共查询到20条相似文献,搜索用时 15 毫秒
1.
The fate of the Amadori compound N-(1-deoxy-D-fructos-1-yl)-glycine (DFG) was studied in aqueous model systems as a function of pH and temperature. The samples were heated at 100 and 120 degrees C with initial reaction pH of 5.5 and 6.8. Special attention was paid to the formation of the free amino acid, glycine; parent sugars, glucose and mannose; organic acids, formic and acetic acid and alpha-dicarbonyls, 1- and 3-deoxyosone together with methylglyoxal. For the studied conditions decreasing the initial reaction pH with 1.3 units or increasing the temperature with 20 degrees C has the same effect on the DFG degradation as well as on glycine formation. An increase in pH seems to favour the formation of 1-deoxyosone. The lower amount found comparatively to 3-deoxyosone, in all studied systems, seems to be related with the higher reactivity of 1-deoxyosone. Independently of the taken pathway, enolization or retro-aldolization, DFG degradation is accompanied by amino acid release. Together with glycine, acetic acid was the main end product formed. Values of 83 and 55 mol% were obtained, respectively. The rate of parent sugars formation increased with pH, but the type of sugar formed also changed with pH. Mannose was preferably formed at pH 5.5 whereas at pH 6.8 the opposite was observed, that is, glucose was formed in higher amounts than mannose. Also, independently of the temperature, at higher pH fructose was also detected. pH, more than temperature, had an influence on the reaction products formed. The initial steps for a complete multiresponse kinetic analysis have been discussed. Based on the established reaction network a kinetic model will be proposed and evaluated by multiresponse kinetic modelling in a subsequent paper. 相似文献
2.
Within a set of food-related Amadori compounds, crystalline N-(1-deoxy-beta-D-fructopyranos-1-yl)-l-histidine monohydrate (Fru-l-HisxH(2)O) has an unusually low solubility in water, which we determined as 0.21 g/100 g at 25 degrees C. The majority of the other fructose-amino acid conjugates have solubilities exceeding 100 g/100 g in water at this temperature. We report the crystal structure data on Fru-l-HisxH(2)O. The conformation of the carbohydrate is the normal (2)C(5) pyranose chair. Bond lengths and valence angles compare well with the average values from a number of pyranose structures. All hydroxyl and carboxyl oxygen atoms, all nitrogen atoms and the water molecule are involved in an extensive hydrogen bonding, which forms a network of infinite chains with small antidromic rings. 相似文献
3.
Bernal-Uruchurtu MI Metta-Magaña AJ Guerrero-Álvarez JA Reyes-Martínez R Tlahuext H 《Carbohydrate research》2008,343(16):2804-2812
The reactivity of N-(2-aminophenyl)-d-glycero-d-gulo-heptonamide (adgha), with the group 12 cations, Zn(II), Cd(II), and Hg(II), was studied in DMSO-d6 solution. The studied system showed a selective coordination to Hg(II), and the products formed were characterized by 1H and 13C NMR in DMSO-d6 solution and fast atom bombardment (FAB+) mass spectra. The expected coordination compounds, [Hg(adgha)](NO3)2 and [Hg(adgha)2](NO3)2, were observed as unstable intermediates that decompose to bis-[2-(d-glycero-d-gulo-hexahydroxyhexyl)-benzimidazole-κN]mercury(II) dinitrate, [Hg(ghbz)2](NO3)2. The chemical transformation of the complexes was followed by NMR experiments, and the nature of the species formed is sustained by a theoretical study done using DFT methodology. From this study, we propose the structure of the complexes formed in solution, the relative stability of the species formed, and the possible role of the solvent in the observed transformations. 相似文献
4.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects. 相似文献
5.
Rate constants for the mutarotation reaction of N-(p-chlorophenyl)-beta-D-glucopyranosylamine (NGlc) in methanol have been determined in the presence of transition metal chlorides (MCl(2)), at 25 degrees C. The activity of the metal ions catalyzing the alpha-pyranoside<-->beta-pyranoside interconversion has been found to increase in the following series: Mn(2+)相似文献
6.
Efficient synthesis of 2-deoxy-L-erythro-pentose (2-deoxy-L-ribose) from L-arabinose 总被引:1,自引:0,他引:1
An efficient and practical route for the large-scale synthesis of 2-deoxy-L-erythro-pentose (2-deoxy-L-ribose) starting from L-arabinose was developed using Barton-type free-radical deoxygenation reaction as a key step. The radical precursor, a phenoxythiocarbonyl ester, was prepared in situ, and the most efficient deoxygenation was achieved by slow addition of tributyltin hydride to the reaction mixture. 相似文献
7.
6-O-(L-Tyrosylglycyl)- and 6-O-(L-tyrosylglycylglycyl)-D-glucopyranose were synthesized by condensation of the pentachlorophenyl esters of the respective di- and tripeptide with fully unprotected D-glucose. The intramolecular reactivity of the sugar conjugates was studied in pyridine-acetic acid and in dry methanol, at various temperatures and for various incubation times. The composition of the incubation mixtures was monitored by a reversed-phase HPLC method that permits simultaneous analysis of the disappearance of the starting material and the appearance of rearrangement and degradation products. To determine the influence of esterification of the peptide carboxy group on its amino group reactivity, parallel experiments were done in which free peptides were, under identical reaction conditions, incubated with D-glucose (molar ratios 1:1 and 1:5). Depending on the starting compound, different types of Amadori products (cyclic and bicyclic form), methyl ester of peptides, and Tyr-Gly-diketopiperazine were obtained. 相似文献
8.
Three new chiral salen-Mn(III) complexes with sugars at the C-5(5') positions of the salicylaldehyde moieties of the salen ligand were synthesized. Their structures were characterized by FTIR, MS, and elemental analysis. The complexes together with two previously reported ones were successfully used as chiral catalysts for the oxidative kinetic resolution (OKR) of 1-phenylethanol using PhI(OAc)2 as an oxidant and KBr as an additive. Excellent enantiomeric excess (up to 89%) of the product was achieved in 0.5h at 20 degrees C. The results showed that the sugars at C-5(5') of salicylaldehyde moieties in the ligand had influences on the catalytic performances of the complexes. It was concluded that the sugars with the same rotation direction of polarized light as the diimine bridge within the complex could enhance the chiral induction of the complex in the OKR of 1-phenylethanol, but the sugars with the opposite one would reduce that of the corresponding complex. 相似文献
9.
Carbohydrate based syntheses of azasugars with unusual configurations viz. 1,5-dideoxy-1,5-imino-L-gulitol (L-guloDNJ) and 1,5-dideoxy-1,5-imino-L-talitol (L-taloDNJ) are reported, from D-mannose and D-fructose, respectively. The key steps in both syntheses involved reductive aminative cyclizations. Thus, L-guloDNJ was obtained by reduction of 2,3;4,6-di-O-isopropylidene-5-O-p-toluenesulfonyl-D-mannononitrile with LiAlH(4) in DME to give the protected azasugar which upon hydrolysis with HCl afforded crystalline L-guloDNJ as the HCl salt in 29% overall yield. Reduction of 6-azido-1-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-beta-D-ribohexulofuranose obtained from D-fructose in six steps, followed by treatment with HCl, afforded L-taloDNJ as an HCl salt in approximately 10% overall yield. 相似文献
10.
Skorupa E Dmochowska B Pellowska-Januszek L Wojnowski W Chojnacki J Wiśniewski A 《Carbohydrate research》2004,339(14):2355-2362
The syntheses have been developed for quaternary N-(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol-5-yl)ammonium salts derived from five aromatic amines, pyridine, 2-methylpyridine, 3-carbamoylpyridine, 4-(N,N-dimethylamino)pyridine, and quinoline, as well as two tertiary aliphatic amines, trimethylamine and triethylamine. Reactions of 1,4-anhydro-2,3-O-isopropylidene-5-O-tosyl-D,L-ribitol with tri-n-propylamine and tri-n-butylamine were unsuccessful. The products were identified on the basis of their 1H and 13C NMR spectra. The structure of N-(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol-5-yl)trimethylammonium tosylate was additionally elucidated by X-ray diffractometry. 相似文献
11.
Borriss R Krah M Brumer H Kerzhner MA Ivanen DR Eneyskaya EV Elyakova LA Shishlyannikov SM Shabalin KA Neustroev KN 《Carbohydrate research》2003,338(14):1455-1467
The transglycosylation reactions catalyzed by beta-1,3-D-glucanases (laminaranases) were used to synthesize a number of 4-methylumbelliferyl (MeUmb) (1-->3)-beta-D-gluco-oligosaccharides having the common structure [beta-D-Glcp-(1-->3)](n)-beta-D-Glcp-MeUmb, where n=1-5. The beta-1,3-D-glucanases used were purified from the culture liquid of Oerskovia sp. and from a homogenate of the marine mollusc Spisula sachalinensis. Laminaran and curdlan were used as (1-->3)-beta-D-glucan donor substrates, while MeUmb-beta-D-glucoside (MeUmbGlcp) was employed as a transglycosylation acceptor. Modification of [beta-D-Glcp-(1-->3)](2)-beta-D-Glcp-MeUmb (MeUmbG(3)) gives 4,6-O-benzylidene-D-glucopyranosyl or 4,6-O-ethylidene-D-glucopyranosyl groups at the non-reducing end of artificial oligosaccharides. The structures of all oligosaccharides obtained were solved by 1H and 13C NMR spectroscopy and electrospray tandem mass spectrometry. The synthetic oligosaccharides were shown to be substrates for a beta-1,3-1,4-D-glucanase from Rhodothermus marinus, which releases MeUmb from beta-di- and beta-triglucosides and from acetal-protected beta-triglucosides. When acting upon substrates with d.p.>3, the enzyme exhibits an endolytic activity, primarily cleaving off MeUmbGlcp and MeUmbG(2). 相似文献
12.
The reaction of a racemic mixture of (2R,2'S)- and (2S,2'R)-N-(p-tolylsulfonyl)-2-pyrrolidinyl-2-propanol, prepared from (S)-proline, with 2,3,4-tri-O-acetyl-alpha-L-fucopyranosyl trichloroacetimidate led to both diastereoisomers of the title compound after O-deacetylation. 相似文献
13.
Céline Falentin-Daudre 《Carbohydrate research》2010,345(14):1983-1987
d-Ribono-1,4-lactone was treated with ethylamine in DMF to afford N-ethyl-d-ribonamide 8a in quantitative yield. Using this reaction procedure, N-butyl, N-hexyl, N-dodecyl, N-benzyl, N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-d-ribonamides 8b-h were obtained in quantitative yield. Bromination of the amides 8a-e with acetyl bromide in dioxane followed by acetylation gave 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-ethyl, N-butyl, N-hexyl, N-dodecyl, and N-benzyl-d-ribonamides 9a-e in 40-54% yields. To obtain 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-9f-h, the bromination is necessary before the amidation reaction. Treatment of the bromoamides 9a-h with NaH in DMF followed by methanolysis affords N-alkyl-d-ribono-1,5-lactams 12a-h in quantitative yield. 相似文献
14.
Costamagna J Lillo LE Matsuhiro B Noseda MD Villagrán M 《Carbohydrate research》2003,338(15):1535-1542
It was found by 1H and 13C NMR spectroscopy that the Schiff base, 2-deoxy-2-(2-hydroxybenzaldimino)-D-glucopyranose exhibits enol-imine-keto-amine and anomeric equilibria in methanolic, and in dimethyl sulfoxide solutions. The reaction of the Schiff base with nickel acetate gave the bidentate, mononuclear Ni(II) complex that was characterized by spectroscopic methods and by cyclic voltammetry. The coordination of the Schiff base to the metal is through the enol-imine tautomeric form, and the anomeric equilibrium remains in dimethyl sulfoxide solutions. This complex was also obtained by reaction of D-glucosamine with Ni(II) salicylaldehydate. The same reaction was employed for the synthesis of bis-N-[2-deoxy-D-galactopyranosyl-2-(2-hydroxybenzaldiminate)]Ni(II). The small paramagnetic shifts of the 1H NMR resonances of the complexes suggest that paramagnetic species are present in low proportions. 相似文献
15.
A photoinduced electron-transfer (PET) reaction was used for the deoxygenation at C-2 of aldonolactones derivatized as 2-O-[3-(trifluoromethyl)benzoyl] or benzoyl esters. By irradiation of different D-galactono- and D-glucono-1,4-derivatives, with a 450W lamp, using 9-methylcarbazole as photosensitizer, the corresponding 2-deoxy-D-lyxo- and 2-deoxy-D-arabino-hexono-1,4-lactones were efficiently obtained. 相似文献
16.
D-Glucosone 6-phosphate (D-arabino-hexos-2-ulose 6-(dihydrogen phosphate)) was prepared from D-glucosone (D-arabino-hexos-2-ulose) by enzymatic conversion with hexokinase. The isomeric composition of D-glucosone 6-phosphate in aqueous solution was quantitatively determined by NMR spectroscopy and compared to D-glucosone. The main isomers are the alpha-anomer (58%) and the beta-anomer (28%) of the hydrated pyranose form, and the beta-D-fructofuranose form (14%). 相似文献
17.
Melting behaviour of D-sucrose, D-glucose and D-fructose 总被引:1,自引:0,他引:1
The melting behaviour of d-sucrose, d-glucose and d-fructose was studied. The melting peaks were determined with DSC and the start of decomposition was studied with TG at different rates of heating. In addition, melting points were determined with a melting point apparatus. The samples were identified as d-sucrose, alpha-d-glucopyranose and beta-d-fructopyranose by powder diffraction measurements. There were differences in melting between the different samples of the same sugar and the rate of heating had a remarkable effect on the melting behaviour. For example, T(o), DeltaH(f) and T(i) (initial temperature of decomposition) at a 1 degrees Cmin(-1) rate of heating were 184.5 degrees C, 126.6Jg(-1) and 171.3 degrees C for d-sucrose, 146.5 degrees C, 185.4Jg(-1) and 152.0 degrees C for d-glucose and 112.7 degrees C, 154.1Jg(-1) and 113.9 degrees C for d-fructose. The same parameters at 10 degrees Cmin(-1) rate of heating were 188.9 degrees C, 134.4Jg(-1) and 189.2 degrees C for d-sucrose, 155.2 degrees C, 194.3Jg(-1) and 170.3 degrees C for d-glucose and 125.7 degrees C, 176.7Jg(-1) and 136.8 degrees C d-fructose. At slow rates of heating, there were substantial differences between the different samples of the same sugar. The melting point determination is a sensitive method for the characterization of crystal quality but it cannot be used alone for the identification of sugar samples in all cases. Therefore, the melting point method should be validated for different sugars. 相似文献
18.
Perepelov AV Zabłotni A Shashkov AS Knirel YA Sidorczyk Z 《Carbohydrate research》2006,341(11):1969-1974
The structure of the O-polysaccharide of Proteus mirabilis CCUG 10705 (OF) was determined by chemical analyses along with one- and two-dimensional (1)H and (13)C NMR spectroscopy. The polysaccharide was found to contain an amide of D-galacturonic acid with L-alanine and based on the uniqueness of the O-polysaccharide structure and serological data, it was suggested to classify P. mirabilis OF into a new separate Proteus serogroup, O74. A weak cross-reactivity of P. mirabilis OF and P. mirabilis O5 was observed and accounted for by a similarity of their O-repeating units. The following structure of the polysaccharide of P. mirabilis OF was established: [chemical structure: see text] 相似文献
19.
Yoshida H Yamada M Nishitani T Takada G Izumori K Kamitori S 《Journal of molecular biology》2007,374(2):443-453
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246. 相似文献
20.
N-Acetyl-D-neuraminic acid (NeuNAc) aldolase is an important enzyme for the metabolic engineering of cell-surface NeuNAc using chemically modified D-mannosamines. To explore the optimal substrates for this application, eight N-acyl derivatives of D-mannosamine were prepared, and their accessibility to NeuNAc aldolase was quantitatively investigated. The N-propionyl-, N-butanoyl-, N-iso-butanoyl-, N-pivaloyl-, and N-phenylacetyl-D-mannosamines proved to be as good substrates as, or even better than, the natural N-acetyl-D-mannosamine, while the N-trifluoropropionyl and benzoyl derivatives were poor. It was proposed that the electronic effects might have a significant influence on the enzymatic aldol condensation reaction of D-mannosamine derivatives, with electron-deficient acyl groups having a negative impact. The results suggest that N-propionyl-, N-butanoyl-, N-iso-butanoyl-, and N-phenylacetyl-D-mannosamines may be employed to bioengineer NeuNAc on cells. 相似文献