首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Floral herbivores and pollinators are major determinants of plant reproduction. Because interaction of floral herbivores and pollinators occurs when herbivores attack the flowers in the bud and flower stages and because the compensatory ability of plants is known to differ according to the timing of herbivory, the effects of herbivory may differ according to its timing. In this study, we investigated the effects of floral herbivory at different stages on fruit production and seed/ovule ratio at two sites of large populations of the perennial herb, Iris gracilipes for 2 years. Herbivory at the bud and fruit stages both tended to have negative effects on fruit production, but the former caused more severe damage. On the other hand, herbivory at the flower stage tended not to have negative effects on fruit production because the degree of flower loss was smaller in the flower stage. Although herbivory decreased fruit production, flowers did not compensate for the damage by increasing the seed/ovule ratio because reproduction of I. gracilipes was limited by pollen availability rather than resources. These results indicate that floral herbivory at different stages has different effects on plant reproduction.  相似文献   

2.
The hypothesized ultimate agent of decline for one of the only two known populations of Euphorbia clivicola R. A. Dyer, a Critically Endangered species endemic to the Northern Province of South Africa, is the unsuitable fire management practised within the Nature Reserve in which the population is protected. Management recommendations concerning the fire regime need to consider fire survival in this succulent species. Fire survival of succulents may be due to the avoidance of fire in refugia or due to fire tolerance by vegetative recovery. Subsequent to a fire, damage to E. clivicola plants was determined. New growth (post-fire resprouting) and rock cover surrounding plants were assessed to determine whether plants tolerated fire through vegetative regrowth or survived fire through protection in refugia. Plants were found to be tolerant of fire, sustaining only mild damage with apparent fire mortality at 3% (2% of the plants were already dead prior to the fire). Fire damage stimulated vegetative regrowth, regrowth being more common in plants that had sustained higher levels of fire damage.  相似文献   

3.
Herbivory is an important selection pressure in the life history of plants. Most studies use seed or fruit production as an indication of plant fitness, but the impact of herbivory on male reproductive success is usually ignored. It is possible that plants compensate for resources lost to herbivory by shifting the allocation from seed production to pollen production and export, or vice versa. This study examined the impact of herbivory by Helix aspersa on both male and female reproductive traits of a monoecious plant, Cucumis sativus. The effects of herbivory on the relative allocation to male and female flowers were assessed through measurements of the number and size of flowers of both sexes, and the amount of pollinator visitation. We performed two glasshouse experiments; the first looked at the impact of three levels of pre-flowering herbivory, and the second looked at four levels of herbivory after the plants had started to flower. We found that herbivory during the flowering phase led to a significant increase in the number of plants without male flowers. As a consequence there was significantly less pollen export from this population, as estimated by movement of a pollen analog. The size of female flowers was reduced by severe herbivory, but there was no affect on pollen receipt by the female flowers of damaged plants. The decrease in allocation to male function after severe herbivory may be adaptive when male reproductive success is very unpredictable.  相似文献   

4.
Herbivory by large animals is known to function as a selection pressure to increase herbivory resistance within plant populations by decreasing the frequency of genotypes possessing large, erect canopies. However, the increase in herbivory resistance of the remaining genotypes in the population may potentially involve a tradeoff with competitive ability. The perennial bunchgrass Schizachyrium scoparium was grown in a transplant garden to test the hypothesis that late successional plant populations with a history of grazing are at a competitive disadvantage relative to conspecific populations with no history of grazing were found to possess a greater competitive ability than plants with no grazing history in the absence of herbivory. This unexpected response resulted from the capacity of plants with a history of grazing to recruit a greater number of smaller tillers than did plants with no grazing history. This response was only significant when plants with a history of grazing were nondefoliated and grown with the weakest of the mid-successional competitors, indicating that both defoliation and intense interspecific competition can mask the architectural expression of herbivore-induced selection. Individual tillers did not display any architectural differences between plants with contrasting grazing histories other than mean tiller weight. These data confirm that herbivory by domestic cattle may function as a selection pressure to induce architectural variation in grass populations within an ecological time frame (ca <-25 yrs).  相似文献   

5.
Aquatic macrophytes with floating leaves are often key ecological species that affect entire aquatic ecosystems. Here we describe an investigation of the importance of insect herbivory for population growth and leaf senescence in the yellow water lily (Nuphar lutea). In order to gain a general picture of the importance of herbivory under different conditions, we experimentally manipulated herbivory in a large lily population in natural still water and observed the natural development of 32 smaller populations in flowing water. Herbivory drastically increased leaf senescence, reducing leaf density. In the still water, over one summer, leaf density increased by a factor of 1.23 in the presence of water lily leaf beetles and 1.61 when herbivory was eliminated. In flowing water, population growth was restricted mainly by leaf crowdedness, which limited large dense populations. Herbivory by water lily leaf beetles also had a limiting effect on yellow water lily, again mainly in large dense populations. Small populations supported a lower density of beetles. Previous studies have not addressed population-level responses of vascular plants with floating leaves. Our results suggest that herbivory can result in greater light penetration into the water and reduce “enemy-free space” for aquatic species that find such space in water lily stands. We suggest that the water lily leaf beetle should be considered an “ecological engineer.”  相似文献   

6.
BACKGROUND AND AIMS: Herbivory on floral structures has been postulated to influence the evolution of floral traits in some plant species, and may also be an important factor influencing the occurrence and outcome of subsequent biotic interactions related to floral display. In particular, corolla herbivory may affect structures differentially involved in flower selection by pollinators and fruit predators (specifically, those ovopositing in ovaries prior to fruit development); hence floral herbivores may influence the relationships between these mutualistic and antagonistic agents. METHODS: The effects of corolla herbivory in Linaria lilacina (Scrophulariaceae), a plant species with complex flowers, were considered in relation to plant interactions with pollinators and fruit predators. Tests were made as to whether experimentally created differences in flower structure (resembling those occurring naturally) may translate into differences in reproductive output in terms of fruit or seed production. KEY RESULTS: Flowers with modified corollas, particularly those with lower lips removed, were less likely to be selected by pollinators than control flowers, and were less likely to be successfully visited and pollinated. As a consequence, fruit production was also less likely in these modified flowers. However, none of the experimental treatments affected the likelihood of visitation by fruit predators. CONCLUSIONS: Since floral herbivory may affect pollinator visitation rates and reduce seed production, differences among plants in the proportion of flowers affected by herbivory and in the intensity of the damage inflicted on affected flowers may result in different opportunities for reproduction for plants in different seasons.  相似文献   

7.
Several factors have been proposed to explain female maintenance in gynodioecious populations. In this study, we propose and test a novel hypothesis: greater tolerance to herbivory through more beneficial interactions with plant fungal mutualists might also help to explain female maintenance. Herbivory limits the amount of carbon and nutrients available for the plants and has been shown to affect mycorrhizal colonization. We hypothesized that simulated herbivory would decrease reproductive output, mycorrhizal colonization intensity, and the phosphorus content relatively more in hermaphrodites, so females would achieve higher advantage over hermaphrodites when under herbivory pressure. We tested it in the field using the gynodioecious plant Geranium sylvaticum. We found that simulated herbivory had a negative effect on the reproductive output in both sexes and that there was a similar reduction in fruit set, seed set, and total seed number in both sexes. Defoliation did not affect any fungal parameter measured, but decreased phosphorus content relatively more in females. The plants had a sex-specific relationship with mycorrhizae, but this was not related to herbivory. Thus, we conclude that females do not gain any specific advantage under defoliation from its symbionts at short-term even though it seems that the plants have sex-specific relationship with their mycorrhizal symbionts.  相似文献   

8.
Mosleh Arany  A.  de Jong  T. J.  Kim  H. K.  van Dam  N. M.  Choi  Y. H.  van Mil  H. G. J.  Verpoorte  R.  van der Meijden  E. 《Ecological Research》2009,24(5):1161-1171
Large differences exist in flower and fruit herbivory between dune and inland populations of plants of Arabidopsis thaliana (Brassicaceae). Two specialist weevils Ceutorhynchus atomus and C. contractus (Curculionidae) and their larvae are responsible for this pattern in herbivory. We test, by means of a reciprocal transplant experiment, whether these differences reflect environmental influences or genetic variation in plant defense level. All plants suffered more damage after being transplanted to the dune site than after being transplanted to the inland site. Plants of inland origin suffered more flower and fruit herbivory than plants of dune origin when grown at the dune transplant site, but differences were much smaller at the inland site. Both flower damage by adult weevils and fruit damage by their larvae were subject to significant genotype × environment interactions. The observed pattern in herbivory is a strong indication for local adaption of plant defense to the level of herbivory by Ceutorhynchus. In order to identify the mechanism of defense, a quantitative analysis of glucosinolates was performed on the seeds with HPLC. Highly significant differences were found in glucosinolate types and total concentration. These patterns were mainly determined by the origin of the plants (dune or inland) and by a genotype × environment interaction. Herbivory was not significantly correlated to the concentration of glucosinolates in seeds. We therefore analyzed the total metabolic composition of seeds, using NMR spectroscopy and multivariate data analysis. Major differences in chemical composition were found in the water–methanol fractions: more glucosinolate and sucrose in the dune and more fatty acids, lipids and sinapoylmalate in the inland populations. We discuss which of these chemical factors could explain the marked differences in damage between populations.  相似文献   

9.
A. H. Prins  H. W. Nell 《Oecologia》1990,82(3):325-332
Summary Herbivore effects were studied on populations of the biennial plant species Senecio jacobaea and Cynoglossum officinale. During a three year period (1985–1988) population characteristics (herbivory, number of seedlings, rosettes and flowering plants) were compared in-and outside exclosures, as well as parameters reflecting vegetation cover. In S. jacobaea, a strong negative effect of Tyria jacobaeae was found on seedling establishment, rosette growth and flowering. On the other hand, vertebrate herbivores (mainly rabbits) had an indirect positive effect by limiting the development of the surrounding vegetation (esp. grasses). The increasing vegetation cover in protected populations caused a reduction in germination, seedling- and rosette-growth. Herbivory on C. officinale was low (<10%), no direct effects of herbivores on plant populations were shown. Indirect effects of herbivory through an increasing vegetation were even more pronounced as in S. jacobaea. Therefore, although both plant species may first benefit from herbivore-exclusion, their populations are dependent on rabbits eating other plants (esp. grasses) and reducing competition.Publication of the Meijendel comité, New Series no. 108  相似文献   

10.
Krupnick  Gary A.  Weis  Arthur E. 《Plant Ecology》1998,134(2):151-162
Flower-feeding insects may influence the reproductive behavior of their host plant. In plants with labile sex expression, the ratio of maternal to paternal investment may change in response to damage, an effect that goes beyond the direct reduction of plant gametes. We examined the effects of floral herbivory by the beetle Meligethes rufimanus (Nitidulidae) on the ratio of hermaphroditic flowers to male flowers in an andromonoecious shrub, Isomeris arborea (Capparaceae) in southern California. Plants exposed to herbivory had a greater rate of flower bud abortion than those protected from herbivory. Exposed plants produced a greater proportion of hermaphroditic flowers to male flowers, although damaged inflorescences still produced fewer fruit. An additional manipulative experiment showed that the removal of pistils on inflorescences led to an increase in the proportion of hermaphroditic flowers. This suggests that the presence of fruit may lead to pistil suppression in developing flowers. Adaptive responses to herbivory which favor andromonoecy thus include the continued production of hermaphroditic flowers when floral damage is high (and hence low fruit set), and a switch to male flower production when floral damage is low (and fruit production increases). The consequences of an altered six ratio induced by insect herbivores may lead to indirect effects on both the male and female reproductive success of this plant.  相似文献   

11.
Sex ratio variation was investigated in natural populations of six dioecious shrub species of Lindera in Japan. Interspecific differences in sex ratio were examined in relation to patterns of population structure, floral dimorphism, fruit production and intersexual differences in herbivory. Sex ratios tended towards equality or bias in favour of males, except for populations of L. glauca , in which no male plants were found. Sex switching in individual plants was not observed. Although male flowers were generally larger in size than flowers of conspecific females, costs of flowering did not appear to influence sex ratio. However, a relation was found between high allocation to fruit production and increasing male fraction of populations. In addition, girths of flowering plants tended to be larger in females, which may indicate delay in age of the first reproduction compared to males. No intersexual difference was found in degree of leaf damage due to herbivory. Results of this study are discussed in the light of other studies on sex ratio variation in dioecious plant species.  相似文献   

12.
To date, the endangered terrestrial orchid Codonorchis canisioi was only known from two collections at its type locality. This plant has not been collected since 1935 and is currently considered as Critically Endangered in the Brazilian list of threatened flora. We recently found two small populations about 174 km from the type locality. We thus seized the opportunity to make a complete record of morphological traits, aiming to fill the gaps of the short and non-illustrated protologue. Plant, flower (including details of column and pollinarium) and fruit features are here illustrated and discussed in detail. Overall, plant and flower features are similar to those of the widespread Patagonian C. lessonii. Yet, both species can be separated by a number of vegetative and floral features. Female Augochlorine Halictidae bees were recorded as pollinators. Fruits mature quickly (15–19 days after pollination). Plants wither by middle October, resting underground as very small (3–5 mm diameter) roundish tubers. The two newly found populations are in privately owned areas and prone to both fire and cattle grazing. Due to the small size of each population (estimated in less than 200 individuals), it is likely that this species would still be considered as CR (Critically Endangered) when formally and properly surveyed under the IUCN criteria. Since plants are small and strongly seasonal, more field surveys are necessary to locate other potentially overlooked populations.  相似文献   

13.
Declining populations of less than 250 mature individuals are symptomatic of many Critically Endangered cycads, which, globally, comprise the most threatened group of organisms as a result of collecting and habitat loss. Survival plans focus on law enforcement, reintroduction, and augmentation programmes using plants from the wild and botanical gardens. Augmentation is one of the few remaining options for cycad populations, although the assumed benefits remain untested and there is a possibility that augmentation from different sources could compromise the genetic integrity of existing populations, especially when garden plants have no provenance data. We studied Encephalartos latifrons, a South African endemic, which is a typical Critically Endangered cycad. We studied the extent and structure of genetic diversity in wild and ex situ populations to assess the potential benefits and risks associated with augmentation programmes. We examined 86 plants using amplified fragment length polymorphisms (AFLPs). The 417 AFLP markers thus generated yielded a unique DNA ‘fingerprint’ for each plant. Wild populations retain high levels of genetic diversity and this is reflected among the ex situ holdings at the Kirstenbosch Botanical Garden. No population differentiation is evident, indicating a single panmictic population, consistent with moderately high levels of gene flow between subpopulations and a sexual mode of reproduction. Bayesian clustering identified four genotype groups in the wild, as well as a genotype group only found in ex situ collections. Our results indicate that E. latifrons would benefit from augmentation programmes, including the use of undocumented collections, and careful management of breeding plants would increase the heterogeneity of propagules. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 293–308.  相似文献   

14.
Herbivory has long been recognized as a significant driver of plant population dynamics, yet its effects along environmental gradients are unclear. Understanding how weather modulates plant–insect interactions can be particularly important for predicting the consequences of exotic insect invasions, and an explicit consideration of weather may help explain why the impact can vary greatly across space and time. We surveyed two native prickly pear cactus species (genus Opuntia) in the Florida panhandle, USA, and their specialist insect herbivores (the invasive South American cactus moth, Cactoblastis cactorum, and three native insect species) for five years across six sites. We used generalized linear mixed models to assess the impact of herbivory and weather on plant relative growth rate (RGR) and sexual reproduction, and we used Fisher's exact test to estimate the impact of herbivory on survival. Weather variables (precipitation and temperature) were consistently significant predictors of vital rate variation for both cactus species, in contrast to the limited and varied impacts of insect herbivory. Weather only significantly influenced the impact of herbivory on Opuntia humifusa fruit production. The relationships of RGR and fruit production with precipitation suggest that precipitation serves as a cue in determining the trade‐off in the allocation of resources to growth or fruit production. The presence of the native bug explained vital rate variation for both cactus species, whereas the invasive moth explained variation only for Ostricta. Despite the inconsistent effect of herbivory across vital rates and cactus species, almost half of Ostricta plants declined in size, and the invasive insect negatively affected RGR and fruit production. Given that fruit production was strongly size‐dependent, this suggests that Ostricta populations at the locations surveyed are transitioning to a size distribution of predominantly smaller sizes and with reduced sexual reproduction potential.  相似文献   

15.
Herbivory and pollination are important determinants of female reproductive success in flowering plants. Plants must interact with herbivores and flower visitors simultaneously and interaction with one may alter the outcome of the interaction with the other. These indirect effects can have dramatic impacts on plant fitness. The purpose of this study was to examine whether the stem-boring weevil Mecinus janthiniformis (Curculionidae: Coleoptera) affects flower visitation rate and seed set of the exotic plant Dalmatian toadflax (Linaria dalmatica (L.) Mill. Scrophulariaceae). We compared the flower production, flower morphology, visitation rate, fruit production, and pollen limitation on Dalmatian toadflax plants with and without larval feeding by M. janthiniformis. Feeding by M. janthiniformis reduced the number of flowers and per plant visitation rate, and there was a significant interaction between herbivory and flower number suggesting that the change in visitation rate was not solely a function of a reduction in flower abundance. Herbivory also had direct negative impacts on the reproductive success of Dalmatian toadflax. Total flower and fruit production decreased by over 30 % in plants attacked by M. janthiniformis. However, plants with M. janthiniformis were not more pollen-limited than those without M. janthiniformis. This suggests that herbivory had primarily direct effects female reproductive success.  相似文献   

16.
Ruhren  Scott 《Plant Ecology》2003,166(2):189-198
There are many examples of mutualistic interactions between ants and plants bearing extrafloral nectaries (EFN). The annual legume Chamaecrista nictitans (Caesalpineaceae) secretes nectar from EFN, specialized structures that attract ants, spiders, and other arthropods. The effects of manipulated C. nictitans patch size and location on plant-ant interactions were tested. Defense from herbivores was not detected; plants with ants did not set significantly more fruit or seed than plants with ants excluded. On the contrary, in one year, plants without ants set more fruit and seed than C. nictitans with ants. The cause of this was not determined. Furthermore, insect herbivore damage was low during three years of observations. Sennius cruentatus (Bruchidae), a specialist seed predator beetle, escaped ant defense despite the presence of numerous ants. Beetle progeny are protected during development by living inside maturing C. nictitans fruit and preventing fruits from dehiscing before emerging as adults. Although ants reduced percent of infestation in 1995, the total number of S. cruentatus per plant was not affected by ants in years of infestation. Overall, larger experimental C. nictitans patches attracted more ants, parasitoid wasps, and percent infestation by S. cruentatus while insect herbivores declined with increasing patch size. Location of patches within fields, however, did not affect numbers of arthropod visitors. Similar to manipulated populations, very little insect herbivory occurred in four reference populations. In contrast to the experimental populations, no S. cruentatus were recovered in reference populations of C. nictitans. Herbivory by insects may not always depress seed set by C. nictitans or may not exceed a threshold level. Thus, herbivory-reduction by ants may not have been detectable in these results. Seed predation may be more influential on C. nictitans reproduction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Exotic plant invasion can have dramatic impacts on native plants making restoration of native vegetation at invaded sites challenging. Though invasives may be superior competitors, it is possible their dominance could be enhanced by insect herbivores if native plants are preferred food sources. Insect herbivory can regulate plant populations, but little is known of its effects in restoration settings. There is a need to better understand relationships between insect herbivores and invasive plants with regard to their combined potential for impacting native plant establishment and restoration success. The objective of this study was to assess impacts of grasshopper herbivory and the invasive grass Bromus tectorum (cheatgrass) on mortality and growth of 17 native plant species used in restoration of critical sagebrush steppe ecosystems. Field and greenhouse experiments were conducted using moderate densities of a common, generalist pest grasshopper (Melanoplus bivittatus). Grasshoppers had stronger and more consistent impacts on native restoration plants in field and greenhouse studies than cheatgrass. After 6 weeks in the greenhouse, grasshoppers were associated with 36% mortality over all native restoration species compared to 2% when grasshoppers were absent. Herbivory was also associated with an approximately 50% decrease in native plant biomass. However, effects varied among species. Artemisia tridentata, Chrysothamnus viscidiflorus, and Coreopsis tinctoria were among the most negatively impacted, while Oenothera pallida, Pascopyrum smithii, and Leymus cinerus were unaffected. These findings suggest restoration species could be selected to more effectively establish and persist within cheatgrass infestations, particularly when grasshopper populations are forecasted to be high.  相似文献   

18.
The establishment of baseline IUCN Red List assessments for plants is a crucial step in conservation planning. Nowhere is this more important than in biodiversity hotspots that are subject to significant anthropogenic pressures, such as Madagascar. Here, all Madagascar palm species are assessed using the IUCN Red List categories and criteria, version 3.1. Our results indicate that 83% of the 192 endemic species are threatened, nearly four times the proportion estimated for plants globally and exceeding estimates for all other comprehensively evaluated plant groups in Madagascar. Compared with a previous assessment in 1995, the number of Endangered and Critically Endangered species has substantially increased, due to the discovery of 28 new species since 1995, most of which are highly threatened. The conservation status of most species included in both the 1995 and the current assessments has not changed. Where change occurred, more species have moved to lower threat categories than to higher categories, because of improved knowledge of species and their distributions, rather than a decrease in extinction risk. However, some cases of genuine deterioration in conservation status were also identified. Palms in Madagascar are primarily threatened by habitat loss due to agriculture and biological resource use through direct exploitation or collateral damage. The recent extension of Madagascar’s protected area network is highly beneficial for palms, substantially increasing the number of threatened species populations included within reserves. Notably, three of the eight most important protected areas for palms are newly designated. However, 28 threatened and data deficient species are not protected by the expanded network, including some Critically Endangered species. Moreover, many species occurring in protected areas are still threatened, indicating that threatening processes persist even in reserves. Definitive implementation of the new protected areas combined with local community engagement are essential for the survival of Madagascar’s palms.  相似文献   

19.
The effects of floral herbivores on floral traits may result in alterations in pollinator foraging behaviour and subsequently influence plant reproductive success. Fed-upon plants may have evolved mechanisms to compensate for herbivore-related decreased fecundity. We conducted a series of field experiments to determine the relative contribution of floral herbivores and pollinators to female reproductive success in an alpine herb, Pedicularis gruina, in two natural populations over two consecutive years. Experimental manipulations included bagging, hand supplemental, geitonogamous pollination, and simulated floral herbivory. Bumblebees not only avoided damaged flowers and plants but also decreased successive visits of flowers in damaged plants, and the latter may reduce the level of geitonogamy. Although seed set per fruit within damaged plants was higher than that in intact plants, total seed number in damaged plants was less than that in intact plants, since floral herbivory-mediated pollinator limitation led to a sharp reduction of fruit set. Overall, the results suggest that resource reallocation within inflorescences of damaged plants may partially compensate for a reduction in seed production. Additionally, a novel finding was the decrease in successive within-plant bumblebee visits following floral herbivory. This may increase seed quantity and quality of P. gruina since self-compatible species exhibit inbreeding depression. The patterns of compensation of herbivory and its consequences reported in this study give an insight into the combined effects of interactions between floral herbivory and pollination on plant reproductive fitness.  相似文献   

20.
Summary Resprouting is the main regeneration mechanism after fire in Mediterranean-type ecosystems. Herbivores play an important role in controlling postfire seedling establishment, but their influence on regeneration by resprouting is less well known. To study the effects of fire intensity on resprouting of Adenostoma fasciculatum in southern California chaparral, and its interaction with herbivory, we conducted an experimental burn at three levels of fire intensity. We found that increasing fire intensity increased plant mortality, reduced the number of resprouts per plant, and delayed the time of resprouting. Herbivory increased with fire intensity, and was related to the time of resprouting. Plants resprouting later in the season and out of synchrony with the main flush were attacked more readily by herbivores. Post-resprouting mortality also increased with fire intensity and was significantly associated with herbivory in the higher fire intensity plots. Fire intensity effects on chaparral regeneration by resprouting may be farreaching through effects on the population structure, resprout production, and growth of Adenostoma fasciculatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号