首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-free extracts that show activity in photosynthetic electron flow have been prepared from the unicellular dinoflagellate, Gonyaulax polyedra. Electron flow, as O2 uptake, was measured through both photo-system I and II from water to methyl viologen, through photosystem I alone from reduced 2,6-dichlorophenol indophenol to methyl viologen which does not include the plastoquinone pool or from duroquinol to methyl viologen which includes the plastoquinone pool. Electron flow principally through photosystem II was measured from water to diaminodurene and ferricyanide, as O2 evolution. Cultures of Gonyaulax were grown on a 12-hour light:12 hour dark cycle to late log phase, then transferred to constant light at the beginning of a light period. After 3 days, measurements of electron flow were made at the maximum and minimum of the photosynthetic rhythm, as determined from measurements of the rhythm of bioluminescence. Photosynthesis was also measured in whole cells, either as 14C fixation or O2 evolution. Electron flow through both photosystems and through photosystem II alone were clearly rhythmic, while electron flow through photosystem I, including or excluding the plastoquinone pool, was constant with time in the circadian cycle. Thus, only changes in photosystem II account for the photosynthesis rhythm in Gonyaulax.  相似文献   

2.
The prior treatment of thylakoids with cyanide (30 mM) was shown to inhibit plastocyanin-dependent electron transport reactions. We find that cyanide inhibition of electron flow from either water or diaminodurene to methyl viologen, but not from water to ferricyanide, is partially reversed when the thylakoids are collected by centrifugation and resuspended in a cyanide-free medium. However, methyl viologen reduction in thylakoids pretreated with cyanide is sensitive to cyanide (~1 mM) added to the reaction mixtures, whereas that in control thylakoids is unaffected. The cyanide must be added in the dark. Electron transport to methyl viologen in chloroplasts pretreated with cyanide is also sensitive to inhibition by EDTA and bathocuproine sulfonate. Thus, KCN inhibition of electron transport in thylakoids is partially reversible. Moreover, the accessibility of plastocyanin to various reagents is probably altered by the KCN treatment.  相似文献   

3.
The heterotrophically grown, P-700-free mutant No. 8 of Scenedesmus obliquus is unable to carry out photosynthesis. Yet, chloroplast particles isolated from the alga reduced ferricyanide. They also reduced methyl viologen in the presence of the artificial donor reduced 2,6-dichlorophenol indophenol with a low yield but an appreciable saturation rate. NADP reduction or P-700 turn-over could not be detected. When grown mixotrophically, the mutant showed increasing P-700 activity with a concomitant increase in the rate of photosynthesis. Both activities were lost again when the algae were returned to darkness. Isolated chloroplast particles showed a good P-700 turn-over and reasonable rates of NADP reduction. The data suggest that the mutation occurred at a site preceding the formation of the pigment. The results on the photochemical activities are discussed in the light of reports concerning the involvement of P-700 in linear electron transport.  相似文献   

4.
The effect of increasing assay medium sorbitol concentration from 0.33 to 1.0 molar on the photosynthetic reactions of intact and broken spinach (Spinacia oleracea L. var. Long Standing Bloomsdale) chloroplasts was investigated by monitoring O2 evolution supported by the addition of glyceric acid 3-phosphate (PGA), oxaloacetic acid (OAA), 2,5-dimethyl-p-benzoquinone, and 2,6-dichlorophenolindophenol or as O2 uptake with methyl viologen as acceptor.

Uncoupled 2,6-dichlorophenolindophenol-supported whole chain electron transport (photosystems I and II) was inhibited from the 0.33 molar rate by 14% and 48.6% at 0.67 and 1.0 molar sorbitol in the intact chloroplast and by only 0.4% and 25.0% in the broken chloroplast preparation. Whole chain electron flow from water to other oxidants (OAA, methyl viologen) was also inhibited at increased osmoticum in intact preparations while electron flow from water to methyl viologen, ferricyanide, and NADP in broken preparations did not demonstrate the osmotic response. Electron transport to 2,5-dimethyl-p-benzoquinone (photosystem II) from H2O and to methyl viologen (photosystem I) from 3,3′-diaminobenzidine were found to be unaffected by osmolarity in both intact and broken preparations.

The stress response was more pronounced (26-38%) with PGA as substrate in the presence of 0.67 molar sorbitol than the inhibition found with uncoupled and coupled linear electron flow. In addition, substrate availability and ATP generated by cyclic photophosphorylation evaluated by addition of Antimycin A were found not to be mediating the full osmotic inhibition of PGA-supported O2 evolution. In a reconstituted (thylakoids plus stromal protein) chloroplast system to which a substrate level of PGA was added, O2 evolution was only slightly (7.8%) inhibited by increased osmolarity (0.33-0.67 molar sorbitol) indicating that the level of osmotic inhibition above that contributed by adverse effects on electron flow can be attributed to the functioning of the photosynthetic carbon reduction cycle within the intact chloroplasts.

  相似文献   

5.
In Amaranthus chloroplasts that are exposed to ultraviolet-B (UV-B) radiation, the electron flow from water to dichlorophenol indophenol (DCPIP) was inhibited, but the electron flow from reduced DCPIP to methyl viologen remains unaffected. Diphenylcarbazide was ineffective in restoring the activity of DCPIP Hill reaction in UV-B irradiated chloroplasts. Electron flow from water to ferricyanide or dichloro-dimethoxy- p -benzoquinone was inhibited to a degree similar to that of the DCPIP Hill reaction.
The rate of carotenoid photobleaching in the presence of carbonyl cyanide- m -chlorophenylhydrazone, an indicator of the photochemical reaction near the vicinity of reaction centre of photosystem II, was suppressed and paralleled with the inhibition of the DCPIP Hill reaction.
In the UV-B treated chloroplasts, the variable part of the fluorescence transient was diminished. Though the fluorescence yield was lowered by the UV-B radiation, addition of 3-(3,4-dichlorophenyl)-l, l-dimethylurea (DCMU) and/or sodium dithionite increased the emission markedly. With the increase in the dosage of UV-B irradiation, the time required to reach the steady state fluorescence level became longer in the absence of DCMU and shorter in the presence of DCMU. The kinetics of 520 nm absorbance change was markedly unaltered by the UV-B irradiation but its dark decay was prolonged. It is concluded that UV-B irradiation inactivates the photosystem II reaction centre.  相似文献   

6.
A new inhibitor of photoreactions in chloroplasts, 2,3-dimethyl 5-dybroxy 6-phytol benzoquinone is shown to be an electron transfer inhibitor which blocks both cyclic and non-cyclic electron flow. Basal levels of electron transport from reduced dichlorophenol-indophenol to methyl viologen are not affected by the inhibitor, but uncoupler stimulated electron transport in the same system is inhibited. It is concluded that reduced dichlorophenol-indophenol can be oxidized by the photosynthetic electron transport chain in isolated chloroplasts at two sites: site I proximal to P700 and site II distal to P700. Site I has a low affinity for the electron donor. Electron flow from this site to methyl viologen does not suppert ATP formation and it is resistant to inhibition by the quinone analogue. Electron donation at site II, located on the linear portion of the electron transport chain between the two photosystems, has a higher affinity for reduced dichlorophenol-indophenol and precedes a phosphorylation site. The electron flow from this site is stimulated by uncouplers and inhibited by the quinone analogue.Abbreviations DPIP 2,6-dichlorophenol indophenol - MeV methyl viologen - DCMU s-(s, t-dichlocophenyl-1,1-dimethylurca - CCP m-chlorocyanocarbonyl phenylthydrazone - DTE dithioerythritol - PMS phenaxine methosulfate - DMHPB 2,3-dimethyl 5-hydroxy 6-phytol benzoquinone Contribution No. 422 from the Charles F. Kettering Research Laboratory. This research supported in part by the National Science Foundation Grant No. G88432.Supported by an NSF Post-doctoral Fellowship No. 49032.  相似文献   

7.
Hans J. Rurainski  Hans J. Hoppe 《BBA》1976,430(1):105-112
The heterotrophically grown, P-700-free mutant No. 8 of Scenedesmus obliquus is unable to carry out photosynthesis. Yet, chloroplast particles isolated from the alga reduced ferricyanide. They also reduced methyl viologen in the presence of the artificial donor reduced 2,6-dichlorophenol indophenol with a low yield but an appreciable saturation rate. NADP reduction or P-700 turn-over could not be detected.When grown mixotrophically, the mutant showed increasing P-700 activity with a concomitant increase in the rate of photosynthesis. Both activities were lost again when the algae were returned to darkness. Isolated chloroplast particles showed a good P-700 turn-over and reasonable rates of NADP reduction.The data suggest that the mutation occurred at a site preceding the formation of the pigment. The results on the photochemical activities are discussed in the light of reports concerning the involvement of P-700 in linear electron transport.  相似文献   

8.
The steady-state rate of CO2-dependent O2 evolution by Anabaena variabilis cells in response to illumination was established after a lag phase. The lag phase was shortened (1) in cells incubated with glucose as an oxidizable substrate and (2) upon an increase in light intensity. The lag phase was absent during electron transfer from H2O to p-benzoquinone (in combination with ferricyanide) involving Photosystem II. A lag was observed during electron transfer from H2O to methyl viologen involving Photosystems II and I, but not for electron transfer from N,N,N',N'-tetramethyl-p-phenylenediamine (in combination with ascorbate) to methyl viologen involving only Photosystem I. The lag phases of the light-induced H2O --> CO2 and H2O --> methyl viologen electron transfer reactions showed the same temperature dependences at 10-30 degrees C. The lag was prevented by 3-(3,4-dichlorophenyl)-1,1-dimethylurea at concentrations that caused partial inhibition of photosynthetic O2 evolution. Retardation of cell respiration by a combination of CN- and benzylhydroxamate shortened the lag phase of the H2O --> methyl viologen electron transfer. It is concluded that the lag phase is associated with the electron transfer step between Photosystem II and Photosystem I common for the photosynthetic and respiratory chains and is due to the stimulation of cell respiration during the initial period of illumination as a consequence of an increase in the reduced plastoquinone pool and to subsequent retardation of respiration resulting from the transition of the electron transfer chain to the competitive pathway involving Photosystem I.  相似文献   

9.
Effects of potassium on the photosynthetic recovery of Nostoc flagelliforme (Berk. & Curtis) Bornet & Flahault were investigated to determine its exact role during rehydration. Potassium enhanced recovery of the ability to reduce the primary quinone‐type acceptor (QA) and plastoquinone (PQ) pool and the area over the fluorescence rise curve was increased by 127%. The proportions of closed PSII reaction centers at phases J and I and the net rate of closure of PSII reaction centers were decreased by, respectively, 19%, 8%, and 23% with the addition of potassium, due to changes in the ability of PSII for multiple turnovers needed to reduce the PQ pool. Potassium significantly enhanced the probability of electron transfer beyond QA and the recovery of electron transport flux per PSII reaction center. Electron transport from water to methyl viologen for samples rehydrated in K+‐free BG11 medium was 54% of those with the addition of potassium. However, electron flow from water to p‐benzoquinone and from reduced 2,6‐dichlorophenol‐indophenol to methyl viologen showed little change with the addition of potassium. The fast phase and slow phase of millisecond delayed light emission and the ATP content for samples rehydrated in K+‐free BG11 medium were, respectively, 71.6%, 50.7%, and 77.1% of those with the addition of potassium. These suggested that potassium affected electron transfer from PQ to plastocyanin through the cytochrome b6f complex and the proton motive force across the thylakoid membranes, probably reflecting its role in charge balance during H+ transport by the cytochrome b6f complex.  相似文献   

10.
Thylakoid membranes were prepared from the blue-green alga, Anacystis nidulans with lysozyme treatment and a short period of sonic oscillation. The thylakoid membrane preparation was highly active in the electron transport reactions such as the Hill reactions with ferricyanide and with 2,6-dichlorophenolindophenol, the Mehler reaction mediated by methyl viologen and the system 1 reaction with methyl viologen as an electron acceptor and 2,6-dichlorophenolindophenol and ascorbate as an electron donor system. The Hill reaction with ferricyanide and the system 1 reaction was stimulated by the phosphorylating conditions. The cyclic and non-cyclic phosphorylation was also active. These findings suggest that the preparation of thylakoid membranes retained the electron transport system from H2O to reaction center 1, and that the phosphorylation reaction was coupled to the Hill reaction and the system 1 reaction.  相似文献   

11.
Studies on the appearance of various electron transport functions were followed during greening of etiolated cucumber cotyledons. Appearance of dichlorodimethoxy-p-benzoquinone, dimethyl quinone, tetramethyl-p-phenylenediamine, dichlorophenol indophenol and ferricyanide Hill reactions were observed after 8h of greening. However, photoreduction of methyl viologen (MV) and nicotinamide adenine dinucleotide phosphate (NADP) was observed from 2h of greening. Variable fluorescence, which is a direct indication of water-splitting function, was observed from 2h of greening in cotyledons, thylakoid membranes and photosystem II (PSII) particles. The decrease in variable fluorescence in the presence of MV (due to rapid reoxidation of Q-) observed from early stages of greening confirmed the photoreduction of MV by PSII. The early development of water-splitting function was further confirmed by the abolition of variable fluorescence in thylakoid membranes and PSII particles by heat treatment and concomittant loss of light dependent oxygen uptake in the presence of MV in heat treated chloroplasts. However, the photoreduction of MV and NADP was insensitive to intersystem electron transport inhibitors, dichlorophenyl dimethylurea or dibromomethyl isopropyl-p-benzoquinone till 8h of greening. Though the oxidation of intersystem electron carrier cytochrome f was observed from early stages of greening, the reduction of cytochrome f was not observed till 8h of greening. All these observations confirm that during early stages of greening MV and NADP are photoreduced by PSII without the involvement of intersystem electron carriers or the collaboration of PSI. Since these observations are at variance with the currently prevalent concept (Z-Scheme) of the photosynthetic generation of reducing power, which requires definite collaboration of the two photosystems, an alternate electron flow pathway is proposed.  相似文献   

12.
Taka-Aki Ono  Norio Murata 《BBA》1978,502(3):477-485
Thylakoid membranes were prepared from the blue-green alga, Anacystis nidulans with lysozyme treatment and a short period of sonic oscillation. The thylakoid membrane preparation was highly active in the electron transport reactions such as the Hill reactions with ferricyanide and with 2,6-dichlorophenolindophenol, the Mehler reaction mediated by methyl viologen and the system 1 reaction with methyl viologen as an electron acceptor and 2,6-dichlorophenolindophenol and ascorbate as an electron donor system. The Hill reaction with ferricyanide and the system 1 reaction was stimulated by the phosphorylating conditions. The cyclic and non-cyclic phosphorylation was also active.These findings suggest that the preparation of thylakoid membranes retained the electron transport system from H2O to reaction center 1, and that the phosphorylation reaction was coupled to the Hill reaction and the system 1 reaction.  相似文献   

13.
A simple and rapid procedure for preparing thylakoid membranes that are active in photosynthetic electron transport from diverse phytoplankton species is described. The method requires disruption of algal cells with glass beads, exposure to mild hypotonic stress, and subsequent enrichment of the thylakoid membranes by differential centrifugation. Isolated thylakoid membranes were assayed for photosynthetic electron transport activity by measuring rates of oxygen consumption and oxygen production, using a variety of electron donors and acceptors. In the dinoflagellate Gonyaulax polyedra Stein, a relatively broad pH optimum between 7.0 and 8.0 was determined for the whole chain electron transport from water to methyl viologen. The preparation maintained maximum activity for 45 min following the preparation. The assay for photosystem I activity in G. polyedra, determined as electron flow from ascorbate/2,6-dichlorophenolindophenol to methyl viologen, had a somewhat narrower pH optimum around 8.0. Rates of whole chain photosynthetic electron transport on a per cell and on a per chlorophyll a basis were shown to decrease dramatically with cell age in batch cultures of G. polyedra. Using the procedures optimized for G. polyedra, reproducible rates of electron transport on a per cell chlorophyll a basis were also measured in cultures of the dinoflagellate Glenodinium sp., the diatom Nitzschia closterium (Ehrenberg 1839) Wm. Smith 1853 and the chrysophyte Monochrysis lutheri Droop {= Pavlova lutheri (Droop) Green}. Other electron transport assays applied to G. polyedra, and that resulted in comparable rates to those found in other algal groups, include the photosystem II assay from water to diaminodurene/ferricyanide and the photosystem I assay from durohydroquinone to methyl viologen.  相似文献   

14.
Three pyridine nucleotide-dependent diaphorases have been isolated from Acinetobacter calcoaceticus cells and partially characterized. Two of them, with molecular weights of 165,000 and 57,000, utilize NADPH as electron donor whereas the third one (MW = 57,000) is specific for NADH. Oxidized viologen dyes, flavin nucleotides, dichlorophenol indophenol and ferricyanide can act with efficiency as acceptors in the reaction mediated by these diaphorases. The diaphorase activities have been characterized kinetically, and the effect of different inhibitors and cofactors has been also studied. The diaphorases seem to be subjected to metabolic control by oxidation and reduction.  相似文献   

15.
In spinach thylakoids prepared from intact chloroplasts by shocking in the presence of ascorbate to preserve the operation of ascorbate peroxidase, the rate of oxygen uptake with methyl viologen as acceptor decreased in response to the addition of H2O2. Such a decrease was not observed in the presence of KCN or when the thylakoids lost ascorbate peroxidase activity. Illumination of intact chloroplasts in the presence of H2O2 and methyl viologen showed an initial rate of oxygen exchange, which is intermediate between the initial rate of oxygen evolution in the presence of H2O2 alone and steady-state oxygen uptake in the presence of methyl viologen. The data showed that monodehydroascorbate radical generated in ascorbate peroxidase reaction could compete with methyl viologen for electrons supplied by the electron transport chain in both thylakoids and intact chloroplasts. During the illumination of intact chloroplasts the rate of oxygen uptake increased. The presence of nigericin swiftly led to steady-state oxygen uptake, and to a clear-cut 1:1 relationship between the electron transport rate estimated from fluorescence assay and the electron transport rate determined from oxygen uptake, taking the stoichiometry 1O2:4e. The increase in oxygen uptake was attributed to the cessation of monodehydroascorbate radical generation brought about by consumption of intrachloroplast ascorbate in the peroxidase reactions, and the effects of nigericin were explained by acceleration of such consumption. The competition between methyl viologen and monodehydroascorbate radical in the intact chloroplasts was estimated under various conditions.  相似文献   

16.
In spinach thylakoids prepared from intact chloroplasts by shocking in the presence of ascorbate to preserve the operation of ascorbate peroxidase, the rate of oxygen uptake with methyl viologen as acceptor decreased in response to the addition of H2O2. Such a decrease was not observed in the presence of KCN or when the thylakoids lost ascorbate peroxidase activity. Illumination of intact chloroplasts in the presence of H2O2 and methyl viologen showed an initial rate of oxygen exchange, which is intermediate between the initial rate of oxygen evolution in the presence of H2O2 alone and steady-state oxygen uptake in the presence of methyl viologen. The data showed that monodehydroascorbate radical generated in ascorbate peroxidase reaction could compete with methyl viologen for electrons supplied by the electron transport chain in both thylakoids and intact chloroplasts. During the illumination of intact chloroplasts the rate of oxygen uptake increased. The presence of nigericin swiftly led to steady-state oxygen uptake, and to a clear-cut 1:1 relationship between the electron transport rate estimated from fluorescence assay and the electron transport rate determined from oxygen uptake, taking the stoichiometry 1O2:4e. The increase in oxygen uptake was attributed to the cessation of monodehydroascorbate radical generation brought about by consumption of intrachloroplast ascorbate in the peroxidase reactions, and the effects of nigericin were explained by acceleration of such consumption. The competition between methyl viologen and monodehydroascorbate radical in the intact chloroplasts was estimated under various conditions.  相似文献   

17.
Spiller H 《Plant physiology》1980,66(3):446-450
Spheroplasts from Anabaena 7119 (formerly designated Nostoc muscorum) were prepared in the presence of serum albumin in 0.5 molar sucrose. Electron transport and photophosphorylation were preserved (> 70% of the maximum rate for 1 week). The pH profile of electron transport and photophosphorylation in the reactions H2O → NADP, H2O → methyl viologen, and H2O → ferricyanide shows that uncoupling by ammonia is small throughout and increases slightly with higher pH. ADP + Pi increased NADP reduction from H2O by 2.5-fold. The ratios of ATP formed per electron pair transported ranged from 0.9 to 1.5. Effects of catalase and superoxide dismutase on the overall O2 balance implicate pseudocyclic electron transport and phosphorylation. The quenching of 9-aminoacridine fluorescence indicates the formation of a Δ pH from 2 to 2.6 during illumination. This pH gradient is abolished by uncouplers; however, complete uncoupling is achieved only by 3-chlorocarbonyl cyanide phenylhydrazone or valinomycin + NH4+. In the presence of NH4+ alone, the membrane potential may act as the driving force for photophosphorylation.  相似文献   

18.
Electron transfer rates to P700+ have been determined in wild-type and three interposon mutants (psaE-, ndhF-, and psaE- ndhF-) of Synechococcus sp. PCC 7002. All three mutants grew significantly more slowly than wild type at low light intensities, and each failed to grow photoheterotrophically in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and a metabolizable carbon source. The kinetics of P700+ reduction were similar in the wild-type and mutant whole cells in the absence of DCMU. In the presence of DCMU, the P700+ reduction rate in the psaE mutant was significantly slower than in the wild type. In the presence of DCMU and potassium cyanide, added to inhibit the outflow of electrons through cytochrome oxidase, P700+ reduction rates increased for both the psaE- and ndhF- strains. The reduction rates for these two mutants were nonetheless slower than that observed for the wild-type strain. The further addition of methyl viologen caused the rate of P700+ reduction in the wild type to become as slow as that for the psaE mutant in the absence of methyl viologen. Given the ability of methyl viologen to intercept electrons from the acceptor side of photosystem I, this response reveals a lesion in cyclic electron flow in the psaE mutant. In the presence of DCMU, the rate of P700+ reduction in the psaE ndhF double mutant was very slow and nearly identical with that for the wild-type strain in the presence of 2,4-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a condition under which physiological electron donation to P700+ should be completely inhibited. These results suggest that NdhF- and PsaE-dependent electron donation to P700+ occurs only via plastoquinone and/or cytochrome b6/f and indicate that there are three major electron sources for P700+ reduction in this cyanobacterium. We conclude that, although PsaE is not required for linear electron flow to NADP+, it is an essential component in the cyclic electron transport pathway around photosystem I.  相似文献   

19.
A photocurrent produced by planar lipid bilayers containing Mg-octaethylporphyrin in the presence of oxygen has been investigated to determine if the current is due to movement of the MgOEP+ ion in the bilayer. Photoexcitation of the MgOEP is known to produce MgOEP+ in the bilayer when an electron acceptor is present. However, the aqueous electron acceptors ferricyanide and methyl viologen (MV+2) have opposite effects on the photocurrent. Ferricyanide decreases the photo current, even in the presence of oxygen, whereas methyl viologen increases the photocurrent, but only when oxygen is present. We attribute most of the photocurrent to the movement of superoxide anion. The difference in effect between ferricyanide and methyl viologen is attributed to the different rates of reduction of O2 by reduced MV+ (fast) vs. ferrocyanide (slow) and the known competition between ferricyanide and oxygen as the acceptor for the photoexcited porphyrin. It is inferred that most of the MgOEP is localized in the polar region of the lipid bilayer. Addition of ferrocyanide to the aqueous phase on one side of the bilayer, to trap MgOEP+ produced on the other side by MV+2, fails to increase the lifetime of the photovoltage. With a pH gradient across the bilayer, we observed only 5% of the photovoltage expected for the selective transport of H+ or OH- by MgOEP+. Thus, these measurements set the lower limit for the cross bilayer transit time of MgOEP+ or its charge in the range of 0.1-0.5 s.  相似文献   

20.
(1) The effect of gradual disruption of the outer membrane of intact chloroplasts on CO2 fixation, electron transport and phosphorylation was investigated. The results suggested that whilst ferricyanide and substrate amounts of ADP enter intact chloroplasts only very slowly, methyl viologen rapidly penetrates the outer membrane. (2) Preparatwons of intact pea chloroplasts had an ATP-consuming reaction which resulted in decreased ADP/O ratios when noncyclic electron transport was measured after disruption of the outer membrane. The ATP-consuming reaction was removed into the supernatant after washing the disrupted chloroplasts. The resulting washed chloroplasts gave ADP/O ratios of 1.5-1.6 for ferricyanide and 1.9-2.0 for methyl viologen. (3) Preparations of intact spinach chloroplasts had lower activity of the ATP-consuming reaction and gave similar ADP/O ratios to washed pea chloroplasts. The ADP/O ratios of spinach chloroplasts did not alter significantly after washing. (4) An investigation of the effect of various assay conditions on the ADP/O ratio showed that the phosphate concentration was critical in obtaining optimal values for ADP/O ratio. Decreasing the phosphate concentration below 10 mM decreased the ADP/O ratio significantly. (5) It is suggested that the maximum ADP/O ratio of chloroplasts is 2.0 but that lower values can be obtained in the presence of an ATP-consuming reaction, under suboptimal assay conditions or where the chloroplasts are structurally damaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号