首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geeves MA  Chai M  Lehrer SS 《Biochemistry》2000,39(31):9345-9350
Troponin I (TnI) is the component of the troponin complex that inhibits actomyosin ATPase activity, and Ca(2+) binding to the troponin C (TnC) component reverses the inhibition. Effects of the binding of TnI and the TnI-TnC (TnIC) complex to actin-tropomyosin (actinTm) on ATPase and on the binding kinetics of myosin subfragment 1 (S1) were studied to clarify the mechanism of the inhibition. TnI and TnIC in the absence of Ca(2+) bind to actinTm and inhibit ATPase to similar levels with a stoichiometry of one TnI or one TnIC per one Tm and seven actin subunits. TnI also binds to actinTmTn in the presence of Ca(2+) with a stoichiometry and inhibition constant similar to those for the binding to actinTm of TnI and Tn in the absence of Ca(2+). Thus, in the presence of Ca(2+), the intrinsic TnI which is released from its binding site on actinTm does not interfere with the binding of an extra molecule of TnI to actinTmTn. The rate of S1 binding to actinTmTnI and to actinTmTnTnI in the presence of Ca(2+) was inhibited to the same extent as upon removal of Ca(2+) from actinTmTn. These studies show that TnI inhibits ATPase by the same mechanism as Tn in the absence of Ca(2+), by shifting the thin filament equilibria from the open state to the closed and blocked states.  相似文献   

2.
The interaction sites of rabbit skeletal troponin I (TnI) with troponin C (TnC), troponin T (TnT), tropomyosin (Tm) and actin were mapped systematically using nine single cysteine residue TnI mutants with mutation sites at positions 6, 48, 64, 89, 104, 121, 133, 155 or 179 (TnI6, TnI48 etc.). Each mutant was labeled with the heterobifunctional photocrosslinker 4-maleimidobenzophenone (BP-Mal), and incorporated into the TnI.TnC binary complex, the TnI.TnC.TnT ternary troponin (Tn) complex, and the Tn.Tm.F-actin synthetic thin filament. Photocrosslinking reactions carried out in the presence and absence of Ca(2+) yielded the following results: (1) BP-TnI6 photocrosslinked primarily to TnC with a small degree of Ca(2+)-dependence in all the complex forms. (2) BP-TnI48, TnI64 and TnI89 photocrosslinked to TnT with no Ca(2+)-dependence. Photocrosslinking to TnC was reduced in the ternary versus the binary complex. BP-TnI89 also photocrosslinked to actin with higher yields in the absence of Ca(2+) than in its presence. (3) BP-TnI104 and TnI133 photocrosslinked to actin with much higher yields in the absence than in the presence of Ca(2+). (4) BP-TnI121 photocrosslinked to TnC with a small degree of Ca(2+)-dependence, and did not photocrosslink to actin. (5) BP-TnI155 and TnI179 photocrosslinked to TnC, TnT and actin, but all with low yields. All the labeled mutants photocrosslinked to TnC with varying degrees of Ca(2+)-dependence, and none to Tm. These results, along with those published allowed us to construct a structural and functional model of TnI in the Tn complex: in the presence of Ca(2+), residues 1-33 of TnI interact with the C-terminal domain hydrophobic cleft of TnC, approximately 48-89 with TnT, approximately 90-113 with TnC's central helix, approximately 114-125 with TnC's N-terminal domain hydrophobic cleft, and approximately 130-150 with TnC's A-helix. In the absence of Ca(2+), residues approximately 114-125 move out of TnC's N-terminal domain hydrophobic cleft and trigger the movements of residues approximately 89-113 and approximately 130-150 away from TnC and towards actin.  相似文献   

3.
4.
It is essential to know the detailed structure of the thin filament to understand the regulation mechanism of striated muscle contraction. Fluorescence resonance energy transfer (FRET) was used to construct an atomic model of the actin-tropomyosin (Tm)-troponin (Tn) core domain complex. We generated single-cysteine mutants in the 167-195 region of Tm and in TnC, TnI, and the β-TnT 25-kDa fragment, and each was attached with an energy donor probe. An energy acceptor probe was located at actin Gln41, actin Cys374, or the actin nucleotide-binding site. From these donor-acceptor pairs, FRET efficiencies were determined with and without Ca(2+). Using the atomic coordinates for F-actin, Tm, and the Tn core domain, we searched all possible arrangements for Tm or the Tn core domain on F-actin to calculate the FRET efficiency for each donor-acceptor pair in each arrangement. By minimizing the squared sum of deviations for the calculated FRET efficiencies from the observed FRET efficiencies, we determined the location of Tm segment 167-195 and the Tn core domain on F-actin with and without Ca(2+). The bulk of the Tn core domain is located near actin subdomains 3 and 4. The central helix of TnC is nearly perpendicular to the F-actin axis, directing the N-terminal domain of TnC toward the actin outer domain. The C-terminal region in the I-T arm forms a four-helix-bundle structure with the Tm 175-185 region. After Ca(2+) release, the Tn core domain moves toward the actin outer domain and closer to the center of the F-actin axis.  相似文献   

5.
Troponin T (TnT) is an essential component of troponin (Tn) for the Ca(2+)-regulation of vertebrate striated muscle contraction. TnT consists of an extended NH(2)-terminal domain that interacts with tropomyosin (Tm) and a globular COOH-terminal domain that interacts with Tm, troponin I (TnI), and troponin C (TnC). We have generated two mutants of a rabbit skeletal beta-TnT 25-kDa fragment (59-266) that have a unique cysteine at position 60 (N-terminal region) or 250 (C-terminal region). To understand the spatial rearrangement of TnT on the thin filament in response to Ca(2+) binding to TnC, we measured distances from Cys-60 and Cys-250 of TnT to Gln-41 and Cys-374 of F-actin on the reconstituted thin filament by using fluorescence resonance energy transfer (FRET). The distances from Cys-60 and Cys-250 of TnT to Gln-41 of F-actin were 39.5 and 30.0 A, respectively in the absence of Ca(2+), and increased by 2.6 and 5.8 A, respectively upon binding of Ca(2+) to TnC. The rigor binding of myosin subfragment 1 (S1) further increased these distances by 4 and 5 A respectively, when the thin filaments were fully decorated with S1. This indicates that not only the C-terminal but also the N-terminal region of TnT showed the Ca(2+)- and S1-induced movement, and the C-terminal region moved more than N-terminal region. In the absence of Ca(2+), the rigor S1 binding also increased the distances to the same extent as the presence of Ca(2+) when the thin filaments were fully decorated with S1. The addition of ATP completely reversed the changes in FRET induced by rigor S1 binding both in the presence and absence of Ca(2+). However, plots of the extent of S1-induced conformational change vs. molar ratio of S1 to actin showed hyperbolic curve in the presence of Ca(2+) but sigmoidal curve in the absence of Ca(2+). FRET measurement of the distances from Cys-60 and Cys-250 of TnT to Cys-374 of actin showed almost the same results as the case of Gln-41 of actin. The present FRET measurements demonstrated that not only TnI but also TnT change their positions on the thin filament corresponding to three states of thin filaments (relaxed, Ca(2+)-induced or closed, and S1-induced or open states).  相似文献   

6.
In order to help understand the spatial rearrangements of thin filament proteins during the regulation of muscle contraction, we used fluorescence resonance energy transfer (FRET) to measure Ca(2+)-dependent, myosin-induced changes in distances and fluorescence energy transfer efficiencies between actin and the inhibitory region of troponin I (TnI). We labeled the single Cys-117 of a mutant TnI with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (IAEDANS) and Cys-374 of actin with 4-dimethylaminophenylazophenyl-4'-maleimide (DABmal). These fluorescent probes were used as donor and acceptor, respectively, for the FRET measurements. We reconstituted a troponin-tropomyosin (Tn-Tm) complex which contained the AEDANS-labeled mutant TnI, together with natural troponin T (TnT), troponin C (TnC) and tropomyosin (Tm) from rabbit fast skeletal muscle. Fluorescence titration of the AEDANS-labeled Tn-Tm complex with DABmal-labeled actin, in the presence and absence of Ca(2+), resulted in proportional, linear increases in energy transfer efficiency up to a 7:1 molar excess of actin over Tn-Tm. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased from 37.9 A to 44.1 A when Ca(2+) bound to the regulatory sites of TnC. Titration of reconstituted thin filaments, containing AEDANS-labeled Tn-Tm and DABmal-labeled actin, with myosin subfragment 1 (S1) decreased the energy transfer efficiency, in both the presence and absence of Ca(2+). The maximum decrease occurred at well below stoichiometric levels of S1 binding to actin, showing a cooperative effect of S1 on the state of the thin filaments. S1:actin molar ratios of approximately 0.1 in the presence of Ca(2+), and approximately 0.3 in the absence of Ca(2+), were sufficient to cause a 50% reduction in normalized transfer efficiency. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased by approximately 7 A in the presence of Ca(2+) and by approximately 2 A in the absence of Ca(2+) when S1 bound to actin. Our results suggest that TnI's interaction with actin inhibits actomyosin ATPase activity by modulating the equilibria among active and inactive states of the thin filament. Structural rearrangements caused by myosin S1 binding to the thin filament, as detected by FRET measurements, are consistent with the cooperative behavior of the thin filament proteins.  相似文献   

7.
Thin filament-mediated regulation of striated muscle contraction involves conformational switching among a few quaternary structures, with transitions induced by binding of Ca(2+) and myosin. We establish and exploit Saccharomyces cerevisiae actin as a model system to investigate this process. Ca(2+)-sensitive troponin-tropomyosin binding affinities for wild type yeast actin are seen to closely resemble those for muscle actin, and these hybrid thin filaments produce Ca(2+)-sensitive regulation of the myosin S-1 MgATPase rate. Yeast actin filament inner domain mutant K315A/E316A depresses Ca(2+) activation of the MgATPase rate, producing a 4-fold weakening of the apparent Ca(2+) affinity and a 50% decrease in the MgATPase rate at saturating Ca(2+) concentration. Observed destabilization of troponin-tropomyosin binding to actin in the presence of Ca(2+), a 1.4-fold effect, provides a partial explanation. Despite the decrease in apparent MgATPase Ca(2+) affinity, there was no detectable change in the true Ca(2+) affinity of the thin filament, measured using fluorophore-labeled troponin. Another inner domain mutant, E311A/R312A, decreased the MgATPase rate but did not change the apparent Ca(2+) affinity. These results suggest that charged residues on the surface of the actin inner domain are important in Ca(2+)- and myosin-induced thin filament activation.  相似文献   

8.
Muscle contraction is regulated by the intracellular Ca(2+ )concentration. In vertebrate striated muscle, troponin and tropomyosin on actin filaments comprise a Ca(2+)-sensitive switch that controls contraction. Ca(2+ )binds to troponin and triggers a series of changes in actin-containing filaments that lead to cyclic interactions with myosin that generate contraction. However, the precise location of troponin relative to actin and tropomyosin and how its structure changes with Ca(2+ )have been not determined. To understand the regulatory mechanism, we visualized the location of troponin by determining the three-dimensional structure of thin filaments from electron cryo-micrographs without imposing helical symmetry to approximately 35 A resolution. With Ca(2+), the globular domain of troponin was gourd-shaped and was located over the inner domain of actin. Without Ca(2+), the main body of troponin was shifted by approximately 30 A towards the outer domain and bifurcated, with a horizontal branch (troponin arm) covering the N and C-terminal regions of actin. The C-terminal one-third of tropomyosin shifted towards the outer domain of actin by approximately 35 A supporting the steric blocking model, however it is surprising that the N-terminal half of tropomyosin shifted less than approximately 12 A. Therefore tropomyosin shifted differentially without Ca(2+). With Ca(2+), tropomyosin was located entirely over the inner domain thereby allowing greater access of myosin for force generation. The interpretation of three-dimensional maps was facilitated by determining the three-dimensional positions of fluorophores labelled on specific sites of troponin or tropomyosin by applying probabilistic distance geometry to data from fluorescence resonance energy transfer measurements.  相似文献   

9.
The role of the inhibitory region of troponin (Tn) I in the regulation of skeletal muscle contraction was studied with three deletion mutants of its inhibitory region: 1) complete (TnI-(Delta96-116)), 2) the COOH-terminal domain (TnI-(Delta105-115)), and 3) the NH(2)-terminal domain (TnI-(Delta95-106)). Measurements of Ca(2+)-regulated force and relaxation were performed in skinned skeletal muscle fibers whose endogenous TnI (along with TnT and TnC) was displaced with high concentrations of added troponin T. Reconstitution of the Tn-displaced fibers with a TnI.TnC complex restored the Ca(2+) sensitivity of force; however, the levels of relaxation and force development varied. Relaxation of the fibers (pCa 8) was drastically impaired with two of the inhibitory region deletion mutants, TnI-(Delta96-116).TnC and TnI-(Delta105-115).TnC. The TnI-(Delta95-106).TnC mutant retained approximately 55% relaxation when reconstituted in the Tn-displaced fibers. Activation in skinned skeletal muscle fibers was enhanced with all TnI mutants compared with wild-type TnI. Interestingly, all three mutants of TnI increased the Ca(2+) sensitivity of contraction. None of the TnI deletion mutants, when reconstituted into Tn, could inhibit actin-tropomyosin-activated myosin ATPase in the absence of Ca(2+), and two of them (TnI-(Delta96-116) and TnI-(Delta105-115)) gave significant activation in the absence of Ca(2+). These results suggest that the COOH terminus of the inhibitory region of TnI (residues 105-115) is much more critical for the biological activity of TnI than the NH(2)-terminal region, consisting of residues 95-106. Presumably, the COOH-terminal domain of the inhibitory region of TnI is a part of the Ca(2+)-sensitive molecular switch during muscle contraction.  相似文献   

10.
The muscle thin filament protein troponin (Tn) regulates contraction of vertebrate striated muscle by conferring Ca2+ sensitivity to the interaction of actin and myosin. Troponin C (TnC), the Ca2+ binding subunit of Tn contains two homologous domains and four divalent cation binding sites. Two structural sites in the C-terminal domain of TnC bind either Ca2+ or Mg2+, and two regulatory sites in the N-terminal domain are specific for Ca2+. Interactions between TnC and the inhibitory Tn subunit troponin I (TnI) are of central importance to the Ca2+ regulation of muscle contraction and have been intensively studied. Much remains to be learned, however, due mainly to the lack of a three-dimensional structure for TnI. In particular, the role of amino acid residues near the C-terminus of TnI is not well understood. In this report, we prepared a mutant TnC which contains a single Trp-26 residue in the N-terminal, regulatory domain. We used fluorescence lifetime and quenching measurements to monitor Ca2+- and Mg2+-dependent changes in the environment of Trp-26 in isolated TnC, as well as in binary complexes of TnC with a Trp-free mutant of TnI or a truncated form of this mutant, TnI(1-159), which lacked the C-terminal 22 amino acid residues of TnI. We found that full-length TnI and TnI(1-159) affected Trp-26 similarly when all four binding sites of TnC were occupied by Ca2+. When the regulatory Ca2+-binding sites in the N-terminal domain of TnC were vacant and the structural sites in the C-terminal domain of were occupied by Mg2+, we found significant differences between full-length TnI and TnI(1-159) in their effect on Trp-26. Our results provide the first indica- tion that the C-terminus of TnI may play an important role in the regulation of vertebrate striated muscle through Ca2+-dependent interactions with the regula- tory domain of TnC.  相似文献   

11.
The Ca2+-dependent interaction of troponin I (TnI) with actin·tropomyosin (Tm) in muscle thin filaments is a critical step in the regulation of muscle contraction. Previous studies have suggested that, in the absence of Ca2+, TnI interacts with Tm and actin in reconstituted muscle thin filaments, maintaining Tm at the outer domain of actin and blocking myosin-actin interaction. To obtain direct evidence for this Tm-TnI interaction, we performed photochemical crosslinking studies using Tm labeled with 4-maleimidobenzophenone at position 146 or 174 (Tm*146 or Tm*174, respectively), reconstituted with actin and troponin [composed of TnI, troponin T (TnT), and troponin C] or with actin and TnI. After near-UV irradiation, SDS gels of the Tm*146-containing thin filament showed three new high-molecular-weight bands determined to be crosslinked products Tm*146-TnI, Tm*146-troponin C, and Tm*146-TnT using fluorescence-labeled TnI, mass spectrometry, and Western blot analysis. While Tm*146-TnI was produced only in the absence of Ca2+, the production of other crosslinked species did not show Ca2+ dependence. Tm*174 mainly crosslinked to TnT. In the absence of actin, a similar crosslinking pattern was obtained with a much lower yield. A tryptic peptide from Tm*146-TnI with a molecular mass of 2601.2 Da that was not present in the tryptic peptides of Tm*146 or TnI was identified using HPLC and matrix-assisted laser desorption/ionization time-of-flight. This was shown, using absorption and fluorescence spectroscopy, to be the 4-maleimidobenzophenone-labeled peptide from Tm crosslinked to TnI peptide 157-163. These data, which show that a region in the C-terminal domain of TnI interacts with Tm in the absence of Ca2+, support the hypothesis that a TnI-Tm interaction maintains Tm at the outer domain of actin and will help efforts to localize troponin in actin·Tm muscle thin filaments.  相似文献   

12.
In muscle thin filaments, the inhibitory region (residues 96-117) of troponin I (TnI) is thought to interact with troponin C (TnC) in the presence of Ca(2+) and with actin in the absence of Ca(2+). To better understand these interactions, we prepared mutant TnIs which contained a single Cys-96 or Cys-117 and labeled them with the thiol-specific fluorescent probe N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (IAEDANS). We characterized the microenvironments of the AEDANS labels on TnI in the presence and absence of Ca(2+) by measuring the extent of acrylamide quenching of fluorescence and lifetime-resolved anisotropy. In the troponin-tropomyosin (Tn-Tm) complex, the AEDANS labels on both Cys-96 and Cys-117 were less accessible to solvent and less flexible in the presence of Ca(2+), reflecting closer interactions with TnC under these conditions. In reconstituted thin filaments, the environment of the AEDANS on Cys-96 was not greatly affected by Ca(2+), while the AEDANS on Cys-117 was more accessible but significantly less flexible as it moved away from actin and interacted strongly with TnC in the presence of Ca(2+). We used fluorescence resonance energy transfer (FRET) to measure distances between AEDANS on TnI Cys-96 or Cys-117 and 4-?[(dimethylamino)phenyl]azo?phenyl-4'-maleimide (DABmal) on actin Cys-374 in reconstituted thin filaments. In the absence of Ca(2+), the mean distances were 40.2 A for Cys-96 and 35.2 A for Cys-117. In the presence of Ca(2+), Cys-96 moved away from actin Cys-374 by approximately 3.6 A, while Cys-117 moved away by approximately 8 A. This suggests the existence of a flexible "hinge" region near the middle of TnI, allowing amino acid residues in the N-terminal half of TnI to interact with TnC in a Ca(2+)-independent manner, while the C-terminal half of TnI binds to actin in the absence of Ca(2+) or to TnC in the presence of Ca(2+). This is the first report to demonstrate structural movement of the inhibitory region of TnI in the thin filament.  相似文献   

13.
The contraction of vertebrate striated muscle is modulated by Ca(2+) binding to the regulatory protein troponin C (TnC). Ca(2+) binding causes conformational changes in TnC which alter its interaction with the inhibitory protein troponin I (TnI), initiating the regulatory process. We have used the frequency domain method of fluorescence resonance energy transfer (FRET) to measure distances and distance distributions between specific sites in the TnC-TnI complex in the presence and absence of Ca(2+) or Mg(2+). Using sequences based on rabbit skeletal muscle proteins, we prepared functional, binary complexes of wild-type TnC and a TnI mutant which contains no Cys residues and a single Trp residue at position 106 within the TnI inhibitory region. We used TnI Trp-106 as the FRET donor, and we introduced energy acceptor groups into TnC by labeling at Met-25 with dansyl aziridine or at Cys-98 with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine. Our distance distribution measurements indicate that the TnC-TnI complex is relatively rigid in the absence of Ca(2+), but becomes much more flexible when Ca(2+) binds to regulatory sites in TnC. This increased flexibility may be propagated to the whole thin filament, helping to release the inhibition of actomyosin ATPase activity and allowing the muscle to contract. This is the first report of distance distributions between TnC and TnI in their binary complex.  相似文献   

14.
Troponin and tropomyosin on actin filaments constitute a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle through a series of conformational changes within the actin-based thin filament. Troponin consists of three subunits: an inhibitory subunit (TnI), a Ca2+-binding subunit (TnC), and a tropomyosin-binding subunit (TnT). Ca2+-binding to TnC is believed to weaken interactions between troponin and actin, and triggers a large conformational change of the troponin complex. However, the atomic details of the actin-binding sites of troponin have not been determined. Ternary troponin complexes have been reconstituted from recombinant chicken skeletal TnI, TnC, and TnT2 (the C-terminal region of TnT), among which only TnI was uniformly labelled with 15N and/or 13C. By applying NMR spectroscopy, the solution structures of a "mobile" actin-binding domain (approximately 6.1 kDa) in the troponin ternary complex (approximately 52 kDa) were determined. The mobile domain appears to tumble independently of the core domain of troponin. Ca2+-induced changes in the chemical shift and line shape suggested that its tumbling was more restricted at high Ca2+ concentrations. The atomic details of interactions between actin and the mobile domain of troponin were defined by docking the mobile domain into the cryo-electron microscopy (cryo-EM) density map of thin filament at low [Ca2+]. This allowed the determination of the 3D position of residue 133 of TnI, which has been an important landmark to incorporate the available information. This enabled unique docking of the entire globular head region of troponin into the thin filament cryo-EM map at a low Ca2+ concentration. The resultant atomic model suggests that troponin interacted electrostatically with actin and caused the shift of tropomyosin to achieve muscle relaxation. An important feature is that the coiled-coil region of troponin pushed tropomyosin at a low Ca2+ concentration. Moreover, the relationship between myosin and the mobile domain on actin filaments suggests that the latter works as a fail-safe latch.  相似文献   

15.
Troponin (Tn), in association with tropomyosin (Tm), plays a central role in the calcium regulation of striated muscle contraction. Fluorescence resonance energy transfer (FRET) between probes attached to the Tn subunits (TnC, TnI, TnT) and to Tm was measured to study the spatial relationship between Tn and Tm on the thin filament. We generated single-cysteine mutants of rabbit skeletal muscle α-Tm, TnI and the β-TnT 25-kDa fragment. The energy donor was attached to a single-cysteine residue at position 60, 73, 127, 159, 200 or 250 on TnT, at 98 on TnC and at 1, 9, 133 or 181 on TnI, while the energy acceptor was located at 13, 146, 160, 174, 190, 209, 230, 271 or 279 on Tm. FRET analysis showed a distinct Ca2+-induced conformational change of the Tm-Tn complex and revealed that TnT60 and TnT73 were closer to Tm13 than Tm279, indicating that the elongated N-terminal region of TnT extends beyond the beginning of the next Tm molecule on the actin filament. Using the atomic coordinates of the crystal structures of Tm and the Tn core domain, we searched for the disposition and orientation of these structures by minimizing the deviations of the calculated FRET efficiencies from the observed FRET efficiencies in order to construct atomic models of the Tn-Tm complex with and without bound Ca2+. In the best-fit models, the Tn core domain is located on residues 160-200 of Tm, with the arrowhead-shaped I-T arm tilting toward the C-terminus of Tm. The angle between the Tm axis and the long axis of TnC is ∼ 75° and ∼ 85° with and without bound Ca2+, respectively. The models indicate that the long axis of TnC is perpendicular to the thin filament without bound Ca2+, and that TnC and the I-T arm tilt toward the filament axis and rotate around the Tm axis by ∼ 20° upon Ca2+ binding.  相似文献   

16.
Troponin (Tn) plays the key roles in the regulation of striated muscle contraction. Tn consists of three subunits (TnT, TnC, and TnI). In combination with the stopped-flow method, fluorescence resonance energy transfer between probes attached to Cys-60 or Cys-250 of TnT and Cys-374 of actin was measured to determine the rates of switching movement of the troponin tail domain (Cys-60) and of the TnT-TnI coiled-coil C terminus (Cys-250) between three states (relaxed, closed, and open) of the thin filament. When the free Ca(2+) concentration was rapidly changed, these domains moved with rates of approximately 450 and approximately 85 s(-1) at pH 7.0 on Ca(2+) up and down, respectively. When myosin subfragment 1 (S1) was dissociated from thin filaments by rapid mixing with ATP, these domains moved with a single rate constant of approximately 400 s(-1) in the presence and absence of Ca(2+). The light scattering measurements showed that ATP-induced S1 dissociation occurred with a rate constant >800 s(-1). When S1 was rapidly mixed with the thin filament, these domains moved with almost the same or slightly faster rates than those of S1 binding measured by light scattering. In most but not all aspects, the rates of movement of the troponin tail domain and of the TnT-TnI coiled-coil C terminus were very similar to those of certain TnI sites (N terminus, Cys-133, and C terminus) previously characterized (Shitaka, Y., Kimura, C., Iio, T., and Miki, M. (2004) Biochemistry 43, 10739-10747), suggesting that a series of conformational changes in the Tn complex during switching on or off process occurs synchronously.  相似文献   

17.
Rabbit skeletal muscle alpha-tropomyosin (Tm), a 284-residue dimeric coiled-coil protein, spans seven actin monomers and contains seven quasiequivalent periods. X-ray analysis of cocrystals of Tm and troponin (Tn) placed the Tn core domain near residues 150-180 of Tm. To identify the Ca(2+)-sensitive Tn interaction site on Tm, we generated three Tm mutants to compare the consequences of sequence substitution inside and outside of the Tn core domain-binding region. Residues 152-165 and 156-162 in the second half of period 4 were replaced by corresponding residues 33-46 and 37-43 in the second half of period 1, respectively (termed mTm152-165 and mTm156-162, respectively), and residues 134-147 in the first half of period 4 were replaced with residues 15-28 in the first half of period 1 (mTm134-147). Recombinant Tms designed with an additional tripeptide, Ala-Ala-Ser, at the N-terminus were expressed in Escherichia coli. Both mTm152-165 and mTm156-162 suppressed the actin-activated myosin subfragment-1 Mg(2+)-ATPase rate regardless of whether Ca(2+) and Tn were present. On the other hand, mTm134-147 retained the normal Ca(2+)-sensitive regulation, although the actin binding of mTm alone was significantly impaired. Differential scanning calorimetry showed that the sequence substitution in the second half of period 4 affected the thermal stability of the complete Tm molecule and also the actin-induced stabilization. These results suggest that the second half of period 4 of Tm is a key region for inducing conformational changes of the regulated thin filament required for its fully activated state.  相似文献   

18.
Ca(2+) signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility assays by at least 12%, depending upon [cTn]. cTn alone enhances skeletal heavy meromyosin's MgATPase in a concentration-dependent manner and with sub-micromolar affinity. cTn-mediated increases in myosin ATPase may be the cause of superactivation of maximum Ca(2+)-activated regulated thin filament sliding speed in motility assays relative to unregulated skeletal F-actin. To specifically relate this classical superactivation to cardiac muscle, we demonstrate the same response using motility assays where only cardiac proteins were used, where regulated cardiac thin filament sliding speeds with cardiac myosin are >50% faster than unregulated cardiac F-actin. We additionally demonstrate that the COOH-terminal mobile domain of cTnI is not required for this interaction or functional enhancement of myosin activity. Our results provide strong evidence that the interaction between cTn and myosin is responsible for enhancement of cross-bridge kinetics when myosin binds in the vicinity of Tn on thin filaments. These data imply a novel and functionally significant molecular interaction that may provide new insights into Ca(2+) activation in cardiac muscle cells.  相似文献   

19.
Zhou X  Morris EP  Lehrer SS 《Biochemistry》2000,39(5):1128-1132
Troponin I (TnI) is the component of the troponin complex, TnI, TnC, TnT, that is responsible for inhibition of actomyosin ATPase activity. Using the fluorescence of pyrene-labeled tropomyosin (Tm), we probed the interaction of TnI and TnIC with Tm on the reconstituted muscle thin filament. The results indicate that TnI and TnIC(-Ca(2+)) bind specifically and strongly to actin-Tm with a stoichiometry of 1 TnI or 1 TnIC/1 Tm/7 actin, in agreement with previous results. The binding of myosin heads (S1) to actin-Tm at low levels of saturation caused TnI and TnIC to dissociate from actin-Tm. These results are interpreted in terms of the S1-binding state allosteric-cooperative model of the actin-Tm thin filament, closed/open. Thus, TnI and TnIC(-Ca(2+)) bind to the closed state of actin-Tm and their binding is greatly weakened in the S1-induced open state, indicating that they act as allosteric inhibitors. The fluorescence change and the stoichiometry indicate that the TnI-binding site is composed of regions from both actin and Tm probably in the vicinity of Cys 190.  相似文献   

20.
Tropomyosin (Tm) binds along actin filaments, one molecule spanning four to seven actin monomers, depending on the isoform. Periodic repeats in the sequence have been proposed to correspond to actin binding sites. To learn the functional importance of length and the internal periods we made a series of progressively shorter Tms, deleting from two up to six of the internal periods from rat striated alpha-TM (dAc2--3, dAc2--4, dAc3--5, dAc2--5, dAc2--6, dAc1.5--6.5). Recombinant Tms (unacetylated) were expressed in Escherichia coli. Tropomyosins that are four or more periods long (dAc2--3, dAc2--4, and dAc3--5) bound well to F-actin with troponin (Tn). dAc2--5 bound weakly (with EGTA) and binding of shorter mutants was undetectable in any condition. Myosin S1-induced binding of Tm to actin in the tight Tm-binding "open" state did not correlate with actin binding. dAc3--5 and dAc2--5 did not bind to actin even when the filament was saturated with S1. In contrast, dAc2--3 and dAc2--4 did, like wild-type-Tm, requiring about 3 mol of S1/mol of Tm for half-maximal binding. The results show the critical importance of period 5 (residues 166--207) for myosin S1-induced binding. The Tms that bound to actin (dAc2--3, dAc2--4, and dAc3--5) all fully inhibited the actomyosin ATPase (+Tn) in EGTA. In the presence of Ca(2+), relief of inhibition by these Tms was incomplete. We conclude (1) four or more actin periods are required for Tm to bind to actin with reasonable affinity and (2) that the structural requirements of Tm for the transition of the regulated filament from the blocked-to-closed/open (relief of inhibition by Ca(2+)) and the closed-to-open states (strong Tm binding to actin-S1) are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号