首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animals (Cuniculina impigra) possessing only one foreleg with restrained coxa perform very stereotyped searching movements during which the movements of the femur-tibia and coxa-trochanter joints are well coordinated. After ablation of either hairfield BF1 (measuring the position of the coxa-trochanter joint) or the apodeme of the femoral chordotonal organ (measuring the position of the femur-tibia joint) each joint can still be moved but the coordination changes and becomes very labile. The consequences for the ideas about the construction principles of the pattern generator for searching movements are discussed.  相似文献   

2.
Functional comparative morphology of predatory legs in five species of water bugs (Ilyocoris cimicoides, Nepa cinerea, Ranatra linearis, Notonecta glauca, and Gerris lacustris) has been investigatd adn the following peculiarities of leg design were revealed.
  • 1 Subcoxal articulation may be monoaxial (G. lacustris, N. glauca), or, in contrast to walking leg type, biaxial (N. cinerea, R. linearis, I. cimicoides); the first axis is oriented along the coxa (torsion axis), the second one is perpendicular to the first (non-torsion axis).
  • 2 In contrast to walking leg type, which is characterized by cross suspension of the axis of coxal rotation in thoracal skeleton, this axis in G. lacustris is placed vertically. Non-torsion coxal axis in R. linearis is oriented strongly transversal. This axis directs the leg strike forward.
  • 3 Legs in the majority of species are planar: Torsion axes of the coxa, femur, and tibia are placed in the same plane. Axes of rotation of consequent joints in I. cimicoides are reciprocally sloped. Therefore, the end of the leg outlines the spiral trajectory, when all angles of joints are opening (closing). This is an adaptation for clinging to the stems of water plants.
  • 4 Passive adduction of the femur in the trochanter-femoral joint in N. glauca allows it to go around protuberances of the body wall, when the leg is sliding along them; recurrent femur movement during releasing from the obstacele is active due to the rt.fe muscle.
  • 5 Only R. linearis has predatory legs, which permit the high-speed pursuit of potential prey; other species realize this function using the swimming legs, whereas the forelegs are used for the manipulation movements.
  • 6 Muscle arrangement in the prothorax of different species reflects both leg construction and constructional constraints of body design. Powerful flexor muscles (co1, co2, co3, co5, fl.ti, et.ti in R. linearis; fl.ta, fl.ti in N. glauca; fl.ti in I. cimicoides) have long tendons and short muscle bundles, which originate on the leg wall. As a result, the powerful force is developed along the muscle tendon.
  • 7 Some features of the predatory leg are common for the species studies: elongation of coxae, thickening of femora, and increase of the degree of junction of tibia and tarsus. The muscles, which move the distal segment of the leg, are reinforced and the sclerite of the fl.ti tendon is enlarged. The joint angle of the distal segment is increased to 120°. © 1995 Wiley-Liss, Inc.
  相似文献   

3.
Abstract

Background: Closely approximating the functional flexion-extension (FE) axis of the tibiofemoral joint in 3D models of the femur is important when computing joint motions which are physiologic. The objectives were to 1) develop methods to approximate the functional FE axis based on fitting circles, a tapered cylinder, and spheres to the posterior condyles, 2) determine the repeatability and reproducibility of each method, and 3) determine limits of agreement between pairs of axes.

Methods: For each method, the respective axis was determined in forty 3D bone models of the distal femur. Varus-valgus angles and internal-external axial angles were computed relative to standard planes.

Results: Repeatability and reproducibility were comparable for the tapered cylinder-based and sphere-based methods and better than that for the circle-based method. Limits of agreement were tightest when comparing the sphere-based and tapered cylinder-based axes. However, limits of agreement for the internal-external axial angle were wide at +3.6° to ?3.9° whereas limits of agreement were tighter at +1.4° to ?0.7° for the varus-valgus angle.

Conclusion: The tapered cylinder-based and sphere-based methods offer advantages of better repeatability and reproducibility over the circle-based method. However, the sphere-based and tapered cylinder-based axes are not interchangeable owing to wide limits of agreement for the internal-external axial angle. The tapered cylinder-based axis is preferred intuitively over the sphere-based axis because the spheres require fitting in both the sagittal and coronal planes whereas the tapered cylinder requires fitting in the sagittal plane only which is the plane of motion in flexion-extension.  相似文献   

4.
To identify the sensory organs that are sensitive to water stimuli in the cricket Gryllus bimaculatus, cuticular structures on the legs and the number of sensory neurons innervating them were studied. Some small hair sensilla on the legs were innervated by 2-5 sensory neurons. All such sensilla had a tiny pore at the tip of their hairs. The diameter of the pore was approximately 0.2 mum. These findings suggest that these are chemosensitive hairs (LCS: leg chemosensillum). Of the three pairs of legs, the anterior legs (forelegs) possessed the largest number of LCSs. Of the five leg segments (i.e., coxa, trochanter, femur, tibia and tarsus), the tarsus possessed the largest number of LCSs on each leg. Electrophysiological investigation by tip recording revealed that some of the LCSs contained water-receptor cells. Because the basitarsus possessed a larger number of LCSs than the other tarsomeres, the distribution of water-receptor-containing LCSs in the basitarsus of a foreleg was investigated morphologically and electrophysiologically. LCSs that contained water-receptor cells were mainly distributed on the ventral surface of the basitarsus. There were two types of water receptor that showed different response patterns to a stimulus, that is, phasic- and tonic-type water receptors. From the distribution of LCSs on the legs, the roles of these different types of water receptors in behavioral selection, that is, the initiation of swimming and the inhibition of flying, will be discussed.  相似文献   

5.
We have combined high-speed video motion analysis of leg movements with electromyogram (EMG) recordings from leg muscles in cockroaches running on a treadmill. The mesothoracic (T2) and metathoracic (T3) legs have different kinematics. While in each leg the coxa-femur (CF) joint moves in unison with the femur-tibia (FT) joint, the relative joint excursions differ between T2 and T3 legs. In T3 legs, the two joints move through approximately the same excursion. In T2 legs, the FT joint moves through a narrower range of angles than the CF joint. In spite of these differences in motion, no differences between the T2 and T3 legs were seen in timing or qualitative patterns of depressor coxa and extensor tibia activity. The average firing frequencies of slow depressor coxa (Ds) and slow extensor tibia (SETi) motor neurons are directly proportional to the average angular velocity of their joints during stance. The average Ds and SETi firing frequency appears to be modulated on a cycle-by-cycle basis to control running speed and orientation. In contrast, while the frequency variations within Ds and SETi bursts were consistent across cycles, the variations within each burst did not parallel variations in the velocity of the relevant joints. Accepted: 24 May 1997  相似文献   

6.
Autotomy is a process in grasshoppers whereby one or both hindlimbs can be shed to escape a predator or can be abandoned if damaged. It occurs between the trochanter and the femur (second and third leg segments) and once lost, the legs never regenerate. Autotomy severs branches of the leg nerve (N5) but damages no muscles since none span the autotomy plane. We find, however, that undamaged muscles intrinsic to the thorax of grasshoppers, Barytettix psolus, atrophy to less than 15% of their normal mass after autotomy of a hindlimb. These muscles operate the coxa and trochanter (first and second leg segments) and are innervated by branches of nerves 3 and 4; nerve branches that are not damaged by autotomy. Atrophy is localized to the side and body segment where autotomy occurs. Atrophy is evident 7-10 days after loss of a limb, is complete by about 30 days, and follows a similar time course whether induced in young adult, or sexually mature grasshoppers. During autotomy, leg nerve 5 is served distal to the trochanter, the thoracic muscles lose their normal static and dynamic load, and these muscles are subsequently no longer used to support the weight of the insect during posture and locomotion. Experimental loading and unloading of the affected muscles, and cutting of nerves indicated that it is the severing of leg nerve 5 during autotomy that transneuronally induces muscle atrophy.  相似文献   

7.
The morphology of the coxa and trochanter was studied in 205 species from 68 fly families to compare these structures with respect to ability to fly in a streamlined posture, with the middle legs pointing forward and pressed to the thorax. Only Brachycera are able to attain this posture. The forward turn of the coxa at this position is hindered by the junction of the coxa with the pleuron. Recovery of mobility is gained in two ways. (1) By reduction of the contact zone between coxa and pleurite, as in Asiloidea, Bombyloidea, and Empidoidea. Within these flies, the streamlined posture was recorded in Bombyliidae and in a robber-fly, Laphria flava . Others fly with their middle legs straddled laterally or trailing backwards. (2) Longitudinal splitting of the coxa into three coxites provides intracoxal mobility in most Tabanoidea and Cyclorrhapha. The hind and medial coxites rotate about the front coxite and change the coxo-trochanteral axis, thus compensating for restricted protraction. Separation of the hind coxite appears in primitive Tabanoidea, and a separate middle coxite was found in several families among the Nematocera. The streamlined posture was recorded in horse-flies, stratiomyids, and in many Cyclorrhapha except Micropezidae and Hippoboscidae. There is morphological evidence for a possible secondary fusion of coxites at least in Dolichopodidae and Opetidae as well as for the origin of Cyclorrhapha from a miniature ancestor.  相似文献   

8.
The micromorphology of the locust coxo–trochanteral joint was examined in cobalt-stained material. Peripheral nervous system, musculature, and internal proprioceptors—two strand receptors and a muscle receptor organ—of the metathoracic coxa are compared with those of the pro- and mesothoracic legs. The number and position of trochanter levator and depressor motoneurons as well as the central projections of coxal sense organs are described. Evidence for a femoro–tibial strand receptor was obtained by tracing the path of a particular nerve branch.  相似文献   

9.
We found a hitherto unknown gland in the trochanter of several ant species. The gland occurs at the proximal ventral part of the trochanter in all legs. It consists of a thickening of the tegumental epithelium, the lining cuticle of which is characterized by narrow vertical pores that lead the secretion to the outside. Its function is probably that of producing lubricant substances to allow optimal manoeuvrability of the articulation between the trochanter and the coxa.  相似文献   

10.
Osteochondrosis dissecans (OD) is a process of subchondral bone necrosis occurring predominantly in young individuals at specific sites. The aetiology of this disease remains controversial with mechanical processes due to trauma and/or ischaemic factors being proposed. This study aims at explaining the aetiology of OD in the knee joint as a result of the particular deformation of the condyles. A finite element analysis of the distal third of the femur was performed. A three-dimensional model was developed based on computed tomography scans of a normal femur, consisting of cortical bone, cancellous bone and articular cartilage. This model was subjected to physiological loads at 0, 30, 60 and 90 degrees of knee flexion. A complex deformation was found within each condyle as well as between the two condyles. Both medial and lateral condyles are deformed in the medio-lateral direction and at the same time compressed between the patella and the tibia in the antero-posterior direction. This effect is highest at 60 degrees of knee flexion. In both planes, the medial condyle is distorted more than the lateral one. Strain concentration in the subchondral bone facing the patella varies with flexion, especially for angles exceeding 60 degrees. The deformation of the femur in the predominant locus of OD in the medial condyle exceeds that of the lateral condyle considerably. The analysis shows that repeated vigorous exercise including extreme knee flexion may produce rapidly changing strains which in turn could ultimately be responsible for local subchondral bone collapse.  相似文献   

11.

Background

Many insects can regenerate limbs, but less is known about the regrowth process with regard to limb injury type. As part of our neurophysiology education experiments involving the removal of a cockroach leg, 1) the ability of Blaberus discoidalis cockroaches to regenerate a metathoracic leg was examined following autotomy at the femur/trochanter joint versus severance via a transverse coxa-cut, and 2) the neurophysiology of the detached legs with regard to leg removal type was studied by measuring spike firing rate and microstimulation movement thresholds.

Leg Regrowth Results

First appearance of leg regrowth was after 5 weeks in the autotomy group and 12 weeks in the coxa-cut group. Moreover, regenerated legs in the autotomy group were 72% of full size on first appearance, significantly larger (p<0.05) than coxa-cut legs (29% of full size at first appearance). Regenerated legs in both groups grew in size with each subsequent molt; the autotomy-removed legs grew to full size within 18 weeks, whereas coxa-cut legs took longer than 28 weeks to regrow. Removal of the metathoracic leg in both conditions did not have an effect on mortality compared to matched controls with unmolested legs.

Neurophysiology Results

Autotomy-removed legs had lower spontaneous firing rates, similar marked increased firing rates upon tactile manipulation of tibial barbs, and a 10% higher electrical microstimulation threshold for movement.

Summary

It is recommended that neurophysiology experiments on cockroach legs remove the limb at autotomy joints instead of coxa cuts, as the leg regenerates significantly faster when autotomized and does not detract from the neurophysiology educational content.  相似文献   

12.
This paper describes a new non-orthogonal decomposition method to determine effective torques for three-dimensional (3D) joint rotation. A rotation about a joint coordinate axis (e.g. shoulder internal/external rotation) cannot be explained only by the torque about the joint coordinate axis because the joint coordinate axes usually deviate from the principal axes of inertia of the entire kinematic chain distal to the joint. Instead of decomposing torques into three orthogonal joint coordinate axes, our new method decomposes torques into three "non-orthogonal effective axes" that are determined in such a way that a torque about each effective axis produces a joint rotation only about one of the joint coordinate axes. To demonstrate the validity of this new method, a simple internal/external rotation of the upper arm with the elbow flexed at 90 degrees was analyzed by both orthogonal and non-orthogonal decomposition methods. The results showed that only the non-orthogonal decomposition method could explain the cause-effect mechanism whereby three angular accelerations at the shoulder joint are produced by the gravity torque, resultant joint torque, and interaction torque. The proposed method would be helpful for biomechanics and motor control researchers to investigate the manner in which the central nervous system coordinates the gravity torque, resultant joint torque, and interaction torque to control 3D joint rotations.  相似文献   

13.
When insects turn from walking straight, their legs have to follow different motor patterns. In order to examine such pattern change precisely, we stimulated single antenna of an insect, thereby initiating its turning behavior, tethered over a lightly oiled glass plate. The resulting behavior included asymmetrical movements of prothoracic and mesothoracic legs. The mesothoracic leg on the inside of the turn (in the apparent direction of turning) extended the coxa-trochanter and femur-tibia joints during swing rather than during stance as in walking, while the outside mesothoracic leg kept a slow walking pattern. Electromyograms in mesothoracic legs revealed consistent changes in the motor neuron activity controlling extension of the coxa-trochanter and femur-tibia joints. In tethered walking, depressor trochanter activity consistently preceded slow extensor tibia activity. This pattern was reversed in the inside mesothoracic leg during turning. Also for turning, extensor and depressor motor neurons of the inside legs were activated in swing phase instead of stance. Turning was also examined in free ranging animals. Although more variable, some trials resembled the pattern generated by tethered animals. The distinct inter-joint and inter-leg coordination between tethered turning and walking, therefore, provides a good model to further study the neural control of changing locomotion patterns.  相似文献   

14.
Most E  Axe J  Rubash H  Li G 《Journal of biomechanics》2004,37(11):1743-1748
Various flexion axes have been used in the literature to describe knee joint kinematics. This study measured the passive knee kinematics of six cadaveric human knee specimens using two widely accepted flexion axes; transepicondylar axis and the geometric center axis. These two axes were found to form an angle of 4.0 degrees +/- 0.8 degrees. The tibial rotation calculated using the transepicondylar axis was significantly different than the rotation obtained using the geometric center axis for the same knee motion. At 90 degrees of flexion, the tibial rotation obtained using the transepicondylar axis was 4.8 degrees +/- 9.4 degrees whereas the rotation recorded using the geometric center axis at the same flexion angle was 13.8 degrees +/- 10.2 degrees. At 150 degrees of knee flexion, the rotations obtained from the transepicondylar and the geometric center axes were 7.2 degrees +/- 5.7 degrees and 19.9 degrees +/- 6.9 degrees, respectively. The data suggest that a clear definition of the flexion axis is necessary when reporting knee joint kinematics.  相似文献   

15.
杨集昆  杨定 《动物学研究》1990,11(4):279-283
本文报道了在云南发现的金鹬虻属五新种,并与已发表种作了必要的比较。  相似文献   

16.
Sparse geometric information from limited field-of-view medical images is often used to reconstruct the femur in biomechanical models of the hip and knee. However, the full femur geometry is needed to establish boundary conditions such as muscle attachment sites and joint axes which define the orientation of joint loads. Statistical shape models have been used to estimate the geometry of the full femur from varying amounts of sparse geometric information. However, the effect that different amounts of sparse data have on reconstruction accuracy has not been systematically assessed. In this study, we compared shape model and linear scaling reconstruction of the full femur surface from varying proportions of proximal and distal partial femur geometry in combination with morphometric and landmark data. We quantified reconstruction error in terms of surface-to-surface error as well as deviations in the reconstructed femur’s anatomical coordinate system which is important for biomechanical models. Using a partial proximal femur surface, mean shape model-based reconstruction surface error was 1.8 mm with 0.15° or less anatomic axis error, compared to 19.1 mm and 2.7–5.6° for linear scaling. Similar results were found when using a partial distal surface. However, varying amounts of proximal or distal partial surface data had a negligible effect on reconstruction accuracy. Our results show that given an appropriate set of sparse geometric data, a shape model can reconstruct full femur geometry with far greater accuracy than simple scaling.  相似文献   

17.
ABSTRACT. Four groups of campaniform sensilla are found on the trochanter of Cuniculina impigra Tedtenbacher (Phasmidae). One of these groups can be divided into two sub-groups. The sensilla are approximately parallel within each group or sub-group. As sensilla with parallel orientation will respond to the same direction of shear force, each group or sub-group of campaniform sensilla should act as one unit. When the coxa is fixed, activity in the nerve supplying the campaniform sensilla can be released by bending the femur forwards and backwards. The sensilla are sensitive to movement only in one direction. The investigated sensilla react to the stimulus with phasic-tonic discharge patterns. The dependence of the phasic component upon the velocity of the stimulus can be described by a power function. The tonic component depends on the amplitude of the stimulus. By mechanical stimulation of individual groups of sensilla it can be shown that at least two groups of campaniform sensilla contain units which respond to bending the femur backwards. The activity of some motor neurones can be influenced by slightly bending the leg in the horizontal plane. The levator trochanteris muscle is activated when the femur is bent forwards, and the frequency of the slow extensor tibiae motor neurone is increased when the femur is bent backwards. The reaction of both muscles is phasic. There is no detectable reaction in the protractor or the retractor of the coxa or the depressor trochanteris.  相似文献   

18.
Data on limb bone lengths from 64 mammalian species were combined with data on 114 bovid species (Scott, '79) to assess the scaling of limb lengths and proportions in mammals ranging from 0.002 to 364 kg. We analyzed log-transformed data using both reduced major axis and least-squares regression to focus on the distribution across mammals of two key traits—limb length and metatarsal/femur ratio—associated with cursorial adaptation. The total lengths of both fore and hindlimbs scale in a manner very close to the M0.33 predicted by geometric similarity. Thus the relative limb lengths of large mammals, including bovids, generally regarded among the most cursorial of mammals, are very similar to those of the rodents and insectivores in this sample. Metatarsal/femur ratio also shows little change with changing mass, although bovids tend to have relatively longer metapodials than do other families in the sample. We argue that many of the remaining morphological traits associated with cursoriality (e.g., reduction in joint mobility and number of distal limb bone elements) promote cursoriality only at large body sizes. These results lead us to question the general perception that cursoriality is most widespread among large mammals. We also suggest that discussions of cursoriality should focus explicitly on the two partially independent aspects of performance that are otherwise confounded under this general term—speed and the ability to cover substantial distance. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The ankle joint has typically been treated as a universal joint with moments calculated about orthogonal axes and the frontal plane moment generally used to represent the net muscle action about the subtalar joint. However, this joint acts about an oblique axis. The purpose of this study was to examine the differences between joint moments calculated about the orthogonal frontal plane axis and an estimated subtalar joint axis. Three-dimensional data were collected on 10 participants running at 3.6 m/s. Joint moments, power, and work were calculated about the orthogonal frontal plane axis of the foot and about an oblique axis representing the subtalar joint. Selected parameters were compared with a paired t-test (alpha = 0.05). The results indicated that the joint moments calculated about the two axes were characteristically different. A moment calculated about an orthogonal frontal plane axis of the foot resulted in a joint moment that was invertor in nature during the first half of stance, but evertor during the second half of stance. The subtalar joint axis moment, however, was invertor during most of the stance. These two patterns may result in qualitatively different interpretations of the muscular contributions at the ankle during the stance phase of running.  相似文献   

20.
Leg positions during walking on a plane and on thin rods were recorded by photography, videorecording, and videokymography. Joint angles were reconstructed from the tibia-ending position, using a 3-D model of the body. Participation of leg joints in propulsion was analysed by calculating the partial derivatives of tibia end-point position on different joint angles. Adjustment to walking with a narrow ground base is achieved by additional femur depression and flexion of the tibia in the stance phase. In the swing phase, the leg is raised by the same amount as when walking on a plane, but not to the same superior position, as on a plane. The contribution of the subcoxal joint to body propulsion is 64-94% in fore-and middle legs and 22-49% in hind legs. The oblique alignment of the coxal pivot within the thorax helps maintain a long stride for variable ground bases. In Graphosoma , it is close to the optimal position: according to several criteria, the angle between the coxal axis and the body vertical shall be arctan π/2, or ∼ 57.5°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号