首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three experiments were conducted with day-old broiler chicks reared to 18 or 19 d of age. The objective was to examine the effects of dietary oil (cottonseed oil vs fish oil), dietary antioxidant (0 vs 75 ppm ethoxyquin), and dietary lead (0 vs 1000 ppm Pb as lead acetate trihydrate) on hepatic fatty acid composition. A 2×2 factorial arrangement was used in all experiments. In Experiment 1, the factors were oil (4% of each) and Pb. In Experiments 2 and 3, the factors were ethoxyquin and Pb in diets containing 3.5% cottonseed oil (Experiment 2) or 3.5% fish oil (Experiment 3). Hepatic fatty acid profiles were measured by gas-liquid chromatography in 10 chicks/treatment (Experiment 1) or 4 chicks/treatment (Experiments 2 and 3). Dietary oils altered the profiles, with cottonseed oil producing the higher values for linoleic acid (18∶2) and arachidonic acid (20∶4). With fish oil, in addition to the lower levels of 18∶2 and 20∶4, there were significant levels of eicosapentaenoic acid (20∶5) and docosahexaenoic acid (22∶6). Pb enhanced the levels of 20∶4, but the effect was greater with cottonseed oil diets compared with fish oil diets. The enhanced 20∶4 levels resulted in lower ratios of 18∶2/20∶4. Ethoxyquin enhanced the level of 18∶2 with the cottonseed oil diet, and of 20∶5 and 22∶6 with the fish oil diet. Ethoxyquin decreased the level of hepatic 20∶4 when fish oil was fed. The results clearly show that all three factors (oil type, Pb level, and ethoxyquin level) after hepatic fatty acid composition. Both oil source and Pb level appeared to exert an effect on the metabolic conversion of 18∶2 and 20∶4. The primary effect of ethoxyquin was to enhance the levels of polyunsaturated fatty acids in liver. The data do not allow the partitioning of possible ethoxyquin effects to protection of polyunsaturated acids in feed vs protection of polyunsaturated acids in liver tissue. Use of trade names implies neither approval by the North Carolina Agricultural Research Service of products named nor criticism of products not named.  相似文献   

2.
To identify the genes encoding fatty acid elongases for the biosynthesis of polyunsaturated fatty acids (PUFAs), we isolated a cDNA via degenerate PCR and RACE-PCR from Acanthopagrus schlegelii with a high similarity to the ELOVL5-like elongases of mammals and fishes. This gene is termed AsELOVL5 and encodes a 294 amino acid protein. When AsELOVL5 was expressed in Saccharomyces cerevisiae, it conferred an ability to elongate γ-linolenic acid (18:3 n−6) to di-homo-γ-linolenic acid (20:3 n−6). In addition, the transformed cells converted arachidonic acid (20:4 n−6) and eicosapentaenpic acid (20:5 n−3) to docosatetraenoic acid (22:4 n−6) and docosapentaenoic acid (22:5 n−3), respectively. These results indicate that the AsELOVL5 gene encodes a long-chain fatty acid elongase capable of elongating C18Δ6/C20Δ5 but not C22 PUFA substrates.  相似文献   

3.
The effects of dietary zinc deficiency (ZD) on the composition and metabolism of the fatty acyl chains of phospholipids in rat liver were investigated with a fat-free diet. The levels of (n−9) fatty acids such as 18∶1 and 20∶3(n−9) in liver phospholipids (PL) were significantly lower in ZD-rats (19.4% and 5.4%, respectively) than in PF-rats (25.2 and 8.3%). On the other hand, the level of (n−6) acids such as 18∶2 and 20∶4 were higher in ZD-rats (3.3 and 19.1%, respectively) than in PF-rats (2.1 and 14.9%). In order to study the metabolism of fatty acids in vivo,14C-18∶0 or14C-18∶2 was intravenously injected, and then the conversion to the respective metabolite was examined. After the injection of14C-18∶0, the radioactivity was found in 18∶0 (49.3% of the total), 18∶1 (33.2%), and 20∶3 (n−9) (9.1%) in liver PL in PF-rats at 24h. In ZD-rats, the radioactivity was dramatically lower in 18∶1 (23.5%) and 20∶ (n−9) (3.6%), suggesting that the conversion of 18∶0 to 18∶1 and 20∶3 (n−9) was strongly inhibited in ZD-rats. When14C-18∶2 was injected, the radioactivity was mainly found in 18∶2, 20∶3(n−6), and 20∶4. The radioactivity in 20∶4 in ZD-rats was slightly higher than that in control rats. These results indicate that zinc deficiency affects the fatty acid metabolism in liver, in particular, it causes a reduction in δ9 desaturase activity, when rats are fed a fat-free diet.  相似文献   

4.
The aim of this study was to analyze the effect of high dietary Fe on liver antioxidant status in mice fed a corn-oil-enriched diet. Male Balb/c mice were fed for 3 wk with a standard diet enriched with 5% by weight of corn oil with adequate Fe (FCO diet) or supplemented with 1% carbonyl Fe (FCOFe diet). The control group was fed a standard diet. The high-Fe diet induced a twofold increase of hepatic Fe level. However, an increase of thymic Fe level has been induced solely by dietary fat. The hepatic copper (Cu) level slightly decreased in the FCO diet. In the spleen, the high-Fe diet-induced increase of Fe level was negatively correlated with the Cu level. The antioxidant status was influenced by both dietary fat and Fe. Mice fed corn-oil-enriched diets had a higher concentration of thiobarbituric acid-reactive substances (TBARS), with a greater increase in the FCOFe diet. Fatty acid analysis showed decreased n−3 and n−6/n−3 ratio, particularly in the FCOFe diet. Hepatic Cu/Zn superoxide dismutase (CuZn-SOD) activity was decreased in FCO diet, and Fe supplementation caused a further decrease in the enzyme activity. These results suggest that feeding with corn oil-enriched diet increases oxidative damage by decreasing antioxidant enzyme defense. The high-Fe diet additionally affects the antioxidant defense system, further increasing the tissue's susceptibility to lipid peroxidation. Additionally, both corn-oil- and Fe-enriched diets have increased the Cu requirement in mice.  相似文献   

5.
The mineral content (zinc, iron, magnesium, and calcium) in the liver, spleen, and thymus of male Balb/C mice was analyzed. Animals were fed, over 21 d, diets enriched with corn oil (FCO diet) or olive oil (FOO diet) (5% addition to standard pellet, w/w). Olive oil with predominant oleic acid (C18:1, n-9) had a quite different composition than corn oil, in which linoleic acid (C18:2, n-6) prevails. The zinc and magnesium tissue concentrations were not changed in either group. The calcium concentration in liver as well as the calcium concentration in spleen increased in mice fed both the FCO and FOO diets. Furthermore, mice fed both the FOO and FCO diets had increased spleen iron concentration. Mice fed the FCO diet had increased thymus calcium concentration compared to controls. The results show the effect of diets with unsaturated, particularly polyunsaturated fatty acids, on the calcium and iron concentration in some organs.  相似文献   

6.
Lead-induced tissue fatty acid alterations and lipid peroxidation   总被引:6,自引:0,他引:6  
Previous work showed that dietary lead (Pb) increases the relative concentration of arachidonic acid (20∶4) as a percentage of total fatty acids, and decreases the relative proportion of linoleic acid (18∶2) to arachidonic acid (18∶2/20∶4) in chick liver, serum, and erythrocyte membranes. The present investigation was undertaken to examine the time-course and magnitude of the fatty acid alterations with increasing dietary Pb levels. We also examined the effects of Pb on the fatty acid composition and lipid peroxide content of hepatic subcellular organelles. In Exp. 1, chicks were fed diets containing 0, 62.5, 125, 250, 500, or 1000 ppm added Pb (as Pb acetate trihydrate) from 1 to 21 d of age. After 21 d, no growth effects were observed; however, Pb lowered the 18∶2/20∶4 ratio and increased 20∶4 concentration in total liver and serum lipids, and in total hepatic phospholipids in a dose-dependent manner. Hepatic mitochondrial membrane fatty acids were not altered, nor was there any increase in hepatic lipid peroxidation. In Exp. 2, chicks were fed diets containing 0, 500, 1000, or 2000 ppm added Pb from 1 to 21 or 22 d of age. Pb depressed growth in a dose-dependent manner. In addition, Pb lowered the 18∶2/20∶4 ratio and increased 20∶4 concentration in total liver lipids and in hepatic mitochondrial and microsomal membranes in a dose-dependent manner. Total hepatic lipid peroxidation was increased over control values by 1000 ppm Pb, and hepatic microsomal lipid peroxidation was increased by dietary Pb levels of 1000 and 2000 ppm. In Exp. 3, body weight, hepatic microsomal lipid peroxidation, and fatty acid composition were determined in 4-, 9-, 14-, 18-, and 23-d-old chicks fed 0 or 1500 ppm added Pb. Body weights of Pb-treated chicks were significantly lower than those of control chicks by day 18. Microsomal 20∶4 concentration and peroxidation increased, and the 18∶2/20∶4 ratio decreased with age in both groups, but the changes were of greater magnitude in the Pb-treated chicks. The results suggest that some of the manifestations of Pb toxicity may be a reflection of increased concentration of 20∶4 in specific membranes. Further, since the Pb-induced alterations in fatty acid composition were noted in the absence of any growth depression, we propose that fatty acid composition is more sensitive than growth rate to the presence of lead in the diet.  相似文献   

7.
In order to evaluate the effects of fatty acids on immune cell membrane structure and function, it is often necessary to maintain cells in culture. However, cell culture conditions typically reverse alterations in polyunsaturated fatty acid (PUFA) composition achieved by dietary lipid manipulation. Therefore, we hypothesized that T-cells from transgenic mice expressing the Caenorhabditis elegans n-3 desaturase (fat-1) gene would be resistant to the culture-induced loss of n-3 PUFA and, therefore, obviate the need to incorporate fatty acids or homologous serum into the medium. CD4+ T-cells were isolated from (i) control wild type (WT) mice fed a safflower oil-n-6 PUFA enriched diet (SAF) devoid of n-3 PUFA, (ii) fat-1 transgenic mice (enriched with endogenous n-3 PUFA) fed a SAF diet, or (iii) WT mice fed a fish oil (FO) based diet enriched in n-3 PUFA. T-cell phospholipids isolated from WT mice fed FO diet (enriched in n-3 PUFA) and fat-1 transgenic mice fed a SAF diet (enriched in n-6 PUFA) were both enriched in n-3 PUFA. As expected, the mol% levels of both n-3 and n-6 PUFA were decreased in cultures of CD4+ T-cells from FO-fed WT mice after 3 d in culture. In contrast, the expression of n-3 desaturase prevented the culture-induced decrease of n-3 PUFA in CD4+ T-cells from the transgenic mice. Carboxyfluorescein succinidyl ester (CFSE) -labeled CD4+ T-cells from fat-1/SAF vs. WT/SAF mice stimulated with anti-CD3 and anti-CD28 for 3 d, exhibited a reduced (P<0.05) number of cell divisions. We conclude that fat-1-containing CD4+ T-cells express a physiologically relevant, n-3 PUFA enriched, membrane fatty acid composition which is resistant to conventional cell culture-induced depletion.  相似文献   

8.
We examined trophic positions and fatty acid concentrations of riverine, lacustrine, and aquaculture diet and fish in Austrian pre-alpine aquatic ecosystems. It was hypothesized that dietary fatty acid (FA) profiles largely influence the FA composition of the salmonids Salvelinus alpinus, Salmo trutta, and Oncorhynchus mykiss. We analyzed trophic positions using stable isotopes (δ15N) and tested for correlations with polyunsaturated fatty acid (PUFA) concentrations. Gut content analysis revealed benthos (rivers), pellets (aquaculture), and zooplankton (lakes) as the predominant diet source. Results of dorsal muscle tissues analysis showed that the omega-3 PUFA, docosahexaenoic acid (DHA; 22:6n − 3), was the mostly retained PUFA in all fish of all ecosystems, yet with the highest concentrations in S. alpinus from aquaculture (mean: 20 mg DHA/g dry weight). Moreover, we found that eicosapentaenoic acid (EPA; 20:5n − 3) in fish of natural habitats (rivers, lakes) was the second most abundant PUFA (3–5 mg/g DW), whereas aquaculture-raised fish had higher concentrations of the omega-6 linoleic acid (18:2n – 6; 9–11 mg/g DW) than EPA. In addition, PUFA patterns showed that higher omega-3/-6 ratios in aquacultures than in both riverine and lacustrine fish. Data of this pilot field study suggest that salmonids did not seem to directly adjust their PUFA to dietary PUFA profiles in either natural habitats or aquaculture and that some alterations of PUFA are plausible. Finally, we suggest that trophic positions of these freshwater salmonids do not predict PUFA concentrations in their dorsal muscle tissues.  相似文献   

9.
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (− 86%), brain (− 27%), liver (− 68%), heart (− 39%), testis (− 25%), and epididymal adipose tissue (− 77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.  相似文献   

10.
The total protein, carbohydrate, lipid and ash compositions, and fatty acid contents of two species of marine microalgae, the eustigmatophyte Nannochloropsis oculata (formerly ‘Chlorella sp., Japan’) and the chrysophyte Isochrysis sp. (Tahitian) used in tropical Australian mariculture, were studied. The microalgae were grown under a range of culture conditions (41 and 601 laboratory culture, 3001 bag culture, and 80001 outdoor culture) and four light regimes (100 to 107 μ E m−2 s−1, 240 to 390 μ E m−2 s−1, 340 to 620 μ E m−2 s−1, and 1100 to 1200 μE m−2 s−1 respectively) to determine the effect of light intensity on the chemical composition of large scale outdoor cultures. Laboratory and bag cultures were axenic and cultured in Walne medium while outdoor cultures were grown in a commercial medium designed for optimum nutrition in tropical outdoor aquaculture operations. Change in growth medium and photon flux density produced only small changes in the proximate biochemical composition of both algae. N. oculata and Isochrysis sp. both showed a trend towards slightly lower carbohydrate and higher chlorophyll a in shaded outdoor culture. Isochrysis sp. showed significant concentrations of the essential polyunsaturated fatty acid 22:6(n−3) (docosahexaenoic acid) from 5.3 to 10.3% of total fatty acid, and 20:5(n−3) (eicosapentaenoic acid) ranged from 0.6 to 4.1%. In contrast, N. oculata had high concentrations of 20:5(n−3) (17.8 to 39.9%) and only traces of 22:6(n−3). The fatty acid composition of Isochrysis sp. grown at high photon flux density (1100–1200 μE m−2 s−1) under outdoor culture showed a decrease in the percentage of several highly unsaturated fatty acids, including 20:5(n−3), and an increase in 22:6(n−3). N. oculata showed a similar decrease in the percentage of 20:5(n−3). High light intensity caused a decrease in the ratio of total C16 unsaturated fatty acids to saturated 16:0 in N. oculata, and a decrease in the ratio of total C18 unsaturated fatty acids to saturated 18:0 together with a decrease in the ratio of total unsaturated fatty acids to total saturated fatty acids in both microalgae.  相似文献   

11.
Studies on the application of functional lipids such as polyunsaturated fatty acids (PUFAs) have proceeded in various fields regarding health and dietary requirements in a search for novel and rich sources. Filamentous fungus Mortierella alpina 1S-4 produces triacylglycerols rich in arachidonic acid, ones reaching 20 g/L and containing 30–70% arachidonic acid as to the total fatty acids. Mutants derived from M. alpina 1S-4, defective in Δ5 and Δ6 desaturases, accumulate triacylglycerols rich in unique PUFAs, i.e., dihomo-γ-linolenic acid and Mead acid, respectively. Furthermore, various mutants derived from M. alpina 1S-4 have led to the production of oils containing n−1, n−3, n−4, n−6, n−7, and n−9 PUFAs. A variety of genes encoding fatty acid desaturases and elongases involved in PUFA biosynthesis in M. alpina 1S-4 has been isolated and characterized. Molecular breeding of M. alpina strains by means of manipulation of these genes facilitates improvement of PUFA productivity and elucidation of the functions of enzymes involved in PUFA biosynthesis.  相似文献   

12.
BackgroundDietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations.ObjectiveTo evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache.DesignSecondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3–L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet.ResultsCompared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3–L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations.ConclusionDietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA.  相似文献   

13.
Atherosclerosis is the main cause of cardiovascular diseases. The Fat1 gene can express the n‐3 fatty acid desaturase, which converts n‐6 polyunsaturated fatty acids (PUFA) to n‐3 PUFAs. The role of n‐3 PUFAs in atherosclerosis is widely debated. This study explored the effect of n‐3 PUFAs on atherosclerosis in rabbits. In this study, atherosclerosis was induced in Fat1 transgenic rabbits and their littermate (WT) rabbits by feeding a high‐cholesterol diet containing 0.3% cholesterol and 3% soybean oil for 16 weeks. Plasma lipid, fatty acid and pathological analyses of atherosclerotic lesions were conducted. Fatty acid composition in the liver and muscle showed that n‐3 PUFAs increased and n‐6 PUFAs decreased in the Fat‐1 group. Plasma high‐density lipoprotein cholesterol (HDL‐C) levels were significantly increased in the Fat‐1 group, and the atherosclerotic lesion area of the aortic arch in Fat1 transgenic rabbits was significantly reduced. Histological analysis showed that smooth muscle cells (SMCs) in atherosclerotic lesions decreased significantly. In conclusion, n‐3 PUFAs improve atherosclerosis in Fat‐1 transgenic rabbits, and this process may depend on the increase in plasma HDL‐C and the decrease in the amount of SMCs in atherosclerotic plaques.  相似文献   

14.
Recent studies with rats force-fed zinc-deficient diets containing various types of fat failed to demonstrate a role of zinc in desaturation of linoleic acid. The present study was conducted to investigate the effect of zinc deficiency on desaturation of linoleic acid in rats that were initially force-fed fat-free diets to stimulate activity of desaturases. Therefore, rats were fed zinc-adequate and zinc-deficient fat-free diets for 6 d. After that period, the groups were divided and half of the rats continued feeding the fat-free diet for another 3.5 d whereas the other half was switched to a fat diet by supplementing the fat-free diet with 5% safflower oil. In order to assess desaturation of linoleic acid, fatty acid compositions of liver phosphatidylcholine, ethanolamine, and-serine were considered, particularly levels of individual (n-6) polyunsaturated fatty acids (PUFA). Levels of total and individual (n-6) PUFA were similar in zinc-adequate and zinc-deficient rats fed the fat-free diet throughout the experiment. Addition of 5% safflower oil increased levels of total and individual (n-6) PUFA in both zinc-adequate and zinc-deficient rats. However, total (n-6) PUFA in all types of phospholipids were higher in zinc-adequate rats than in zinc-deficient rats. Additionally, in zinc-deficient rats there were changes of (n-6) PUFA levels typical for impaired Δ5 and Δ6 desaturation: linoleic acid and dihomo-γ-linolenic acid were elevated; arachidonic acid, docosatetraenoic acid, and docosapentaenoic were lowered by zinc deficiency. Therefore, the study shows that zinc deficiency impairs desaturation of linoleic acid in rats force-fed fat-free diets and therefore supports results from former convential zinc deficiency experiments suggesting a role of zinc for desaturation of linoleic acid.  相似文献   

15.
In the developing peanut (Arachis hypogaea L.) kernels, the period between 15 and 35 days after podding (DAP) was identified as the active period of oil-filling. The period of active oil-filling was associated with a decrease in the starch, soluble sugars and proteins so as to make available the energy and carbon skeleton for the synthesis of oil. The oil content in the mature kernels decreased by 11, 12 and 25 per cent with Zn, S and Zn+S deficiency, respectively. In addition, proteins and starch content decreased significantly while that of soluble sugars increased slightly. The activity of malate dehydrogenase and glucose-6-phosphate dehydrogenase also decreased due to Zn as well as S deficiency. The deficiency treatments resulted in a decrease in phospholipids, free fatty acids and triacylglycerols in mature kernels. Further the proportion of 16∶0 and 18∶2 decreased while that of 18∶1 increased in developing kernels.  相似文献   

16.
Young turbot (1-20 g) were maintained for not less than 14 weeks on three diets: (1) a control diet containing normal amounts of polyunsaturated fatty acids (PUFA); (2) a diet totally deficient in PUFA; (3) a diet deficient in the (n-6) series of PUFA but containing (n-3) PUFA. At 14 weeks the fatty acid compositions of the phospholipids from liver, gut, gills and muscle were analysed. Large changes in the amounts of PUFA in the phospholipids were found. Fish maintained on the totally PUFA deficient diet 2 had retained arachidonic acid, 20:4(n-6), and docosahexaenoic acid, 22:6(n-3), at the expense of eicosapentaenoic acid, 20:5(n-3). Fish maintained on the (n-6) PUFA-deficient diet (3) contained decreased amounts of 20:4(n-6) and 22:6(n-3) while retaining 20:5(n-3). In all cases phosphatidylinositol had the lowest n-3/n-6 ratios. These results are discussed in terms of PUFA function.  相似文献   

17.
Three hundred sixty healthy Ross×Ross 1-day-old broilers were used to study the effects of zinc glycine chelate (Zn-Gly) on growth performance, hematological, and immunological characteristics. All broilers were randomly assigned into six treatments. Diets were as follows: (1) control (containing 29.3 mg Zn kg−1 basic diet [0–3 weeks] and 27.8 mg Zn kg−1 [4–6 weeks]); (2) basic diet plus 30 mg Zn kg−1 from Zn-Gly; (3) basic diet plus 60 mg Zn kg−1 from Zn-Gly; (4) basic diet plus 90 mg Zn kg−1 from Zn-Gly; (5) basic diet plus 120 mg Zn kg−1 from Zn-Gly; (6) positive control, basic diet plus 120 mg Zn kg−1 from zinc sulfate (ZnSO4). After the 21- and 42-day feeding trials, the results showed that both of Zn-Gly and ZnSO4 could improve the growth performance of broilers, with the greatest average daily feed intake observed in the broilers fed 90 mg Zn kg−1 from Zn-Gly, but the greatest average daily gain observed with 120 mg Zn kg−1 from Zn-Gly (0–3 weeks) and 90 mg Zn kg−1 from Zn-Gly (4–6 weeks). Adding additional Zn-Gly improved the levels of immunoglobulins (IgA, IgM, and IgG) and the contents of total protein and Ca in serum and increased the immune organs index especially with 90 mg Zn kg−1 as Zn-Gly. However, there were no significant differences in responses to complements (C3 and C4) and albumin in serum among the treatments.  相似文献   

18.
Eight-day-old bean plants, grown in a nutrient solution, were sprayed with 10−5, 10−4, 10−3, and 10−2 M atrazine. The lipid changes in primary and trifoliate leaves were studied 6 d after the herbicide application. The atrazine treatment inhibited the growth of the trifoliate leaves, and decreased photosynthetic and transpiration rates, the stomatal conductance, and the total lipid content. Atrazine treatment increased 16:0 and 18:3 acids and decreased trans-3-hexadecenoic and 18:2 acids in the phospholipids. The herbicide also increased 16:0 and 18:1 acids in glycolipids and decreased 18:3 acid in monogalactosyl diacylglycerols and digalactosyl diacylglycerols. In most cases the marked changes in fatty acid composition of the main lipid classes were observed at 10−4 and 10−3 M atrazine. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Transposon Tn5 mutagenesis was used to generate random mutations in Shewanella baltica MAC1, a polyunsaturated fatty acid (PUFA)-producing bacterium. Three mutants produced 3–5 times more eicosapentaenoic acid (EPA 20:5 n−3) compared to the wild type at 10°C. One of the mutants produced 0.3 mg EPA g−1 when grown at high temperature (30°C). Moreover, 2 mg docosahexaenoic acid (DHA 22:6 n−3) g−1 was produced by S. baltica mutants at 4°C. Sequencing of insertion mutation(s) showed 96% homology to trimethylamine N-oxide (TMAO) reductase gene and 85% homology to rRNA operons of E. coli. Tn5 transposon mutagenesis therefore is a suitable technique to increase PUFA formation in bacteria.  相似文献   

20.
Changes in the composition of fatty acids and sterols of Pavlova viridis cultured in an air-lift photobioreactor were studied using gas chromatography-mass spectrometry (GC-MS). The results show that radical changes in fatty acid and sterol contents and compositions occurred during growth phase transitions: the total lipid increased along with the culture age, from 166.4 mg g−1 (late exponential phase) to 232.7 mg g−1 (linear phase), and increased further to be 235.1 mg g−1 in the stationary phase. Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA), decreased along with the culture time, PUFAs, and EPA contents maximized in the late exponential phase to become 46.2 mg g−1 and 22.1 mg g−1 respectively; there was no significant change in docosahexaenoic acid (DHA) content during the whole growth phase, although it reached the peak in the linear phase with 3.5 mg g−1. As for the sterols, two unique sterols with two hydroxyl groups, termed pavlovols, were observed. 4α,24-Dimethylcholestan-3β,4β-diol, one of the pavlovols, increased almost 2-fold from the late exponential phase (2.5 mg g−1) to the stationary phase (4.3 mg g−1). On the contrary, the contents of stigmasterol and sitosterol decreased with culture age, with the maximum content of 2.4 mg g−1 and 3.1 mg g−1, both obtained in the late exponential phase, respectively. The results indicate that growth phase control could be used as a methodology to optimize the total lipid, EPA, PUFA, and sterol contents with the potential for both aquaculture feeds and nutraceutical applications, especially for further research into unique pavlovols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号