI.Subject terms: Apoptosis, Neuro-vascular interactions  相似文献   

12.
Remote ischemic perconditioning (RIPer) has been proved to provide potent cardioprotection. However, there are few studies on neuroprotection of RIPer. This study aims to clarify the neuroprotective effect of RIPer and the role of autophagy induced by RIPer against cerebral ischemia reperfusion injury in rats. Using a transient middle cerebral artery occlusion (MCAO) model in rats to imitate focal cerebral ischemia. RIPer was carried out 4 cycles of 10 min ischemia and 10 min reperfusion, with a thin elastic band tourniquet encircled on the bilateral femoral arteries at the start of 10 min after MCAO. Autophagy inhibitor 3-methyladenine (3-MA) and autophagy inducer rapamycin were administered respectively to determine the contribution of autophagy in RIPer. Neurologic deficit scores, infarct volume, brain edema, Nissl staining, TUNEL assay, immunohistochemistry and western blot was performed to analyze the neuroprotection of RIPer and the contribution of autophagy in RIPer. RIPer significantly exerted neuroprotective effects against cerebral ischemia reperfusion injury in rats, and the autophagy-lysosome pathway was activated by RIPer treatment. 3-MA reversed the neuroprotective effects induced by RIPer, whereas rapamycin ameliorated the brain ischemic injury. Autophagy activation contributes to the neuroprotection by RIPer against focal cerebral ischemia in rats.  相似文献   

13.

Early brain injury (EBI) is the early phase of secondary complications arising from subarachnoid hemorrhage (SAH). G protein-coupled receptor 18 (GPR18) can exert neuroprotective effects during ischemia. In this study, we investigated the roles of GPR18 in different brain regions during EBI using a GPR18 agonist, resolvin D2 (RvD2). Location and dynamics of GPR18 expression were assessed by immunohistochemistry and western blotting in a rat model of SAH based on endovascular perforation. RvD2 was given intranasally at 1 h after SAH, and SAH grade, brain water content and behavior were assayed before sacrifice. TUNEL and dihydroethidium staining of the cortex were performed at 24 h after SAH. Selected brain regions were also examined for pathway related proteins using immunofluorescence and Western blotting. We found that GPR18 was expressed in meninges, hypothalamus, cortex and white matter before EBI. After SAH, GPR18 expression was increased in meninges and hypothalamus but decreased in cortex and white matter. RvD2 improved neurological scores and brain edema after SAH. RvD2 attenuated mast cell degranulation and reduced expression of chymase and tryptase expression in the meninges. In the hypothalamus, RvD2 attenuated inflammation, increased expression of proopiomelanocortin and interleukin-10, as well as decreased expression of nerve peptide Y and tumor necrosis factor-α. In cortex, RvD2 alleviated oxidative stress and apoptosis, and protected the blood–brain barrier. RvD2 also ameliorated white matter injury by elevating myelin basic protein and suppressing amyloid precursor protein. Our results suggest that GPR18 may help protect multiple brain regions during EBI, particularly in the cortex and hypothalamus. Upregulating GPR18 by RvD2 may improve neurological functions in different brain regions via multiple mechanisms.

  相似文献   

14.
Neuronal apoptosis is a central pathological process in subarachnoid hemorrhage (SAH)-induced early brain injury. Endoplasmic reticulum (ER) stress was reported to have a vital role in the pathophysiology of neuronal apoptosis in the brain. The present study was designed to investigate the potential effects of ER stress and its downstream signals in early brain injury after SAH. One hundred thirty-four rats were subjected to an endovascular perforation model of SAH. The RNA-activated protein kinase-like ER kinase (PERK) inhibitor GSK2606414 and the Akt inhibitor MK2206 were injected intracerebroventricularly. SAH grade, neurologic scores, and brain water content were measured 72 h after subarachnoid hemorrhage. Expression of PERK and its downstream signals, Akt, Bcl-2, Bax, and cleaved caspase-3, were examined using Western blot analysis. Specific cell types that expressed PERK were detected with double immunofluorescence staining. Neuronal cell death was demonstrated with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL). Our results showed that the expression of p-PERK and its downstream targets, p-eIF2α and ATF4, increased after SAH and peaked at 72 h after SAH. PERK was expressed mostly in neurons. The inhibition of PERK with GSK2606414 reduced p-PERK, p-eIF2α, and ATF4 expression. Furthermore, GSK2606414 treatment increased p-Akt levels and the Bcl-2/Bax ratio as well as decreased cleaved caspase-3 expression and neuronal death, thereby improving neurological deficits at 72 h after SAH. The selective Akt inhibitor MK2206 abolished the beneficial effects of GSK2606414. PERK, the major transducer of ER stress, is involved in neuronal apoptosis after SAH. The inhibition of PERK reduces early brain injury via Akt-related anti-apoptosis pathways. PERK may serve as a promising target for future therapeutic intervention.  相似文献   

15.
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is the main cause to poor outcomes of SAH patients, and early inflammation plays an important role in the acute pathophysiological events. It has been demonstrated that ethyl pyruvate (EP) has anti-inflammatory and neuroprotective effects in various critical diseases, however, the role of EP on EBI following SAH remains to be elucidated. Our study aimed to evaluate the effects of EP on EBI following SAH in the endovascular perforation rabbit model. All rabbits were randomly divided into three groups: sham, SAH?+?Vehicle (equal volume) and SAH?+?EP (30?mg/kg/day). MRI was performed to estimate the reliability of the EBI at 24 and 72?h after SAH. Neurological scores were recorded to evaluate the neurological deficit, ELISA kit was used to measure the level of tumor necrosis factor-α (TNF-α), and western blot was used to detect the expression of TNF-α, tJNK, pJNK, bax and bcl-2 at 24 and 72?h after SAH. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Fluoro-jade B (FJB) staining were used to detect neuronal apoptosis and neurodegeneration respectively, meanwhile hematoxylin and eosin (H&E) staining was used to assess the degree of vasospasm. Our results demonstrated that EP alleviated brain tissue injury (characterized by diffusion weighted imaging and T2 sequence in MRI scan), and significantly improved neurological scores at 72?h after SAH. EP decreased the level of TNF-α and downregulated pJNK/tJNK and bax/bcl-2 in cerebral cortex and hippocampus effectively both at 24 and 72?h after SAH. Furthermore, EP reduced TUNEL and FJB positive cells significantly. In conclusion, the present study supported that EP afforded neuroprotective effects possibly via reducing TNF-α expression and inhibition of the JNK signaling pathway. Therefore, EP may be a potent therapeutic agent to attenuate EBI following SAH.  相似文献   

16.
Early brain injury (EBI) is associated with the adverse prognosis of subarachnoid hemorrhage (SAH) patients. The key bioactive component of the Chinese herbal medicine Artemisia asiatica Nakai (Asteraceae) is eupatilin. Recent research reports that eupatilin suppresses inflammatory responses induced by intracranial hemorrhage. This work is performed to validate whether eupatilin can attenuate EBI and deciphers its mechanism. A SAH rat model was established by intravascular perforation in vivo. At 6 h after SAH in rats, 10 mg/kg eupatilin was injected into the rats via the caudal vein. A Sham group was set as the control. In vitro, BV2 microglia was treated with 10 μM Oxyhemoglobin (OxyHb) for 24 h, followed by 50 μM eupatilin treatment for 24 h. The SAH grade, brain water content, neurological score, and blood-brain barrier (BBB) permeability of the rats were measured 24 h later. The content of proinflammatory factors was detected via enzyme-linked immunosorbent assay. Western blot analysis was conducted to analyze the expression levels of TLR4/MyD88/NF-κB pathway-associated proteins. In vivo, eupatilin administration alleviated neurological injury, and decreased brain edema and BBB injury after SAH in rats. Eupatilin markedly reduced the levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), and suppressed the expression levels of MyD88, TLR4, and p-NF-κB p65 in the SAH rats' cerebral tissues. Eupatilin treatment also reduced the levels of IL-1β, IL-6, and TNF-α, and repressed the expression levels of MyD88, TLR4, and p-NF-κB p65 in OxyHb-induced BV2 microglia. Additionally, pyrrolidine dithiocarbamate or resatorvid enhanced the suppressive effects of eupatilin on OxyHb-induced inflammatory responses in BV2 microglia. Eupatilin ameliorates SAH-induced EBI via modulating the TLR4/MyD88/NF-κB pathway in rat model.  相似文献   

17.
《Autophagy》2013,9(2):221-223
The interaction among autophagy, apoptosis and necrosis is complex and still a matter of debate. We have recently studied this interaction after neonatal hypoxia-ischemia (HI) in rats. We found that autophagic and apoptotic pathways were significantly increased at short times after HI in neuronal cells. 3-Methyladenine (3-MA) and wortmannin (WM), that inhibit autophagy, significantly reduced autophagic pathways activation and switched the mechanism of cell death from apoptotic to necrotic. Rapamycin, conversely, that increases autophagy, reduced necrotic cell death, and decreased brain injury. A prophylactic treatment with simvastatin or hypoxic preconditioning also caused up-regulation of autophagic pathways. In this Addendum, we summarize these findings and speculate on the possible physiological role of autophagy during hypoxia-ischemia induced neurodegeneration.  相似文献   

18.
Evidence has shown therapeutic potential of irisin in cerebral stroke. The present study aimed to assess the effects of recombinant irisin on the infarct size, neurological outcomes, blood–brain barrier (BBB) permeability, apoptosis and brain-derived neurotrophic factor (BDNF) expression in a mouse model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 45 min and followed reperfusion for 23 h in mice. Recombinant irisin was administrated at doses of 0.1, 0.5, 2.5, 7.5, and 15 µg/kg, intracerebroventricularly (ICV), on the MCAO beginning. Neurological outcomes, infarct size, brain edema and BBB permeability were evaluated by modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans blue (EB) extravasation methods, respectively, at 24 h after ischemia. Apoptotic cells and BDNF protein were detected by TUNEL assay and immunohistochemistry techniques. The levels of Bcl-2, Bax and caspase-3 proteins were measured by immunoblotting technique. ICV irisin administration at doses of 0.5, 2.5, 7.5 and 15 µg/kg, significantly reduced infarct size, whereas only in 7.5 and 15 µg/kg improved neurological outcome (P?<?0.001). Treatment with irisin (7.5 µg/kg) reduced brain edema (P?<?0.001) without changing BBB permeability (P?>?0.05). Additionally, irisin (7.5 µg/kg) significantly diminished apoptotic cells and increased BDNF immunoreactivity in the ischemic brain cortex (P?<?0.004). Irisin administration significantly downregulated the Bax and caspase-3 expression and upregulated the Bcl-2 protein. The present study indicated that irisin attenuates brain damage via reducing apoptosis and increasing BDNF protein of brain cortex in the experimental model of stroke in mice.  相似文献   

19.
Tert-butylhydroquinone (tBHQ), an Nrf2 activator, has demonstrated neuroprotection against brain trauma and ischemic stroke in vivo. However, little work has been done with respect to its effect on early brain injury (EBI) after subarachnoid hemorrhage (SAH). At the same time, as an oral medication, it may have extensive clinical applications for the treatment of SAH-induced cognitive dysfunction. This study was undertaken to evaluate the influence of tBHQ on EBI, secondary deficits of learning and memory, and the Keap1/Nrf2/ARE pathway in a rat SAH model. SD rats were divided into four groups: (1) Control group (n = 40); (2) SAH group (n = 40); (3) SAH+vehicle group (n = 40); and (4) SAH+tBHQ group (n = 40). All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once in 20 s. In SAH+tBHQ group, tBHQ was administered via oral gavage at a dose of 12.5 mg/kg at 2 h, 12 h, 24 h, and 36 h after SAH. In the first set of experiments, brain samples were extracted and evaluated 48 h after SAH. In the second set of experiments, changes in cognition and memory were investigated in a Morris water maze. Results shows that administration of tBHQ after SAH significantly ameliorated EBI-related problems, such as brain edema, blood-brain barrier (BBB) impairment, clinical behavior deficits, cortical apoptosis, and neurodegeneration. Learning deficits induced by SAH was markedly alleviated after tBHQ therapy. Treatment with tBHQ markedly up-regulated the expression of Keap1, Nrf2, HO-1, NQO1, and GSTα1 after SAH. In conclusion, the administration of tBHQ abated the development of EBI and cognitive dysfunction in this SAH model. Its action was probably mediated by activation of the Keap1/Nrf2/ARE pathway.  相似文献   

20.
The blood-brain barrier (BBB) disruption and brain edema are important pathophysiologies of early brain injury after subarachnoid hemorrhage (SAH). This study is to evaluate whether Rho kinase (Rock) enhances BBB permeability via disruption of tight junction proteins during early brain injury. Adult male rats were assigned to five groups; Sham-operated, SAH treated with saline, a Rock inhibitor hydroxyfasudil (HF) (10 mg/kg) treatment at 0.5 h after SAH, HF treatment at 0.5 and 6 h (10 mg/kg, each) after SAH, and another Rock inhibitor Y27632 (10 mg/kg) treatment at 0.5 h after SAH. The perforation model of SAH was performed and neurological score and brain water content were evaluated 24 and 72 h after surgery. Evans blue extravasation, Rock activity assay, and western blotting analyses were evaluated 24 h after surgery. Treatment of HF significantly improved neurological scores 24 h after SAH. Single treatment with HF and Y27632, and two treatments with HF reduced brain water content in the ipsilateral hemisphere. HF reduced Evans blue extravasation in the ipsilateral hemisphere after SAH. Rock activity increased 24 h after SAH, and HF reversed the activity. SAH significantly decreased the levels of tight junction proteins, occludin and zonula occludens-1 (ZO-1), and HF preserved the levels of occluding and ZO-1 in ipsilateral hemisphere. In conclusion, HF attenuated BBB permeability after SAH, possibly by protection of tight junction proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号